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A brief history

Manin, Feynman, early 1980s: Quantum computers should
be good at simulating quantum systems

Deutsch, 1985: Formal model of quantum computers

Deutsch, Jozsa, Bernstein,Vazirani, Simon, late |1980s/early
| 990s: Examples of problems where quantum computers
outperform classical ones

Shor 1994 Efficient quantum algorithms for factoring and
discrete log
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Quantum circuits

® Prepare n qubits in the state |0 --0)

® Apply a sequence of poly(n) unitary operations acting on
one or two qubits at a time

® Measure in the computational basis to get the result
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Three major questions

® How can we build a quantum computer?
® How useful is an imperfect quantum computer?

® What can we do with a perfect quantum computer?



Hamiltonian dynamics @%W(t» = H(t)[y(1))

In the circuit model, we say a unitary operation can be
implemented efficiently if it can be realized (approximately) by

a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?
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Hamiltonian dynamics @%W(t» = H(t)[y(1))

In the circuit model, we say a unitary operation can be
implemented efficiently if it can be realized (approximately) by

a short sequence of one- and two-qubit gates.
What Hamiltonian dynamics can be implemented efficiently?

® Hamiltonians we can directly realize in the laboratory

® Hamiltonians we can efficiently simulate using quantum
circuits



Simulating Hamiltonian dynamics

Definition. A Hamiltonian H acting on n qubits can be
efficiently simulated if for any error €>0 and time t>0 there is a

quantum circuit U consisting of poly(n, t, |/€) gates such that
|U — et ||<e.
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Simulating Hamiltonian dynamics

Definition. A Hamiltonian H acting on n qubits can be
efficiently simulated if for any error €>0 and time t>0 there is a
quantum circuit U consisting of poly(n, t, |/€) gates such that
|U — e <e.

Theorem.If H is a sum of local terms, then it can be efficiently
simulated.

Basic idea: Lie product formula
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Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently
compute all the nonzero values of (a|H |b). (In particular,
there must be only polynomially many such values.) Then H
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Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently
compute all the nonzero values of (a|H |b). (In particular,
there must be only polynomially many such values.) Then H
can be simulated efficiently.

Basic idea: Color the interaction graph with a small number of
colors and simulate each color separately
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Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently
compute all the nonzero values of (a|H |b). (In particular,
there must be only polynomially many such values.) Then H

can be simulated efficiently.

Basic idea: Color the interaction graph with a small number of
colors and simulate each color separately
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The adiabatic theorem

Let ﬁ(s) be a smoothly varying Hamiltonian for s€[0, 1]

~

(0) H(s)
\/\'Fl(l)
D—1
— Ej(s ) (E5(s)]

J=0 where Eo(s) < Ei(s) = Ex(s) = - - - = Ep.i(s)
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The adiabatic theorem

Let ﬁ(s) be a smoothly varying Hamiltonian for s€[0, 1]

H(0) = H(0) H(t) = H(t/T)
‘\/\'H(T) = H(1)
D—1
=) Ei(s ) (E5(s)]
7=0 where Eo(s) < Ei(s) = Ex(s) = - - - = Ep.i(s)

H(t) = H(t/T) where T is the total run time
Suppose |¥(0)) = |Eo(0))
Then as T—e, [(Eo(1)[(T))[* — 1

For large T, |¥(T")) =~ |Eo(1)). But how large must it be?



Approximately adiabatic evolution

The total run time required for adiabaticity depends on the
spectrum of the Hamiltonian.

Gap: A(s) = Ei(s) — Fo(s), A= H%(i)nl] A(s)
s&|U,
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Approximately adiabatic evolution

The total run time required for adiabaticity depends on the
spectrum of the Hamiltonian.

Gap: A(s) = Fi(s) — Ep(s), A= min A(s)

s€[0,1]
Rough estimates (see for example ) suggest the
condition
T > F—2 ['* = max H[ s)]QH
A s€(0,1]

Theorem.
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Satisfiability problems

® Given h:{0,1}" = {0,1,2,...}, is there a value of z € {0, }"
such that h(z)=0?

® Alternatively, what z minimizes h(z)?

® Example:3SAT. (21 V22V zZ3) A+ A(217V 237 V 2Z42)

h(z) =) he(z)
where h.(z) = {

0 clause c satisfied by z

1 otherwise



Adiabatic optimization

® Define a problem Hamiltonian whose ground state encodes
the solution:
Hp= Y h(z)2)(
z€{0,1}"

® Define a beginning Hamiltonian whose ground state is easy
to create, for example

HB — —zn:()'éj)
1=1

® Choose H(s) to interpolate from Hg to Hp, for example

~

H(s)=(1—s)Hp+sHp

® Choose total run time T so the evolution is nearly adiabatic



Please mind the gap

Recall rough estimate:

|H| = ||Hp — Hp||
< ||Hg| + ||Hp]||

Crucial question: How big is A?
® 2|/poly(n): Efficient quantum algorithm

® |/exp(n): Inefficient quantum algorithm



Unstructured search

Finding a needle in a haystack: h(z) = {O S
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Unstructured search

Finding a needle in a haystack: h(z) = {(1) S
(here h:{0,1,..,N-1}—{0,1}) Z W

Query complexity (given black box for h)
® Classically, ©(N) queries

® Quantumly, O(v/N) queries are sufficient to find w
([2)]a) = [2)]a @ h(2)))

® This cannot be improved: (v N) queries are
necessary



Example: Adiabatic unstructured search

h<z>{f ZZ = Hp =Y h(z)|2){z| = 1 - |w){w|

Start in |s) = L Z 2)
Hp =1—|s){s|

~

H(s)=(1—-s)Hp
‘|‘8Hp



Example: Adiabatic unstructured search

1 0ol

Startin |s) = — 2 |
‘ > \WZ| > 0.8f
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iyt 0.4r
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Example: Adiabatic unstructured search

h(Z){g z;z = szzz:h(Z)\ZMZ\:l—M(w\
A A
artin () — —— <
VN 4 N D)

Hp =1—|s)(s] |
H(s)=(1—s)Hp - 1

—|—8Hp 0.2} \/lﬁ .

0.1F /\/_N
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Example: Adiabatic unstructured search

1 z#w .
Start in |s) = — SN
artin |s) = —— <
Hp =1 - ‘S><S| 0.6 re S(f)
H(3 JHp .
+SHdp 0.2f
IN{(S) — [1 o f(S)]HB .Oo __o.hz"ﬂﬁol.zl 0.6 0.8 1
+ f(s) Hp

[Roland, Cerf 2002; van Dam et al. 2001}



Example: Transverse Ising model

Hp = Z %(1 — aéj)aéjﬂ)) “agree”

JE€Ln
Hp = — Z o';j) with ground state  |s)

~ = - Y )

H(s)=(1—-s)Hp +sHp z€{0,1}7

||
T
£

Diagonalize by fermionization (Jordan-Wigner transformation)

1 [ ) [ ) [ ) [ ] [ ]
Result: A o« — (at critical point of quantum phase transition)
n

Eo(s % 0)) = |+ +)
Eo(s ~ 1)) = J5(0++-0) +[1 -+ 1))




Example: The Fisher problem

7T, o
Hp = Z 53(1 — Uéj)(f,gjﬂ)) J=1 or 2, chosen randomly
JELny,

HB — —zn:a';j)
1=1

Then typically A =~ exp(—cy/n)

[Fisher 1992; Reichardt 2004]



Example: The Fisher problem

7T, o
Hp = Z 53(1 — Uéj)U,ng)) J=1 or 2, chosen randomly
JE€Ln

HB — —f:gg)
71=1

Then typically A =~ exp(—cy/n)
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Random satisfiability problems

Consider random instances of some satisfiability problem (e.g. 3SAT, Exact
cover, ...) with a fixed ratio of clauses/bits.

Few clauses: underconstrained. Many solutions, easy to find.
Many clauses: overconstrained. No solutions, easy to find a contradiction.



Random satisfiability problems

Consider random instances of some satisfiability problem (e.g. 3SAT, Exact
cover, ...) with a fixed ratio of clauses/bits.

Few clauses: underconstrained. Many solutions, easy to find.
Many clauses: overconstrained. No solutions, easy to find a contradiction.

Simulation results for random exact cover instances with unique satisfying
assignments:
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Universal quantum computation

Adiabatic evolution with linear interpolation between local
beginning and ending Hamiltonians can simulate arbitrary QC.
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Universal quantum computation

Adiabatic evolution with linear interpolation between local
beginning and ending Hamiltonians can simulate arbitrary QC.

H =) [Uj@|ji+ 1)+ U] @5){j +1]

j=1
Basic idea : Use this as -Hp.
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NP3

Hs enforces correct initial state.
Add energy penalties to stay in an appropriate subspace.



Universal quantum computation

Adiabatic evolution with linear interpolation between local
beginning and ending Hamiltonians can simulate arbitrary QC.

H =) [Uj@|ji+ 1)+ U] @5){j +1]

j=1
Basic idea : Use this as -Hp.

k
1
Final ground state: — Z U;Uj—1---U1/|0) @ |j)
NP3

Hs enforces correct initial state.
Add energy penalties to stay in an appropriate subspace.

Note: This is adiabatic, but not adiabatic optimization.



