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Quantum algorithms

Key question: What problems can be solved (asymptotically)
faster by a quantum computer than by a classical computer?

• Factoring, discrete log [Shor 94]
• Unstructured search [Grover 96]

• Various hidden subgroup problems
• Pell’s equation [Hallgren 02]
• Hidden shift problems [van Dam, Hallgren, Ip 03]
• Graph traversal [CCDFGS 03]
• Spatial search [AA 03, CG 03/04, AKR 04]
• Element distinctness [Ambainis 03]
• Various graph problems [DHHM 04, MSS 03, . . . ]
• Testing matrix multiplication [Buhrman, Špalek 04]
• . . .

Approaches:
• Fourier sampling
• Amplitude amplification
• Adiabatic evolution
• Quantum walk
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The hidden subgroup problem

Problem: Fix a group G (known) and a subgroup H ≤ G
(unknown). Given query access to a function f : G → S that is

• Constant on any particular left coset of H in G
• Distinct on different left cosets of H in G

We say that f hides H.

Goal: Find (a generating set for) H.

Efficient algorithm: run time poly(log |G|).



Query complexity

The quantum query complexity of the HSP is polynomial:
O(log |G|) quantum queries of f are sufficient to determine H.
[Ettinger, Høyer, Knill 99]

But the best known general algorithm uses O(|G|) time.



Efficient algorithms
• Abelian groups [Shor 94; Boneh, Lipton 95; Kitaev 95]
• Z

n
2 o Z2 [Püschel, Rötteler, Beth 98]

• Normal subgroups [Hallgren, Russell, Ta-Shma 00]
• “Almost abelian” groups [GSVV 01]
• Z

n
pk o Z2 [FIMMS 02]

• q-hedral groups [MRRS 04]
• “Near-Hamiltonian” groups [Gavinsky 04]
• Zpk o Zp [Inui, Le Gall 04]



Interesting instances

Symmetric group
=⇒ Graph isomorphism. [Boneh, Lipton 95]
Some evidence that it may be hard. [Kempe, Shalev 04;
Moore, Russell 05]

Dihedral group
=⇒ poly(d) unique shortest vector in a lattice. [Regev 02]
⇐= Trivial/order two subgroups. [Ettinger, Høyer 98]
⇐= Subset sum. [Regev 02]
2O(

√
log N)-time algorithm. . . [Kuperberg 03]

. . . with polynomial space. [Regev 04]



Subset sum problem

Problem: Given k integers from ZN = {0, . . . , N − 1}
(x ∈ Z

k
N ) and a target t ∈ ZN .

Goal: Find a subset b ∈ Z
k
2 such that

b · x :=
k∑

j=1

bjxj mod N = t .

General problem is NP-hard. But average-case problem at a
fixed density ν := k/ log2N may be much easier.

-ν
1“low density” “high density”

most subsets have a distinct sum most sums achieved by some subset

efficient algorithm
(k < c

√
log N )

[Lagarias, Odlyzko 85]

poly(k) algorithm
(k > 2c

√

log N )
[Flaxman, Pryzdatek 04]

hard?

subset sum =⇒ DHSP [Regev 02]
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Standard approach to the HSP

Compute uniform superposition of function values:
1

√

|G|
∑

g∈G
|g, 0〉 → 1

√

|G|
∑

g∈G
|g, f(g)〉 .

Discard second register to get a hidden subgroup state,

ρH :=
|H|
|G|
∑

g∈K
|gH〉〈gH|

(where

|gH〉 :=
1

√

|H|
∑

h∈H
|gh〉

and K is a set of coset representatives).
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Optimal measurement

Find the measurement with the highest possible success
probability for distinguishing states in the ensemble {ρH}H≤G
for the various possible subgroups.

More generally, {ρH ⊗ · · · ⊗ ρH
︸ ︷︷ ︸

k

}.

Ip 03: Shor’s algorithm implements the optimal measurement
for the abelian hidden subgroup problem. O(1) copies suffice.

Natural questions:
• What is the optimal measurement for other HSPs?
• How many copies are necessary?
• Can the measurements be implemented efficiently?
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Generalized measurement
POVM: Operators {Ej} satisfying

• Ej ≥ 0

• ∑
j Ej = I

Given a quantum state ρ, Pr(j) = tr(Ejρ).

Neumark’s Theorem: Any POVM can be implemented by a
unitary operation on the system (plus an ancilla), followed by
a standard measurement. For a rank-one POVM, Ej = eje

T
j ,

U =

0
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Pretty good measurement

Given an ensemble {ρj}, what is a good way to determine j?

Pretty Good Measurement: For G :=
∑

j ρj, let

Ej := G−1/2ρjG
−1/2 .

(If the states do not have support on the whole Hilbert space,
can add Eout := I −

∑

j Ej.)

This measurement often does a pretty good job of
distinguishing the states. It is known to be optimal (in terms of
success probability) for certain kinds of ensembles.

In fact, we can prove that it is optimal for the dihedral hidden
subgroup states.



Dihedral group

G = DN : Symmetry group of an N -sided regular polygon.

• Rotation= s. sN = e.
• Reflection= r. r2 = e, rsr = s−1.

Group elements: rtsk where t ∈ Z2, k ∈ ZN .

Ettinger-Høyer 98: Sufficient to consider H = {e} or
H = {e, rsd} for some (unknown) d.

We will focus on the order two subgroups {e, rsd}. When the
optimal measurement identifies d, it can also identify the
trivial subgroup.
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Dihedral hidden subgroup states

Standard approach gives

ρd =
1

N

∑

k∈ZN

|φk,d〉〈φk,d|
(

|φk,d〉 :=
1√
2
(|0, k〉 + |1,−k + d〉)

)

Change of basis:

ρd =
1

N

∑

x∈ZN

|φ̃x,d〉〈φ̃x,d|
(

|φ̃x,d〉 :=
1√
2
(|0〉 + ωxd|1〉)|x〉

)

=
1

2N

∑

b,c∈Z2

∑

x∈ZN

ω(b−c)xd|b, x〉〈c, x|
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Dihedral hidden subgroup states
(k copies)

ρ⊗k
d =

1

(2N)k

∑

b,c∈Zk
2

∑

x∈Zk

N

ω[(b−c)·x]d|b, x〉〈c, x|

=
1

(2N)k

∑

x∈Z
k

N

∑

p,q∈ZN

ωd(p−q)
√
ηx

pη
x
q |Sx

p , x〉〈Sx
q , x|

where

|Sx
t 〉 :=

1√
ηx

t

∑

b∈Sx
t

|b〉

Sx
t := {b ∈ Z

k
2 : b · x = t}

ηx
t := |Sx

t |



Dihedral PGM
We have

G :=
∑

j∈ZN

ρ⊗k
j

=
N

(2N)k

∑

x∈Zk

N

∑

t∈ZN

ηx
t |Sx

t , x〉〈Sx
t , x|

so

Ej := G−1/2ρ⊗k
j G−1/2

=
1

N

∑

x∈Zk

N

∑

p,q∈ZN

ωj(p−q)|Sx
p , x〉〈Sx

q , x| .



The PGM is optimal

Theorem [Holevo 73]. Given an ensemble of quantum states
ρi with a priori probabilities pi, the measurement with POVM
elements Ej maximizes the probability of successfully
identifying the state if and only if

(∑

i

piρiEi − ρj

)

Ej = Ej

(∑

i

piρiEi − ρj

)

= 0

Plugging in the expressions for the dihedral hidden subgroup
states and the corresponding PGM in the |Sx

t 〉 basis, one can
verify these conditions.



The PGM is optimal

Theorem [Holevo 73]. Given an ensemble of quantum states
ρi with a priori probabilities pi, the measurement with POVM
elements Ej maximizes the probability of successfully
identifying the state if and only if

(∑

i

piρiEi − ρj

)

Ej = Ej

(∑

i

piρiEi − ρj

)

= 0

Plugging in the expressions for the dihedral hidden subgroup
states and the corresponding PGM in the |Sx

t 〉 basis, one can
verify these conditions.



Success probability

p := trEdρ
⊗k
d (independent of d)

=
1

2kNk+1

∑

x∈Zk

N

(
∑

t∈ZN

√

ηx
t

)2

(Recall ηx
t = # of subsets of x summing to t.)

Theorem. For any fixed ν > 1, p = O(1). For any fixed ν < 1,
p is exponentially small in logN .

In particular, k > logN hidden subgroup states are necessary
to solve the dihedral HSP.

Note: A straightforward information-theoretic argument only
gives k ≥ p log2N .
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Determining the least significant bit

Can one determine the least significant bit of d using fewer
hidden subgroup states?

No! Again, the PGM is optimal. The success probability is
exponentially close to 1

2
for ν < 1.

p̃ =
1

2

[

1 +
1

(2N)k

( ∑

x∈Zk

N

∑

t∈ZN

√
ηx

t η
x
−t + 2ηx

0 + 2ηx
N/2

)]
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Implementing the measurement

The optimal measurement is

Ej =
∑

x∈Z
k

N

Ex
j ⊗ |x〉〈x|

where

Ex
j :=

1

N

∑

p,q∈ZN

ωj(p−q)|Sx
p 〉〈Sx

q | .

It is natural to implement the measurement in particular way:
first measure x, then implement the POVM {Ex

j }j∈ZN
with an

x-dependent quantum circuit. Each Ex
j is rank one, so the

upper left submatrix of the Neumark matrix is unambiguous:

Ux =

(

V x Ax

Bx Cx

)

, V x =
1√
N

∑

j,t∈ZN

ω−jt|j〉〈Sx
t | .



Implementing the measurement

Fourier transform on left (i.e., on the index j): U x → Ũx with

Ṽ x =
∑

t

|t〉〈Sx
t | .

In other words, the measurement can be implemented
efficiently iff we can perform a transformation of the form

|t, x〉 7→
{

|Sx
t , x〉 ηx

t > 0

|ψx
t 〉 ηx

t = 0

(“quantum sampling” of subset sum solutions).



Summary of results
• The PGM is the optimal measurement for distinguishing

dihedral hidden subgroup states.
• The success probability of this measurement has a sharp

transition near ν ∼ 1.
• In particular, logN hidden subgroup states are necessary

to determine the answer (or even the least significant bit).
• Quantum sampling for subset sum solutions at density ν

allows us to implement the measurement at that density.
• Conversely, if the optimal measurement is implemented

by first measuring the block x, then an implementation of
the measurement can be used to solve the subset sum
problem at the corresponding density.



Open questions
• Can we implement the optimal measurement at high (but

subexponential) density, e.g. at the
Kuperberg-Flaxman-Pryzdatek density, k = 2O(

√
log N)?

Can we even generate uniformly random subset sum
solutions at this density?

• Can we implement the optimal measurement at lower
density?
Without solving subset sum?

• What are the optimal measurements for other
non-abelian HSPs?
Can they be implemented efficiently for the cases where
efficient algorithms are known?
Or for any cases where no efficient algorithm is known?
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