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Public-key cryptography in the quantum world

Shor 94: Quantum computers can efficiently
* factor integers
e calculate discrete logarithms (in any group)

7 e RSA

N . This breaks two common public-key cryptosystem:s:
ﬁ e elliptic curve cryptography
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How do quantum computers affect the security of PKC in general?
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Practical question: we'd like to be able to send confidential information
even after quantum computers are built

Theoretical question: crypto is a good setting for exploring the
potential strengths/limitations of quantum computers



Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!
Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key

cryptosystems based on the assumption that it is hard to construct an
isogeny between given elliptic curves over I,

Best known classical algorithm: O(¢'/*) [Galbraith, Hess, Smart 02]



Isogeny-based elliptic curve cryptography

Not all elliptic curve cryptography is known to be quantumly broken!

Couveignes 97, Rostovstev-Stolbunov 06, Stolbunov 10: Public-key
cryptosystems based on the assumption that it is hard to construct an
isogeny between given elliptic curves over I,

Best known classical algorithm: O(¢'/*) [Galbraith, Hess, Smart 02]

Main result of this talk:
Quantum algorithm that constructs an isogeny in time L (2, @)
(assuming GRH), where

Ly(a,€) = exp[(c + 0(1))(In g)* (InTn g)' ]



Elliptic curves

Let IF be a field of characteristic different from 2 or 3

An elliptic curve E is the set of points in PFZ satisfying an equation of
the form y* = z° + ax + b

Y

Example (IF = R):




Elliptic curve group

Geometric definition of a binary
operation on points of [

P+Q

This defines an abelian group with additive identity o



Elliptic curve group

Geometric definition of a binary Algebraic definition:
operation on points of [
for xp # z(,
)\ — Yyo — Yp
Ly — TP

Tpig =\ —Tp— 10

r  YP4+Q — >‘(37P — CUP—I—Q) —YypP

_ (similar expressions for

other cases)
P+Q

This defines an abelian group with additive identity oo



Elliptic curves over finite fields

Cryptographic applications use a finite field I,

Example: 3* = x° + 22 + 2

F=R
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Elliptic curve isogenies

Let £, £ be elliptic curves

An isogeny ¢ : g — L/ is a rational map

B(z,y) = (fa:(w,y) fy(il},y))

92 (z,y) " gy(z,y)

(fz, fy, 9z» gy are polynomials) that is also a group homomorphism:

o((z,y) + (z',y")) = o(z,y) + (2", y')




Elliptic curve isogenies

Let £, £ be elliptic curves

An isogeny ¢ : g — L/ is a rational map

B(z,y) = (fa:(w,y) fy(il},y))

92 (z,y) " gy(z,y)

(fz, fy, 9z» gy are polynomials) that is also a group homomorphism:

o((z,y) + (z',y")) = o(z,y) + (2", y')

Example (IF = [F1g9):

Eo: vy =a°+ 2z + 2 2, Ey: y* =a°+ 34z + 45

o(2.) 2° + 20x? + 50z + 6 (x° + 302° + 23z + 52)y
.CC p—
Y 22+ 207 + 100 23 + 3022 + 827 + 19



Deciding isogeny

Theorem [Tate 66]: Two elliptic curves over a finite field are isogenous
if and only if they have the same number of points.

There is a polynomial-time classical algorithm that counts the points
on an elliptic curve [Schoof 85].

Thus a classical computer can decide isogeny in polynomial time.
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The set of isogenies from E to itself (over IF) is denoted End(F)
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The endomorphism ring

The set of isogenies from E to itself (over IF) is denoted End(F)

We assume F is ordmary (i.e., not su ersmgular) which is the typical
case; then End(F) = = 7| A+ | is an imaginary quadratic order
of discriminant A < O

If End(Ey) = End(FE7) then we say Ey and E are endomorphic

Let Ell, ,(OAa)denote the set of elliptic curves over [F, with n points
and endomorphism ring Oa (up to isomorphism of curves)



Representing isogenies

The degree of an isogeny can be exponential (in log g)

Example: The multiplication by m map,

(z,y) = (z,y) + -+ (2,9)
N———
is an isogeny of degree m? "

Thus we cannot even write down the rational map explicitly in
polynomial time



Representing isogenies

The degree of an isogeny can be exponential (in log g)

Example: The multiplication by m map,

(z,y) = (z,y) + -+ (2,9)
N———
is an isogeny of degree m? "

Thus we cannot even write down the rational map explicitly in
polynomial time

Fact: Isogenies between endomorphic elliptic curves can be
represented by elements of a finite abelian group, the ideal class group
of the endomorphism ring, denoted CI1(Ox )



A group action

Thus we can view isogenies in terms of a group action
% ! Cl(OA) X Ellqm(OA) — Ellq,n(OA)

where E, is the elliptic curve reached from E by an isogeny
corresponding to the ideal class |b]



A group action

Thus we can view isogenies in terms of a group action

* Cl(OA) X Ellqm(OA) — Ellq,n(OA)
[b] x |/ = E[,

where E, is the elliptic curve reached from E by an isogeny
corresponding to the ideal class |b]

This action is regular [VWaterhouse 69]:
for any Ey, E/; there is a unique [b] such that [b] x Ey = E;



The abelian hidden shift problem

Let A be a known finite abelian group

Let fo : A — R be an injective function (for some finite set R)

Let f1 : A — R be defined by f1(x) = fy(xs) for some unknown s € A

Problem: find s




The abelian hidden shift problem

Let A be a known finite abelian group

Let fo : A — R be an injective function (for some finite set R)

Let f1 : A — R be defined by f1(x) = fy(xs) for some unknown s € A

Problem: find s

fo
fi

For A cyclic, this is equivalent to the dihedral hidden subgroup
problem

More generally, this is equivalent to the HSP in the generalized dihedral
group A X Zs



Isogeny construction as a hidden shift problem

Define fy, f1 : C1l(Oa) — Ell; ,(OAa) by

fo([b]) = [b] * Eo
f1([b]) = [b] x £

Ey, E; are isogenous, so there is some |s] such that [s] x Ey = F



Isogeny construction as a hidden shift problem

Define fy, f1 : C1l(Oa) — Ell; ,(OAa) by

fo([b]) = [b] * Eo
f1([b]) = [b] x £

Ey, E; are isogenous, so there is some |s] such that [s] x Ey = F

Therefore this is an instance of the hidden shift problem in C1(O )
with hidden shift [s]:

* Since * is regular, f; is injective
e Since * is a group action, f1([b]) = fo([b][s])



Kuperberg’s algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves
the abelian hidden shift problem in a group of order /N with running

time exp[O(VIn N)] = L (2, 0).
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Kuperberg’s algorithm

Theorem [Kuperberg 03]: There is a quantum algorithm that solves
the abelian hidden shift problem in a group of order /N with running

time exp[O(VIn N)] = L (2, 0).

Thus there is a quantum algorithm to construct an isogeny with
running time 1
& Ln(3,0) X ¢(N)

where ¢(NV) is the cost of evaluating the action

But previously it was not known how to compute the action in
subexponential time
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Computing the action
Problem: Given E, A, b € Oa, compute [b] x E

Direct computation (using modular polynomials) takes time O(¢?)
for an ideal of norm ¢

Instead we use an indirect approach:

* Choose a factor base of small prime ideals py,...,p¢
e Find a factorization [b] = [p7’ - -pjcf] where e, ..., ey are small
e Compute [b] x E/ one small prime at a time

By optimizing the size of the factor base, this approach can be made to
work in time L(z, @) (assuming GRH)

Note: This assumes only GRH (previous related algorithms required
stronger heuristic assumptions)



Polynomial space

Kuperberg’s algorithm uses space exp|O(vIn N)|

Regev 04 presented a modified algorithm using only polynomial space
for the case A = Zn, with running time

exp[O(Vnlnn)] = Lan(3,0(1))

Combining Regev’s ideas with techniques used by Kuperberg for the
case of a general abelian group (of order N), and performing a careful
analysis, we find an algorithm with running time Ly (3, V2)

Thus there is a quantum algorithm to construct e\/lg;tlc curve isogenies
using only polynomial space in time L (%,
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Conclusions

Given two isogenous, endomorphic, ordinary elliptic curves over If,
there is a quantum algorithm that constructs an isogeny between them
in time L, (3, \/_) (or in time L, (%, Ve v/2) using poly(log ¢) space)

Consequences:

* [sogeny-based cryptography may be less secure than more
mainstream cryptosystems (e.g., lattices)

e Computing properties of algebraic curves may be a fruitful direction
for new quantum algorithms

- Can we break isogeny-based cryptography in polynomial time!?
- Computing properties of a single curve (e.g., endomorphism ring)
- Generalizations: non-endomorphic curves, supersingular curves



