Exponential improvement in precision
for simulating sparse Hamiltonians

Andrew Childs

Department of Combinatorics & Optimization
and Institute for Quantum Computing
University of Waterloo

based on joint work with
Dominic Berry, Richard Cleve,

Robin Kothari, and Rolando Somma

arXiv:1312.1414
To appear in STOC 2014

http://arxiv.org/abs/1312.1414

“...nature isn’t classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by

golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)

Why simulate quantum mechanics!?

Computational chemistry/physics
* chemical reactions
* properties of materials

Implementing quantum algorithms
* continuous-time quantum walk

e adiabatic quantum computation

* linear equations

Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian.

d
i |¥(t)) = H|())

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time ¢,and an unknown initial state

1(0)), produce the final state |¢)(¢)) (approximately)

A classical computer cannot even represent the state efficiently

By performing measurements on the final state, a quantum computer

can efficiently answer questions that (apparently) a classical computer
cannot

Quantum simulation

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time ¢, and an unknown initial state
17)(0)), produce the final state |)(¢)) (approximately)

Equivalently, apply the unitary operator U(t) satisfying

d
i—U(t) = H(t) U ()

If H is independent of ¢, U(t) = e~ *!
More generally, H can be time-dependent

Simulation should approximate U(t) to within error € (say, with
respect to the diamond norm)

Local and sparse Hamiltonians
Local Hamiltonians [Lloyd 96]

H =3 "", H; where each H;acts on k=O(1) qubits

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries
per row, d = poly(log N)
(where H is N X N)

In any given row, the H =3 mEaEE" e mEmEaCH
location of the jth nonzero mER
entry and its value can be o
computed efficiently (or is o

= =
given by a black box) - ;

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2F¥m

Previous simulation methods

Product formulas

* Decompose Hamiltonian into a sum of terms that are easy to
simulate
* Recombine the terms by alternating between them

(e—iAt/re—iBt/r)"“ — o~ H(A+DB)t + O(tz/fr‘)

(e—z’At/Qre—z'Bt/re—z'At/2r)"“ — o~ (A+DB)t 4+ O(tS/TQ)

Quantum walk

* Define an easy-to-implement unitary operation (a step of a quantum
walk) whose spectrum is related to the Hamiltonian

e Use phase estimation to obtain information about the spectrum

* Introduce phases to give the desired evolution

Complexity of previous simulation methods

Parameters: dimension [V sparsity d
evolution time ¢ allowed error €

[Lloyd 96]: poly(log N) (|[H]||t)?/e (for local Hamiltonians only)
[Aharonov, Ta-Shma 02]: poly(d,log N) (|| H||t)3/2 /+/e

[Childs 04]: O((d*log* N || H|[t)'*°/€°) (for any § > 0)

[Berry, Ahokas, Cleve, Sanders 07]: O((d* log” NHHHt)H(S/e(S)
[Childs, Kothari |11: O((d*log" N||H||t)'*°/€°)

[Childs10; Berry, Childs 12]: O(d||H ||maxt/V€)

New result: O(r 10:53(;(/:/)6)) 7= d?||H || maxt

Fractional-query simulation

New approach: use tools for simulating the fractional-query model

Two steps:
* Reduce Hamiltonian simulation to fractional-query simulation
* Improved algorithm for fractional-query simulation

High-level idea of fractional-query simulation:

* Decompose the evolution into terms that can be implemented in
superposition

* “Compress” the implementation

* Unit-time evolution only succeeds with constant probability; boost
this using oblivious amplitude amplification

Strictly improves all methods based on product formulas

Dependence on € is exponentially improved!
In fact, the improved dependence is optimal.

Outline

* Fractional-query model

- Simulating fractional queries

- Oblivious amplitude amplification
* Reducing Hamiltonian simulation to fractional-query simulation
* Features of the algorithm

- Gate complexity

- Local Hamiltonians

- Time-dependent Hamiltonians
* Optimality with respect to error
* Comparison of simulation methods
* Open questions

Fractional- and continuous-query models

Black box hides a string = € {0, 1}"
Quantum query: Q|i,b) = (—1)%%|7, b)

i i Ui
Ul Uzﬁ

—ZT('(HQ—I—HD)t

|
S

) —

ceeeeesee EICICISISISISRS) ceoeoeeeee

Useful for designing algorithms [Farhi, Goldstone, Gutmann 07]

More powerful than the discrete-query model?

No: Can simulate a t-query fractional-query algorithm with O(t; lolgt
O ogt
discrete queries [Cleve, Gottesman, Mosca, Somma, Yonge- MaIIo Og

Simulating fractional queries

Fractional-query gadget:

1
Ry = ——

“Segment” implementing

\/C+ S

Ra,

R

0)—
¥)
(i %)

T P_Ra /7420
Q Q)
C = COos 75~ (10
s = sin T5* P_<0 (

UnQ " Up—1---U1Q" Up:

Ro, P -

Behavior of a segment

“Segment” implementing U,,,Q“"U,,—1--- U1Q%* Uy

‘O>_ R, \ ¢ ne Ry, P —
0)— Ra,, T R, P
V) U || Q|| h Un || Q| | Un

Truncating the ancillas to Hamming weight k = O(lolgoi(gl(/f/)e))
introduces error at most ¢

By rearranging the circuit, k queries suffice

But this still only succeeds with constant probability

Correcting faults

SUCCess

Y4

segment | pummm—me segment 2

Y4 Y4
Y segment ¢

Query complexity: O(

faule 4

t log(t/e))
e loglog(t/e)

Y/ '/

Rube Goldberg, Professor Butts and the Self-Operating Napkin

[Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]

Oblivious amplitude amplification

Suppose U implements V with amplitude sin 6:
Ul0)|v) = 812«9 \0>V‘\\¢> +cos 0 [1)[¢)

segment (without 1 ideal evolution

final measurement) 2

To perform V with amplitude close to 1: use amplitude amplification?
But the input state is unknown!

Using ideas from [Marriott, Watrous 05], we can show that a |)-
independent reflection suffices to do effective amplitude amplification.

With this oblivious amplitude amplification, we can perform the ideal
evolution exactly with only three segments (one backward).

Hamiltonian simulation using fractional queries

We reduce Hamiltonian simulation to fractional-query simulation.
Suppose H = H1+ H> where H1, H> have eigenvalues 0 and .

Write e (Ui +H2)t oy (g=iHit/T o=iH2t/T\T 51 very large 1 (increasing
r does not affect the query complexity, and only weakly affects the
gate complexity).

This is a fractional-query algorithm with oracles e~*/’tand ez,

Package them as a single oracle Q = |1)({1]| ® e *Ht + |2)(2] ® e~ *Hz2

(may not be diagonal in the standard basis, but the
fractional-query simulation doesn’t require that)

Decomposing sparse Hamiltonians

To give a complete simulation, decompose the d-sparse Hamiltonian

into a sum of terms, each with eigenvalues 0 and 7 (up to an overall
shift and rescaling).

2
* Edge coloring: H = 2?21 H; where each Hjis 1-sparse

new trick: H is bipartite wlog since it suffices to simulate H &® o,
d2-coloring: color(/,r) = (idx(¢, r),idx(r, £))

* Approximately decompose into terms with all nonzero entries equal

Ex: ((1)
0
0

0

o

oo OO o

o O O O

0

S OO NN OO

* Remove zero

Ex:

o O O O

o o O O

_ O O O

SO = OO

oo O O O

3

blocks so tha

0
i
0

0

3

0)

N | —

oo O =

0
1
0
0

0

\0

S o= O

_— o O O

OO OO O

SO = O O

N—

~ oo~ ooo

SO = OO

0

all terms have two fixed eigenvalues

O O O O O

0
0
0

0

1

0)

—1
0
0
0

0
—1
0
0

K
0
0

0

o

_ O O O

o O OO oo

SO = O O

SO =R O OO

0

SO O = OO

O O O O O

0

0
0
0

1

K
0
0

0)

0

\0

oo o o O

0

oo O O O

0

o O OO oo

O O O O O

)

0
0
0
0

0

Gate complexity

log(7/¢€))
log log(7/€)

where 7 := d?||H||maxt

Query complexity of this approach: O(T

Gate complexity is not much larger: O(7 102)53(;(/:/)6) (log(7/€) + n))

where H acts on n qubits

Contributions to this gate complexity come from

* Preparing the ancilla state

* Performing simple operations between fractional queries

* Implementing the fractional-query oracle using the sparse
Hamiltonian oracle

Using oblivious amplitude amplification instead of recursive fault
correction considerably simplifies the analysis.

L ocal Hamiltonians

Recall: A k-local Hamiltonian with m terms is d-sparse with d =2fm

Directly applying our main result gives gate complexity

log? (T /€
O(Tloggloéh/'/)e) n) T = dQHHHmaXt — 4km2HHHmaXt

Ex: Generic 2-local Hamiltonian acting for constant time
k=2 m= (g)’f’ | H || max = O(1))
gives complexity O(n°) (cf. high-order product formulas: O(n*))

But we can do better since we have an explicit decomposition into m
k-local (and hence 2k-sparse) terms. Resulting gate complexity:

~ log?(F /e ~
O(T loggloé(;/)e) n) 7 1= 2°m|| H || maxt

Ex: Generic 2-local Hamiltonian acting for constant time: O(n?)

Time-dependent Hamiltonians

The query complexity of this approach depends only on the evolution
time, not on the number of fractional-query steps

= Query complexity of simulating sparse H(t) is independent of
| %H(t)H (provided this is bounded)

(cf. [Poulin, Quarry, Somma, Verstraete | |])

Gate complexity depends only weakly on ||<- H (¢):
7 := d?|| H || maxt

"= 4 t
= & e | LH)|

log(7/¢€) log((T7+7")/¢€)
O(T : log loi(T/e) n)

Lower bounds

No-fast-forwarding theorem [BACS 07]: Q(t)

Main idea;

* Query complexity of computing the parity of n bits is 2(n).
* There is a Hamiltonian that can compute parity by running for

time O(n).
0 o0 :>1< 0 1 1 0

New lower bound: Q(lotgolgo(g(/f/)e))

Main idea;

* Query complexity of parity is 2(n) even for unbounded error.

* The same Hamiltonian as above computes parity with unbounded

error by running for any positive time. Running for constant time
gives the parity with probability O(1/n!).

Comparison of sparse Hamiltonian simulations

Product formulas

Quantum walk

Fractional queries

Query complexity

& ()"

()

O(log(7/€))

7-log log(7/€)
T := d?|| H||maxt

Best known scaling
with evolution time ¢
and sparsity d

Best known scaling

Hamiltonians

. 4
with error €
Handles
time-dependent 4 v

Open questions

* Improvements to methods; (optimal?) tradeoffs between evolution
time, error, and locality/sparsity

* Improved simulation of specific kinds of Hamiltonians

* Better understanding of applications to problems in quantum
chemistry, etc.

* Performance for small systems; implementations

