Quantum walk algorithms

Andrew Childs Institute for Quantum Computing University of Waterloo

28 September 2011

Randomized algorithms

Randomness is an important tool in computer science

Black-box problems

- Huge speedups are possible (Deutsch-Jozsa: $2^{\Omega(n)}$ vs. O(1))
- ► Polynomial speedup for some total functions (game trees: $\Omega(n)$ vs. $O(n^{0.754})$)

Natural problems

- Majority view is that derandomization should be possible (P=BPP)
- Randomness may give polynomial speedups (Schöning algorithm for k-SAT)
- Can be useful for algorithm design

Random walk

Graph
$$G = (V, E)$$

Two kinds of walks:

- Discrete time
- Continuous time

Random walk algorithms

Undirected s-t connectivity in log space

- ▶ Problem: given an undirected graph G = (V, E) and s, t ∈ V, is there a path from s to t?
- A random walk from *s* eventually reaches *t* iff there is a path
- Taking a random walk only requires log space
- Can be derandomized (Reingold 2004), but this is nontrivial

Markov chain Monte Carlo

- Problem: sample from some probability distribution (uniform distribution over some set of combinatorial objects, thermal equilibrium state of a physical system, etc.)
- Create a Markov chain whose stationary distribution is the desired one
- Run the chain until it converges

Continuous-time quantum walk

Random walk on G

State: probability $p_v(t)$ of being at vertex v at time t

• Dynamics:
$$\frac{d}{dt}\vec{p}(t) = -L\vec{p}(t)$$

Quantum walk on G

• State: amplitude $q_v(t)$ to be at vertex v at time t(i.e., $|\psi(t)\rangle = \sum_{v \in V} q_v(t)|v\rangle$)

• Dynamics:
$$i \frac{d}{dt} \vec{q}(t) = -L \vec{q}(t)$$

Random vs. quantum walk on the line

Random vs. quantum walk on the hypercube

Classical random walk: reaching $11 \dots 1$ from $00 \dots 0$ is exponentially unlikely

Quantum walk: with $A = \sum_{j=1}^{n} X_j$,

$$e^{-iAt} = \prod_{j=1}^{n} e^{-iX_jt} = \bigotimes_{j=1}^{n} \begin{pmatrix} \cos t & -i\sin t \\ -i\sin t & \cos t \end{pmatrix}$$

Glued trees problem

Black-box description of a graph

- Vertices have arbitrary labels
- Label of 'in' vertex is known
- Given a vertex label, black box returns labels of its neighbors
- Restricts algorithms to explore the graph locally

Glued trees problem: Classical query complexity

Let *n* denote the height of one of the binary trees

Classical random walk from 'in': probability of reaching 'out' is $2^{-\Omega(n)}$ at all times

In fact, the classical query complexity is $2^{\Omega(n)}$

Glued trees problem: Exponential speedup

Column subspace

$$\begin{aligned} |\text{col } j\rangle &:= \frac{1}{\sqrt{N_j}} \sum_{\substack{v \in \text{column } j}} |v\rangle \\ N_j &:= \begin{cases} 2^j & \text{if } j \in [0, n] \\ 2^{2n+1-j} & \text{if } j \in [n+1, 2n+1] \end{cases} \end{aligned}$$

Reduced adjacency matrix

$$\begin{aligned} \langle \operatorname{col} j | A | \operatorname{col} j + 1 \rangle \\ = \begin{cases} \sqrt{2} & \text{if } j \in [0, n - 1] \\ \sqrt{2} & \text{if } j \in [n + 1, 2n] \\ 2 & \text{if } j = n \end{cases} \end{aligned}$$

Discrete-time quantum walk: Need for a coin

Quantum analog of discrete-time random walk?

Unitary matrix $U \in \mathbb{C}^{|V| \times |V|}$ with $U_{vw} \neq 0$ iff $(v, w) \in E$

Consider the line:

-4 -3 -2 -1 0 1 2 3 4

Define walk by $|x\rangle \mapsto \frac{1}{\sqrt{2}}(|x-1\rangle + |x+1\rangle)$?

But then $|x+2\rangle \mapsto \frac{1}{\sqrt{2}}(|x+1\rangle + |x+3\rangle)$, so this is not unitary!

In general, we must enlarge the state space.

Discrete-time quantum walk on a line

Walk step: SC

(

The Szegedy walk

State space: span{ $|v\rangle \otimes |w\rangle, |w\rangle \otimes |v\rangle: (v, w) \in E$ }

Let W be a stochastic matrix (a discrete-time random walk)

Define
$$|\psi_{\mathbf{v}}\rangle := |\mathbf{v}\rangle \otimes \sum_{\mathbf{w}\in \mathbf{V}} \sqrt{W_{\mathbf{w}\mathbf{v}}} |\mathbf{w}\rangle$$
 (note $\langle \psi_{\mathbf{v}} | \psi_{\mathbf{w}} \rangle = \delta_{\mathbf{v},\mathbf{w}}$)
 $R := 2 \sum_{\mathbf{v}\in \mathbf{V}} |\psi_{\mathbf{v}}\rangle \langle \psi_{\mathbf{v}}| - I$
 $S(|\mathbf{v}\rangle \otimes |\mathbf{w}\rangle) := |\mathbf{w}\rangle \otimes |\mathbf{v}\rangle$

Then a step of the walk is the unitary operator U := SR

Spectrum of the walk

Let
$$T := \sum_{v \in V} |\psi_v\rangle \langle v|$$
, so $R = 2TT^{\dagger} - I$.

Theorem (Szegedy)

Let W be a stochastic matrix. Suppose the matrix

$$\sum_{\mathbf{v},\mathbf{w}}\sqrt{W_{\mathbf{v}\mathbf{w}}W_{\mathbf{w}\mathbf{v}}}|w
angle\langle v|$$

has an eigenvector $|\lambda\rangle$ with eigenvalue $\lambda.$ Then

$$rac{I-e^{\pm {
m i}\, {
m arccos}\,\lambda}S}{\sqrt{2(1-\lambda^2)}}\,T|\lambda
angle$$

are eigenvectors of U = SR with eigenvalues

 $e^{\pm i \arccos \lambda}$

Proof of Szegedy's spectral theorem

Proof sketch.

Straightforward calculations give

$$TT^{\dagger} = \sum_{\mathbf{v}\in \mathbf{V}} |\psi_{\mathbf{v}}\rangle\langle\psi_{\mathbf{v}}| \qquad T^{\dagger}T = I$$

$$T^{\dagger}ST = \sum_{v,w \in V} \sqrt{W_{vw}W_{wv}} |w\rangle \langle v| = \sum_{\lambda} |\lambda\rangle \langle \lambda|$$

which can be used to show

$$U(T|\lambda\rangle) = ST|\lambda\rangle$$
 $U(ST|\lambda\rangle) = 2\lambda ST|\lambda\rangle - T|\lambda\rangle.$

Diagonalizing within the subspace span{ $T|\lambda\rangle$, $ST|\lambda\rangle$ } gives the desired result.

Exercise. Fill in the details

Random walk search algorithm

Given G = (V, E), let $M \subset V$ be a set of marked vertices

Start at a random unmarked vertex

Walk until we reach a marked vertex:

$$\begin{split} W'_{vw} &:= \begin{cases} 1 & w \in M \text{ and } v = w \\ 0 & w \in M \text{ and } v \neq w \\ W_{vw} & w \notin M. \end{cases} \\ &= \begin{pmatrix} W_M & 0 \\ V & I \end{pmatrix} \quad (W_M: \text{ delete marked rows and columns of } W) \end{split}$$

Question. How long does it take to reach a marked vertex?

Classical hitting time

Take t steps of the walk:

$$(W')^{t} = \begin{pmatrix} W_{M}^{t} & 0\\ V(I + W_{M} + \dots + W_{M}^{t-1}) & I \end{pmatrix}$$
$$= \begin{pmatrix} W_{M}^{t} & 0\\ V \frac{I - W_{M}^{t}}{I - W_{M}} & I \end{pmatrix}$$

Convergence time depends on how close $||W_M||$ is to 1, which depends on the spectrum of W

Lemma

Let $W = W^T$ be a symmetric Markov chain. Let the second largest eigenvalue of W be $1 - \delta$, and let $\epsilon = |M|/|V|$ (the fraction of marked items). Then the probability of reaching a marked vertex is $\Omega(1)$ after $t = O(1/\delta\epsilon)$ steps of the walk. Quantum walk search algorithm

Start from the state
$$rac{1}{\sqrt{N-|M|}}\sum_{v
ot\in M}\ket{\psi_v}$$

Consider the walk U corresponding to W':

$$\sum_{\mathbf{v},\mathbf{w}\in V} \sqrt{W_{\mathbf{v},\mathbf{w}}'W_{\mathbf{w},\mathbf{v}}'} |w\rangle \langle \mathbf{v}| = \begin{pmatrix} W_M & 0\\ 0 & I \end{pmatrix}$$

Eigenvalues of U are $e^{\pm i \arccos \lambda}$ where the λ are eigenvalues of W_M

Perform phase estimation on U with precision $O(\sqrt{\delta\epsilon})$

- no marked items \implies estimated phase is 0
- ϵ fraction of marked items \implies nonzero phase with probability $\Omega(1)$

Further refinements give algorithms for *finding* a marked item

Grover's algorithm revisited

Problem

Given a black box $f: X \to \{0,1\}$, is there an x with f(x) = 1?

Markov chain on N = |X| vertices:

$$W := \frac{1}{N} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} = |\psi\rangle \langle \psi|, \quad |\psi\rangle := \frac{1}{\sqrt{N}} \sum_{x \in X} |x\rangle$$

Eigenvalues of W are 0,1 \implies $\delta=1$

Hard case: one marked vertex, $\epsilon = 1/N$

Hitting times

• Classical:
$$O(1/\delta\epsilon) = O(N)$$

• Quantum:
$$O(1/\sqrt{\delta\epsilon}) = O(\sqrt{N})$$

Element distinctness

Problem

Given a black box $f : X \to Y$, are there distinct x, x' with f(x) = f(x')?

Let N = |X|; classical query complexity is $\Omega(N)$

Consider a quantum walk on the Hamming graph H(N, M)

- Vertices: $\{(x_1,\ldots,x_M): x_i \in X\}$
- ▶ Store the values $(f(x_1), \ldots, f(x_M))$ at vertex (x_1, \ldots, x_M)
- Edges between vertices that differ in exactly one coordinate

Element distinctness: Analysis

Spectral gap:
$$\delta = O(1/M)$$

Fraction of marked vertices: $\epsilon \ge {M \choose 2} (N-2)^{M-2} / N^M = \Theta(M^2/N^2)$

Quantum hitting time: $O(1/\sqrt{\delta\epsilon}) = O(N/\sqrt{M})$

Quantum query complexity:

- M queries to prepare the initial state
- 2 queries for each step of the walk (compute f, uncompute f)
- Overall: $M + O(N/\sqrt{M})$

Choose $M = N^{2/3}$: query complexity is $O(N^{2/3})$ (optimal!)

Quantum walk algorithms

Quantum walk search algorithms

- Spatial search
- Subgraph finding
- Checking matrix multiplication
- Testing if a black-box group is abelian
- Attacking quantum Merkle cryptosystems

Evaluating Boolean formulas

Exponential speedup for a natural problem?

Exercise: Triangle finding (1/2)

The goal of the *triangle problem* is to decide whether an *n*-vertex graph G contains a triangle (a complete subgraph on 3 vertices). The graph is specified by a black box that, for any pair of vertices of G, returns a bit indicating whether those vertices are connected by an edge in G.

- 1. What is the classical query complexity of the triangle problem?
- 2. Say that an edge of G is a *triangle edge* if it is part of a triangle in G. What is the quantum query complexity of deciding whether a particular edge of G is a triangle edge?
- 3. Now suppose you know the vertices and edges of some *m*-vertex subgraph of *G*. Explain how you can decide whether this subgraph contains a triangle edge using $O(m^{2/3}\sqrt{n})$ quantum queries.

Exercise: Triangle finding (2/2)

- 4. Consider a quantum walk algorithm for the triangle problem. The walk takes place on a graph \mathcal{G} whose vertices correspond to subgraphs of G on m vertices, and whose edges correspond to subgraphs that differ by changing one vertex. A vertex of \mathcal{G} is marked if it contains a triangle edge. How many queries does this algorithm use to decide whether G contains a triangle? (Hint: Be sure to account for the S queries used to initialize the walk, the U gueries used to move between neighboring vertices of \mathcal{G} , and the C queries used to check whether a given vertex of \mathcal{G} is marked. If the walk has spectral gap δ and an ϵ -fraction of the vertices are marked, it can be shown that there is a quantum walk search algorithm with query complexity $S + \frac{1}{\sqrt{\epsilon}} (\frac{1}{\sqrt{\delta}} U + C)$.)
- 5. Choose a value of *m* that minimizes the number of queries used by the algorithm. What is the resulting upper bound on the quantum query complexity of the triangle problem?