
Quantum walk algorithms

Andrew Childs
Institute for Quantum Computing

University of Waterloo

28 September 2011

Randomized algorithms

Randomness is an important tool in computer science

Black-box problems

I Huge speedups are possible (Deutsch-Jozsa: 2Ω(n) vs. O(1))

I Polynomial speedup for some total functions (game trees:
Ω(n) vs. O(n0.754))

Natural problems

I Majority view is that derandomization should be possible
(P=BPP)

I Randomness may give polynomial speedups (Schöning
algorithm for k-SAT)

I Can be useful for algorithm design

Random walk

Graph G = (V ,E)

u

u

u

u
u

�
�
�
��

Q
Q
Q
QQ

Two kinds of walks:

I Discrete time

I Continuous time

Random walk algorithms

Undirected s–t connectivity in log space

I Problem: given an undirected graph G = (V ,E) and s, t ∈ V ,
is there a path from s to t?

I A random walk from s eventually reaches t iff there is a path

I Taking a random walk only requires log space

I Can be derandomized (Reingold 2004), but this is nontrivial

Markov chain Monte Carlo

I Problem: sample from some probability distribution (uniform
distribution over some set of combinatorial objects, thermal
equilibrium state of a physical system, etc.)

I Create a Markov chain whose stationary distribution is the
desired one

I Run the chain until it converges

Continuous-time quantum walk

Graph G

r
r

r
r r
�
��

Q
QQ

1 2

3 4

5

A =

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

adjacency matrix

L =

−2 1 1 0 0
1 −3 0 1 1
1 0 −2 1 0
0 1 1 −3 1
0 1 0 1 −2

Laplacian

Random walk on G

I State: probability pv (t) of being at vertex v at time t

I Dynamics: d
dt~p(t) = −L~p(t)

Quantum walk on G

I State: amplitude qv (t) to be at vertex v at time t
(i.e., |ψ(t)〉 =

∑
v∈V qv (t)|v〉)

I Dynamics: i d
dt~q(t) = −L~q(t)

Random vs. quantum walk on the line

r r r r r r r r r� -
-4 -3 -2 -1 0 1 2 3 4

Classical:

-60 -40 -20 0 20 40 60

Quantum:

-60 -40 -20 0 20 40 60

Random vs. quantum walk on the hypercube

V = {0, 1}n

E = {(x , y) ∈ V × V :

x and y differ in

exactly one bit}

n = 3:

s
s

s
s

s
s

s
s

�
��

�
���

��

�
��

000 100

010

001

110

011

101

111

Classical random walk: reaching 11 . . . 1 from 00 . . . 0 is
exponentially unlikely

Quantum walk: with A =
∑n

j=1 Xj ,

e−iAt =
n∏

j=1

e−iXj t =
n⊗

j=1

(
cos t −i sin t
−i sin t cos t

)

Glued trees problem

in out

Black-box description of a graph

I Vertices have arbitrary labels

I Label of ‘in’ vertex is known

I Given a vertex label, black box returns labels of its neighbors

I Restricts algorithms to explore the graph locally

Glued trees problem: Classical query complexity

in out

Let n denote the height of one of the binary trees

Classical random walk from ‘in’: probability of reaching ‘out’ is
2−Ω(n) at all times

In fact, the classical query complexity is 2Ω(n)

Glued trees problem: Exponential speedup

in out

↓

col 0 col 1 col 2 col 3 col 4 col 5 col 6 col 7 col 8 col 9

√
2 2

√
2

√
2

√
2

√
2

√
2

√
2

√
2

Column subspace

|col j〉 :=
1√
Nj

∑
v∈column j

|v〉

Nj :=

{
2j if j ∈ [0, n]

22n+1−j if j ∈ [n + 1, 2n + 1]

Reduced adjacency matrix

〈col j |A|col j + 1〉

=

√

2 if j ∈ [0, n − 1]√
2 if j ∈ [n + 1, 2n]

2 if j = n

Discrete-time quantum walk: Need for a coin

Quantum analog of discrete-time random walk?

Unitary matrix U ∈ C|V |×|V | with Uvw 6= 0 iff (v ,w) ∈ E

Consider the line:r r r r r r r r r� -
-4 -3 -2 -1 0 1 2 3 4

Define walk by |x〉 7→ 1√
2

(|x − 1〉+ |x + 1〉)?

But then |x + 2〉 7→ 1√
2

(|x + 1〉+ |x + 3〉), so this is not unitary!

In general, we must enlarge the state space.

Discrete-time quantum walk on a line

r r r r r r r r r� -
-4 -3 -2 -1 0 1 2 3 4

Add a “coin”: state space span{|x〉 ⊗ |←〉, |x〉 ⊗ |→〉 : x ∈ Z}

Coin flip: C := I ⊗ H

Shift:
S |x〉 ⊗ |←〉 = |x − 1〉 ⊗ |←〉
S |x〉 ⊗ |→〉 = |x + 1〉 ⊗ |→〉

Walk step: SC

-60 -40 -20 0 20 40 60

The Szegedy walk

State space: span{|v〉 ⊗ |w〉, |w〉 ⊗ |v〉 : (v ,w) ∈ E}

Let W be a stochastic matrix (a discrete-time random walk)

Define |ψv 〉 := |v〉 ⊗
∑
w∈V

√
Wwv |w〉 (note 〈ψv |ψw 〉 = δv ,w)

R := 2
∑
v∈V
|ψv 〉〈ψv | − I

S(|v〉 ⊗ |w〉) := |w〉 ⊗ |v〉

Then a step of the walk is the unitary operator U := SR

Spectrum of the walk

Let T :=
∑

v∈V |ψv 〉〈v |, so R = 2TT † − I .

Theorem (Szegedy)

Let W be a stochastic matrix. Suppose the matrix∑
v ,w

√
WvwWwv |w〉〈v |

has an eigenvector |λ〉 with eigenvalue λ. Then

I − e±i arccosλS√
2(1− λ2)

T |λ〉

are eigenvectors of U = SR with eigenvalues

e±i arccosλ.

Proof of Szegedy’s spectral theorem

Proof sketch.
Straightforward calculations give

TT † =
∑
v∈V
|ψv 〉〈ψv | T †T = I

T †ST =
∑

v ,w∈V

√
WvwWwv |w〉〈v | =

∑
λ

|λ〉〈λ|

which can be used to show

U(T |λ〉) = ST |λ〉 U(ST |λ〉) = 2λST |λ〉 − T |λ〉.

Diagonalizing within the subspace span{T |λ〉,ST |λ〉} gives the
desired result.

Exercise. Fill in the details

Random walk search algorithm

Given G = (V ,E), let M ⊂ V be a set of marked vertices

Start at a random unmarked vertex

Walk until we reach a marked vertex:

W ′
vw :=

1 w ∈ M and v = w

0 w ∈ M and v 6= w

Wvw w /∈ M.

=

(
WM 0
V I

)
(WM : delete marked rows and columns of W)

Question. How long does it take to reach a marked vertex?

Classical hitting time

Take t steps of the walk:

(W ′)t =

(
W t

M 0

V (I + WM + · · ·+ W t−1
M) I

)
=

(
W t

M 0

V
I−W t

M
I−WM

I

)

Convergence time depends on how close ‖WM‖ is to 1, which
depends on the spectrum of W

Lemma
Let W = W T be a symmetric Markov chain. Let the second
largest eigenvalue of W be 1− δ, and let ε = |M|/|V | (the fraction
of marked items). Then the probability of reaching a marked
vertex is Ω(1) after t = O(1/δε) steps of the walk.

Quantum walk search algorithm

Start from the state 1√
N−|M|

∑
v 6∈M |ψv 〉

Consider the walk U corresponding to W ′:∑
v ,w∈V

√
W ′

v ,wW ′
w ,v |w〉〈v | =

(
WM 0

0 I

)

Eigenvalues of U are e±i arccosλ where the λ are eigenvalues of WM

Perform phase estimation on U with precision O(
√
δε)

I no marked items =⇒ estimated phase is 0

I ε fraction of marked items =⇒ nonzero phase with
probability Ω(1)

Further refinements give algorithms for finding a marked item

Grover’s algorithm revisited

Problem
Given a black box f : X → {0, 1}, is there an x with f (x) = 1?

Markov chain on N = |X | vertices:

W :=
1

N

1 · · · 1
...

. . .
...

1 · · · 1

 = |ψ〉〈ψ|, |ψ〉 :=
1√
N

∑
x∈X
|x〉

Eigenvalues of W are 0, 1 =⇒ δ = 1

Hard case: one marked vertex, ε = 1/N

Hitting times

I Classical: O(1/δε) = O(N)

I Quantum: O(1/
√
δε) = O(

√
N)

Element distinctness

Problem
Given a black box f : X → Y , are there distinct x , x ′ with
f (x) = f (x ′)?

Let N = |X |; classical query complexity is Ω(N)

Consider a quantum walk on the Hamming graph H(N,M)

I Vertices: {(x1, . . . , xM) : xi ∈ X}
I Store the values (f (x1), . . . , f (xM)) at vertex (x1, . . . , xM)

I Edges between vertices that differ in exactly one coordinate

Element distinctness: Analysis

Spectral gap: δ = O(1/M)

Fraction of marked vertices:
ε ≥

(M
2

)
(N − 2)M−2/NM = Θ(M2/N2)

Quantum hitting time: O(1/
√
δε) = O(N/

√
M)

Quantum query complexity:

I M queries to prepare the initial state

I 2 queries for each step of the walk (compute f , uncompute f)

I Overall: M + O(N/
√

M)

Choose M = N2/3: query complexity is O(N2/3) (optimal!)

Quantum walk algorithms

Quantum walk search algorithms

I Spatial search

I Subgraph finding

I Checking matrix multiplication

I Testing if a black-box group is abelian

I Attacking quantum Merkle cryptosystems

Evaluating Boolean formulas

Exponential speedup for a natural problem?

Exercise: Triangle finding (1/2)

The goal of the triangle problem is to decide whether an n-vertex
graph G contains a triangle (a complete subgraph on 3 vertices).
The graph is specified by a black box that, for any pair of vertices
of G , returns a bit indicating whether those vertices are connected
by an edge in G .

1. What is the classical query complexity of the triangle problem?

2. Say that an edge of G is a triangle edge if it is part of a
triangle in G . What is the quantum query complexity of
deciding whether a particular edge of G is a triangle edge?

3. Now suppose you know the vertices and edges of some
m-vertex subgraph of G . Explain how you can decide whether
this subgraph contains a triangle edge using O(m2/3√n)
quantum queries.

Exercise: Triangle finding (2/2)

4. Consider a quantum walk algorithm for the triangle problem.
The walk takes place on a graph G whose vertices correspond
to subgraphs of G on m vertices, and whose edges correspond
to subgraphs that differ by changing one vertex. A vertex of G
is marked if it contains a triangle edge. How many queries
does this algorithm use to decide whether G contains a
triangle? (Hint: Be sure to account for the S queries used to
initialize the walk, the U queries used to move between
neighboring vertices of G, and the C queries used to check
whether a given vertex of G is marked. If the walk has
spectral gap δ and an ε-fraction of the vertices are marked, it
can be shown that there is a quantum walk search algorithm
with query complexity S + 1√

ε
(1√

δ
U + C).)

5. Choose a value of m that minimizes the number of queries
used by the algorithm. What is the resulting upper bound on
the quantum query complexity of the triangle problem?

	Quantum walk

