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Randomized algorithms

Randomness is an important tool in computer science

Black-box problems
» Huge speedups are possible (Deutsch-Jozsa: 2" vs. O(1))

» Polynomial speedup for some total functions (game trees:
Q(n) vs. O(n75%))

Natural problems
» Majority view is that derandomization should be possible
(P=BPP)
» Randomness may give polynomial speedups (Schoning
algorithm for k-SAT)

» Can be useful for algorithm design



Random walk

Graph G = (V,E)

Two kinds of walks:
» Discrete time

» Continuous time



Random walk algorithms

Undirected s—t connectivity in log space

» Problem: given an undirected graph G = (V,E) and s,t € V,
is there a path from s to t7

» A random walk from s eventually reaches t iff there is a path
» Taking a random walk only requires log space
» Can be derandomized (Reingold 2004), but this is nontrivial

Markov chain Monte Carlo
» Problem: sample from some probability distribution (uniform
distribution over some set of combinatorial objects, thermal
equilibrium state of a physical system, etc.)
» Create a Markov chain whose stationary distribution is the
desired one
» Run the chain until it converges



Continuous-time quantum walk

Graph G 01100 21 1 0 0
1001 1 1 30 1 1
12 A=|1001 0 L=]1 0 =21 o
5 01101 001 1 -3 1
01010 01 0 1 —2
3 4
adjacency matrix Laplacian

Random walk on G
» State: probability p,(t) of being at vertex v at time t
» Dynamics: %ﬁ(t) = —Lp(t)

Quantum walk on G
» State: amplitude q,(t) to be at vertex v at time t
(e, [9(t)) = 2vev av(B)[v)
» Dynamics: ig(t) = —Ld(t)



Random vs. quantum walk on the line
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Random vs. quantum walk on the hypercube

n— 3 011 111
E={(x,y)eVxV:
x and y differ in 010 110
exactly one bit}
000 100

Classical random walk: reaching 11...1 from 00...0 is
exponentially unlikely

Quantum walk: with A = Z}’Zl X,
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Glued trees problem

Black-box description of a graph

» Vertices have arbitrary labels

v

Label of ‘in’ vertex is known

v

Given a vertex label, black box returns labels of its neighbors

v

Restricts algorithms to explore the graph locally



Glued trees problem: Classical query complexity

Let n denote the height of one of the binary trees

Classical random walk from ‘in’: probability of reaching ‘out’ is
29" at all times

In fact, the classical query complexity is 2"



Glued trees problem: Exponential speedup

Column subspace
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Reduced adjacency matrix

(col j|A|col j + 1)
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Discrete-time quantum walk: Need for a coin

Quantum analog of discrete-time random walk?
Unitary matrix U € CIVIXIVI with U,,, # 0 iff (v,w) € E

Consider the line:

<
<

Y

-4 -3 -2 -1 0 1 2 3 4
Define walk by |x) — %(|x —1)+|x+1))?
But then |x + 2) — \%(!x + 1) + |x + 3)), so this is not unitary!

In general, we must enlarge the state space.



Discrete-time quantum walk on a line

Y

<
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-4 -3 -2 -1 0 1 2 3 4
Add a ‘“coin”: state space span{|x) ® |[<-), |x) ® |=>): x € Z}
Coin flip: C:=1® H

Shx) @) =[x = 1) @ [+)

SN Sy &0 |—5) =[x + 1) ® |=)

Walk step: SC

.
----------------------------------




The Szegedy walk

State space: span{|v) ® |w),|w) ® |v): (v,w) € E}

Let W be a stochastic matrix (a discrete-time random walk)

Define |¢y) == |v) ® Z vV Wan|lw)  (note (y|thw) = dv.w)

wevV

R:=2 Z |¢v><¢v| =1

veVv

S(lv) @ |w)) = [w) @ |v)

Then a step of the walk is the unitary operator U := SR



Spectrum of the walk

Let T:=Y,cy[t){v], s0o R=2TTT —1.

Theorem (Szegedy)

Let W be a stochastic matrix. Suppose the matrix

>V Wy Wi [w) (v

v,w
has an eigenvector |\) with eigenvalue A. Then

| — eii arccos )\S

— =T\
2(1— \2)

are eigenvectors of U = SR with eigenvalues

e:ti arccos >\.



Proof of Szegedy's spectral theorem

Proof sketch.
Straightforward calculations give

TTH =" ) (W] T'T =1

veVv
TIST = 3 VW Warlw)(v] = 3 NN
v,wevV A

which can be used to show
U(TIN) = ST\ U(ST|A)) =2AST|A) — T|A).

Diagonalizing within the subspace span{T|\),ST|\)} gives the
desired result.

Exercise. Fill in the details



Random walk search algorithm

Given G = (V,E), let M C V be a set of marked vertices
Start at a random unmarked vertex

Walk until we reach a marked vertex:

1 weMandv=w
W, =140 weMandv#w
Wy w¢ M.

= <M\//M ?) (Wp: delete marked rows and columns of W)

Question. How long does it take to reach a marked vertex?



Classical hitting time

Take t steps of the walk:
Wi 0
Wt = M
(W) <V(/+Wm+---+WA’~‘,,—1) /)

= I—Wt
V,iwz /

Convergence time depends on how close ||W)y|| is to 1, which
depends on the spectrum of W

Lemma

Let W = WT be a symmetric Markov chain. Let the second
largest eigenvalue of W be 1 — 6, and let e = |[M|/|V/| (the fraction
of marked items). Then the probability of reaching a marked
vertex is (1) after t = O(1/d¢) steps of the walk.



Quantum walk search algorithm

Start from the state

\/N%IM\ > vgm [¥v)

Consider the walk U corresponding to W':

> W W= (Y9 ])

v,wevV
Eigenvalues of U are 125X where the A are eigenvalues of Wy,

Perform phase estimation on U with precision O(v/d¢)
> no marked items = estimated phase is 0

» ¢ fraction of marked items = nonzero phase with
probability (1)

Further refinements give algorithms for finding a marked item



Grover's algorithm revisited

Problem
Given a black box f: X — {0, 1}, is there an x with f(x) =17

Markov chain on N = |X| vertices:

1 .- 1
1. ) 1
W=l =10l |¢>-—TNZ|x>

1 -+ 1 xeX
Eigenvalues of W are 0,1 — § =1
Hard case: one marked vertex, e = 1/N

Hitting times
» Classical: O(1/de) = O(N)
» Quantum: O(1/Vé€) = O(V'N)



Element distinctness

Problem
Given a black box f: X — Y, are there distinct x, x' with
f(x)=rf(x")?

Let N = |X]|; classical query complexity is Q(N)

Consider a quantum walk on the Hamming graph H(N, M)
» Vertices: {(x1,...,xm): xi € X}
» Store the values (f(x1),...,f(xm)) at vertex (x1,...,xum)
> Edges between vertices that differ in exactly one coordinate



Element distinctness: Analysis

Spectral gap: § = O(1/M)

Fraction of marked vertices:
e> (Y)Y (N —2)M-2/NM = o(M?/N?)

Quantum hitting time: O(1/v/d¢) = O(N/v/M)

Quantum query complexity:
» M queries to prepare the initial state

» 2 queries for each step of the walk (compute f, uncompute f)

» Overall: M+ O(N/VM)

Choose M = N?/3: query complexity is O(N%/3)  (optimal!)



Quantum walk algorithms

Quantum walk search algorithms

» Spatial search

v

Subgraph finding

v

Checking matrix multiplication

v

Testing if a black-box group is abelian

v

Attacking quantum Merkle cryptosystems

Evaluating Boolean formulas

Exponential speedup for a natural problem?



Exercise: Triangle finding (1/2)

The goal of the triangle problem is to decide whether an n-vertex
graph G contains a triangle (a complete subgraph on 3 vertices).
The graph is specified by a black box that, for any pair of vertices
of G, returns a bit indicating whether those vertices are connected
by an edge in G.

1. What is the classical query complexity of the triangle problem?

2. Say that an edge of G is a triangle edge if it is part of a
triangle in G. What is the quantum query complexity of
deciding whether a particular edge of G is a triangle edge?

3. Now suppose you know the vertices and edges of some
m-vertex subgraph of G. Explain how you can decide whether
this subgraph contains a triangle edge using O(m?/3,/n)
quantum queries.



Exercise: Triangle finding (2/2)

4. Consider a quantum walk algorithm for the triangle problem.
The walk takes place on a graph G whose vertices correspond
to subgraphs of G on m vertices, and whose edges correspond
to subgraphs that differ by changing one vertex. A vertex of G
is marked if it contains a triangle edge. How many queries
does this algorithm use to decide whether G contains a
triangle? (Hint: Be sure to account for the S queries used to
initialize the walk, the U queries used to move between
neighboring vertices of G, and the C queries used to check
whether a given vertex of G is marked. If the walk has
spectral gap 6 and an e-fraction of the vertices are marked, it
can be shown that there is a quantum walk search algorithm

with query complexity S + ﬁ(%U +C).)

5. Choose a value of m that minimizes the number of queries
used by the algorithm. What is the resulting upper bound on
the quantum query complexity of the triangle problem?
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