The Bose-Hubbard and
XY models are QMA-complete

Andrew Childs David Gosset Zak Webb
QulICS IQIM 1IQC
University of Maryland Caltech University of Waterloo

arXiv:1311.3297,ICALP 2014
arXiv:1503.07083


http://arxiv.org/abs/1311.3297
http://arxiv.org/abs/1311.3297

Hamiltonian complexity

Classical constraint satisfaction:
How hard is it to determine whether a Boolean formula has a
satisfying assignment (or find minimum number of violated clauses)?
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Quantum analog:

How hard is it to (approximately) compute the smallest eigenvalue of
a Hermitian matrix?

H = Z H; each term H; acts on k qubits
J



Quantum Merlin-Arthur

QMA: the quantum analog of NP
Merlin wants to prove to Arthur that some statement is true.

Merlin Arthur

i‘mn

quantum proof ) efficient quantum
verification circuit

e If the statement is true, there exists a |¢) that Arthur will accept
with probability at least 2/3.

e If the statement is false, any [¢) will be rejected by Arthur with
probability at least 2/3.



Complexity of ground energy problems

* k-Local Hamiltonian problem: QMA-complete for k=2

e Quantum k-SAT (is there a frustration-free ground state?): in P for
k=2; QMA -complete for k=3

e Stoquastic k-local Hamiltonian problem:in AM
* Fermion/boson problems: QMA-complete

* 2-local Hamiltonian on a grid: QMA-complete
* 2-local Hamiltonian on a line of qudits: QMA-complete

 Hubbard model on a 2d grid with a site-dependent magnetic field:
QMA-complete

* Heisenberg and XY models with site-dependent couplings: QMA-
complete



Dynamics are universal; ground states are hard

The Schrodinger dynamics generated by time-independent
local Hamiltonians can perform universal quantum computation.

H = ZU®IJ )il + U] @ 13)( + 1))

Local Hamiltonian is QMA-complete.

The dynamics generated by the adjacency matrix of an

unweighted sparse graph (i.e., a continuous-time quantum walk) can
perform universal quantum computation.

Approximating the smallest eigenvalue of an unweighted
sparse graph is QMA-complete.



Dynamics are universal; ground states are hard

Any n-qubit, g-gate quantum circuit can be simulated by a
Bose-Hubbard model with n 4 1 particles interacting for time
poly(n, g) on an unweighted poly(n, g)-vertex graph.

Consequences:

e Architecture for a quantum computer with no time-dependent
control

e Simulating dynamics of interacting many-body systems is BOQP-hard
(e.g., Bose-Hubbard model on a sparse, unweighted, planar graph)

Approximating the ground energy of the n-particle Bose-
Hubbard model on a graph is QMA-complete.

Consequences:

e Computing the ground energy of the Bose-Hubbard model is
(probably) intractable

* New techniques for quantum Hamiltonian complexity
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Bose-Hubbard model

Consider n distinguishable particles:
states: |v1,...,v,) v; € V(G) Hilbert space dimension: |V (G)|"

Hamiltonian: Hc(;n) = thop Z AG); +U

1=1

Indistinguishable bosons: symmetric subspace

On-site interaction: U = Ji Z Ny(Ny — 1) Ny = Z v) (v
veV(QG) )=

Second-quantized notation:

G — thop Z A uva Ay + Jmt Z ﬁv(ﬁv — 1)

u,veV (G) veV (G) - CLT a,
v



Bose-Hubbard Hamiltonian is QMA-complete
Bose-Hubbard model on G-

HG — thop Z A(G)uvai,av + Jint Z ﬁfv (ﬁv — 1)
u,veEV (Q) veV (Q)

Determining whether the ground energy for n particles on
the graph G is less than ne; + € or more than ne; + 2¢ is QMA-
complete, where e is the |-particle ground energy.

* Fixed movement and interaction terms (A(G) is a 0-1 matrix)
» Applies for any fixed tyop, Jint > 0

e |t is QMA-hard even to determine whether the instance is
approximately frustration free

* Analysis does not use perturbation theory



Dependence on signs of coefficients
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Frustration-freeness

HG — thop Z A(G)uva:&av + Jint Z ﬁv (ﬁv — 1)
u,veV (QG) veV(Q)

> n pu(G) > 0
u(G) = smallest eigenvalue of A(G)

If a ground state of H¢ has energy tnopn u(G), we call it frustration
free.

We encode a computation in frustration-free states; this is why our
result holds for any positive Jint.



XY model

Frustration-free states have at most one boson per site (“hard-core
bosons”)

Thus we can translate our results to spin systems, giving a
generalization of the XY model on a graph:
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Approximating the ground energy in the sector with
magnetization » . = — n is QMA-complete.
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Removing self-loops

In our original proof, the adjacency matrix can be any symmetric 0-1
matrix (i.e., the adjacency matrix of an undirected graph with at most
one self-loop per vertex).

We improve this to show that the ground energy problems remain
hard without self-loops.

Bose-Hubbard model:

HG — thop Z A(G)UUCLLCLU + Jint Z ﬁv (TALU — 1)
u,veV (QG) veV(Q)

XY model:




Containment in QMA

Ground energy problems are usually in QMA

Strategy:
e Merlin provides the ground state

e Arthur measures the energy using phase estimation and Hamiltonian
simulation

Only one small twist for boson problems: project onto the symmetric
subspace



The quantum Cook-Levin Theorem

Local Hamiltonian is QMA-complete
Consider a QMA verification circuit U, . .. UsU; with witness |1)

The Feynman Hamiltonian

H=Y (Il +Ieli-14-1-U;eli)i-1-Ufeli-1i)

t

has ground states |hist,,) = Uily) @ |7)

1
VPl

7=0

* [mplement the “clock™ using local terms
* Add a term penalizing states with low acceptance probability

Establish a promise gap:

* yes instances have ground energy < a
* no instances have ground energy > b



QMA-hardness for sparse graphs

Approximating the smallest eigenvalue of an unweighted
sparse graph is QMA-complete.

Use the Feynman-Kitaev Hamiltonian

—V2) (U@ 1i+ 141+ Uf @ 1) + 1))
with gates { H, HT,J(HT)T, (H ® 1)CNOT}
Then every nonzero matrix element is a power of w = e'm/4

Replace w” — S* where S = cyclic shift mod 8
P Y

Penalty term S° 4+ S* 4 S° penalizes ancilla states with eisenvalues
Y P 8
other than w or w™



Single-qubit gates

Construct a graph encoding a P
. . . . I
universal set of single-qubit gates in ] i L
the single-particle sector: o AN \
» Start from Feynman-Kitaev Hamiltonian 7 ,g?a»;{‘v‘?f%”-"‘-‘-"‘:’%?;a\ i
. b X §lg 29 i
for a particular sequence of gates ﬂﬂ“! o ety !~\§‘
. . . , ‘A‘;%" ‘ ¢ A'f; S ‘g§§\\
* Obtain matrix elements w’ by careful L RNTS
. . SN avireed A A
choice of gate set and scaling ‘\‘iﬁﬁ 1 %:?i”
* Make all entries 0 or | using an ancilla \ \‘i"h e 4 ‘@Q’?’/ /
HT)f AW HT
\ %f{i = ? /
Ground state subspace is spanned by

1
¥20) = ﬁ(|2>(\1> +13) +15) +17))

+ H|z)(|2) + 18)) + HT|z)(|4) + 16))) |w)
1) = h0)® AN
for z € {0,1}

some ancilla state



Two-qubit gates

Two-qubit gate gadgets: 4096-vertex
graphs built from 32 copies of the
single-qubit graph, joined by edges
and with some added self-loops

Single-particle ground states are associated with one of two input
regions or one of two output regions:

(States also carry labels associated with the logical state & complex conjugation.)

Two-particle ground states encode two-qubit computations:
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Constructing a verification circuit

Connect two-qubit gate gadgets to implement the whole verification

circuit, e.g.: 5 5 |

Some multi-particle ground states encode computations:

_|_

:>U1¢>+ >U1\¢>+ >U2Ul\¢>

But there are also ground states that do not encode computations
(two particles for the same qubit; particles not synchronized).

To avoid this, we introduce a way of enforcing occupancy constraints,
forbidding certain kinds of configurations. VWe establish a promise gap

using nonperturbative spectral analysis (no large coefficients).



Spectral analysis

For H > 0, let v(H) denote the smallest nonzero eigenvalue of H.

Nullspace Projection Lemma: Let H 4, Hg > 0 and let S denote the
nullspace of H 4. Suppose v(Hpgl|s) > c andy(H 4) > d. Then

cd
Hat Hp) > |
V(Ha B)—c+d+uﬂm|

Using this repeatedly, we can establish a promise gap between yes and
no instances.

Advantage over other techniques: we do not need to add terms with
large coefficients (as with the KKR projection lemma or perturbative
gadgets).



Removing self-loops

Main idea: Add a self-loop to every vertex (without significantly
changing the ground energy). This is just an overall energy shift (in a
sector with fixed particle number).

Make two copies of the graph. For every vertex without a self-loop,
add a self-loop in each copy and an edge between the two copies.

. | 8 (=5 G )

Ground space: States |%)|—) where |%) is an eigenstate of the original
graph.

Also, the interaction term within the space of states |¢))|—)is just 1/2
times the usual interaction term.

Promise gap of the Bose-Hubbard model on the original graph =
promise gap for the new graph



Summary

Approximating the ground energy of the Bose-Hubbard model on a
simple graph at fixed particle number is QMA-complete.

Consequently, approximating the ground energy of the XY model on a
simple graph at fixed magnetization is QMA-complete.

A frustration-free encoding and the Nullspace Projection Lemma let
us establish these results without using perturbation theory.



Open questions

e Related improvements for k-local Hamiltonian
- Constant-size coefficients
- Finite set of allowed terms without variable coefficients

- Instances of Local Hamiltonian defined entirely by a (hyper)graph

 Complexity of other models of multi-particle quantum walk
- Attractive interactions
- Negative hopping strength (stoquastic; is it AM-hard?)
- Bosons or fermions with nearest-neighbor interactions

- Unrestricted particle number

e Complexity of other quantum spin models defined on graphs
- Antiferromagnetic Heisenberg model



