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Quantum walk algorithms

• Black box graph traversal [CCDFGS 03]

• Hidden sphere problem [CSV 07]

• Search on graphs [Shenvi, Kempe, Whaley 02], [CG 03, 04], 
[Ambainis, Kempe, Rivosh 04]

• Element distinctness [Ambainis 03]

• Triangle finding [Magniez, Santha, Szegedy 03]

• Checking matrix multiplication [Buhrman, Špalek 04]

• Testing group commutativity [Magniez, Nayak 05]

• Formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRŠZ 07], 
[Cleve, Gavinsky, Yeung 08], [Reichardt, Špalek 08]

• Unstructured search [Grover 96] (+ many applications)

Exponential speedups
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A formal equivalence?

E.g., do the walks behave the same in some limit?

Of course not!  The state spaces aren’t even the same!

Is there a single framework describing both kinds of walks?



Reconciliation

In fact, there is a close correspondence between the continuous- 
and discrete-time models (suitably defined).

In particular:

• There is a sequence of discrete-time quantum walks whose 
behavior (in an appropriate subspace) converges to the 
dynamics of the continuous-time quantum walk.

• By applying phase estimation instead of taking that limit, we 
can obtain the continuous-time quantum walk more efficiently.  
(⇒ improved simulations of Hamiltonian dynamics)



Outline
• Models
- Classical and quantum, continuous- and discrete-time
- Szegedy’s theorem
- Szegedizing Hamiltonians

• Continuous-time walk as a limit of discrete-time walks
• Hamiltonian simulation
• Applications
- Algorithms
- Hamiltonian oracles

• Open question: A sign problem for Hamiltonian simulation
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∑

k Wkj = 1

probability of taking a step from j to k

Stochastic matrix                              (                                    )W ∈ R|V |×|V |

with               iff (j, k) ∈ EWkj != 0

Ex: Simple random walk. Wkj =

{
1

deg j (j, k) ∈ E

0 (j, k) "∈ E
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Random walk
A Markov process on a graph G = (V, E).

In continuous time:
∑

k Mkj = 0

probability per unit time of 
taking a step from j to k

Generator matrix                              (                    )M ∈ R|V |×|V |

with               iffMkj != 0 (j, k) ∈ E

Dynamics: d

dt
p(t) = Mp(t) p(t) ∈ R|V | t ∈ R

Ex: Laplacian walk. Mkj =






− deg j j = k

1 (j, k) ∈ E

0 (j, k) "∈ E
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Continuous-time quantum walk
Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

amplitude for vertex v at time t

|ψ(t)〉 =
∑

v∈V

qv(t)|v〉

Define time-homogeneous, local dynamics on G.

i
d

dt
|ψ(t)〉 = H|ψ(t)〉

with               iffH = H† Hkj != 0 (j, k) ∈ E

Ex: Adjacency matrix. Hkj =

{
1 (j, k) ∈ E

0 (j, k) "∈ E
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Discrete-time quantum walk

[Meyer 96], [Severini 03]

In general, we must enlarge the state space.

We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix                    with              iffU ∈ C|V |×|V | Ukj != 0 (j, k) ∈ E

Ex: On an infinite line, |x〉 "→ 1√
2
(|x − 1〉+ |x + 1〉)

but then |x + 2〉 "→ 1√
2
(|x + 1〉+ |x + 3〉)

which is not orthogonal!
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Szegedy’s discrete-time quantum walk
State space: span{|j, k〉, |k, j〉 : (j, k) ∈ E}

Let W be a stochastic matrix (a discrete-time random walk).

|ψj〉 :=
∑

k∈V

√
Wkj|j, k〉Define 〈ψj|ψk〉 = δj,k(note                        )

Then a step of the walk is the unitary operator U := iSR.

S|j, k〉 := |k, j〉

R := 2
∑

j∈V

|ψj〉〈ψj| − I



Szegedy’s spectral theorem

Let                        .T :=
∑

j |ψj〉〈j|

are eigenvectors of                              with eigenvalues                  .U := iS(2TT † − I) ±e±i arcsin λ

Then
I − e±i arccos λS√

2(1 − λ2)
T |λ〉

Theorem. Let                                      where                      .|ψj〉 :=
∑

k

√
Wkj|j, k〉

∑
k |Wkj| = 1

Suppose the matrix                                    has an eigenvector ∣λ⟩ 
with eigenvalue λ.

∑
j,k

√
W∗

jkWkj|k〉〈j|
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Szegedizing a Hamiltonian
Idea: Let H be a Hermitian matrix.  If we find a matrix W with
                      and
∑

k |Wkj| = 1

for some real number h, then W defines a discrete-time quantum 
walk closely related to H.

Hjk = h
√

WjkW∗
kj

Two strategies:

Let                       be the principal eigenvector of abs(H).|d〉 =
∑

j dj|j〉

Let abs(H) denote the matrix with elements abs(H)jk = ∣Hjk∣.

Wjk =
Hjk

‖abs(H)‖
dk

dj
Then                                 gives h = ∥abs(H)∥.

1.

[ACRŠZ 07]



Szegedizing a Hamiltonian
Idea: Let H be a Hermitian matrix.  If we find a matrix W with
                      and
∑

k |Wkj| = 1

for some real number h, then W defines a discrete-time quantum 
walk closely related to H.

Hjk = h
√

WjkW∗
kj

Two strategies:
Let                                   .‖H‖1 := max

j

∑

k

|Hjk|

Introduce another state, denoted ∣∅⟩.

2.

Then                                                                 gives h = ∥H∥1.W =
H

‖H‖1
+

∑

k

(
1 −

∑

j

|Hjk|

‖H‖1

)
|∅〉〈k|

[ACRŠZ 07]
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Classical case
Discrete-time random walk:

“Lazy walk”: Only move with probability ɛ, so W → ɛW + (1 - ɛ)I

pt+1 = [εW + (1 − ε)I]pt

pt+1 − pt

ε
= (W − I)pt

As ɛ → 0 with τ = ɛt, d

dτ
p(τ) = (W − I)p(τ)

pt+1 = W pt
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Quantum case
With a suitable “lazy discrete-time quantum walk” Uɛ, defined by 
an isometry                                            ,Tε :=

∑
j,k

√
Wkj(ε)|j, k〉〈j|

2. Perform ht/ɛ steps of the walk,
(where h = ∥abs(H)∥ or ∥H∥1).

Uε := iS(2TεT †
ε − I)

1. Apply               to the input state ∣ψ⟩.I + iS√
2

Tε

3. Measure in the basis                       .
{

I + iS√
2

Tε|j〉
}

Then as ɛ → 0,                                  .Pr(j) → |〈j|e−iHt|ψ〉|2

(We can get error at most δ in                                   steps.)O(ht, (‖H‖t)3/2/
√

δ)
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Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time 
evolution e-iHt for any desired t.

Approach: Color the graph of H.  Then the simulation breaks into 
small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

Any sufficiently sparse graph can be efficiently colored using only 
local information. [Linial 87]

= + +

Suppose H is sparse: for any x, we can efficiently compute all the 
nonzero matrix elements ⟨y∣H∣x⟩ (so in particular, there are only 
polynomially many such y).

So we can simulate H in poly(deg(H), log dim(H), t, 1/ɛ) steps.
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(
e−iA/Ne−iB/n

)n
= e−i(A+B)

[C 04], [Berry, Ahokas, Cleve, Sanders 05]

We can approximately simulate A + B for time t using

To get error ɛ, it suffices to use O(t2/ɛ) steps.

(
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(
e−iAt/2ne−iBt/ne−iAt/2n
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n→∞

(
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)n
= e−i(A+B)

[C 04], [Berry, Ahokas, Cleve, Sanders 05]

Using even better approximations (systematically constructed by 
Suzuki), we can simulate A + B for time t in t1 + o(1) steps.
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In special cases, yes!  (e.g., whenever                  for a small τ)e−iHτ = I



The no fast-forwarding theorem

[Berry, Ahokas, Cleve, Sanders 05]

Can we simulate H for time t using a number of operations that is 
sublinear in t?

In special cases, yes!  (e.g., whenever                  for a small τ)

But this is not possible in general: for some Hamiltonians, Ω(t) 
operations are required.

Proof is by reduction of parity to simulating a Hamiltonian.

e−iHτ = I



Phase estimation

1√
n

n−1∑

x=0

|x〉 • QFT−1
n |φ̃〉

|ψ〉 Ux |ψ〉

U|ψ〉 = eiφ|ψ〉

Precision δ with error probability at most ɛ using O(1/δɛ) 
applications of U.
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Hamiltonian simulation by discrete-time 
quantum walk

1. Apply T to the input state ∣ψ⟩.
To simulate H for time t:

2. Perform phase estimation with                           , estimating 
a phase                    for the component of T∣ψ⟩ 
corresponding to an eigenvector of H with eigenvalue λ.

U = iS(2TT † − I)
±e±i arcsin λ

3. Use the estimate of arcsin λ to estimate λ, and apply the 
phase         .e−iλt

4. Uncompute the phase estimation and T, giving an 
approximation of               .e−iHt|ψ〉

This is linear in t, and works even in cases where H is not sparse!

Theorem. To achieve fidelity 1 - ɛ, it suffices to use
                               steps of the discrete-time quantum walk.O(‖abs(H)‖t/ε3/2)



Applications



in out

Algorithms
Glued trees

Element distinctness

There is a discrete-time 
quantum walk that travels 
from “in” to “out” in 
polynomial time.

Given a black box for f : {0, 1, ..., n} → S, are there are distinct 
indices x,y such that f(x) = f(y)?
There is a continuous-time quantum walk algorithm that can be 
implemented with O(N2/3) queries.
Walk takes place on a Johnson graph (not sparse).



Hamiltonian query model



Hamiltonian query model
Conventional quantum query model:

Qx|i, b〉 = |i, b⊕ xi〉• Query operator Qx, where                                . 
• Unitary operators U0, U1, ..., Un.
• Algorithm is UnQx...QxU1QxU0.
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Hamiltonian query model

Hamiltonian query model:
• Hamiltonian Hx that generates Qx.
• Driving Hamiltonian HD(t).
• Algorithm is HD(t) + Hx, from t = 0 to T.

Conventional quantum query model:
Qx|i, b〉 = |i, b⊕ xi〉• Query operator Qx, where                                . 

• Unitary operators U0, U1, ..., Un.
• Algorithm is UnQx...QxU1QxU0.

The Hamiltonian model is potentially more powerful!
Theorem. [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 08]
If a function can be evaluated with Hamiltonian queries for time 
T, then it can be evaluated with O(T log T) discrete queries.

Theorem. If HD is time-independent, O(∥abs(HD)∥T) discrete 
queries suffice.



Open question:
A sign problem for 

Hamiltonain simulation
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How hard is it to simulate H?
By the no fast forwarding theorem, Ω(∥H∥t) operations are 
necessary.

We have seen that O(∥abs(H)∥t) steps (of the corresponding 
discrete-time quantum walk) are sufficient.  Is this a fundamental 
barrier?

For                  , we have

(and these bounds are the best possible).
‖H‖ ≤ ‖abs(H)‖ ≤

√
N‖H‖

H ∈ CN×N

Simulations using O(∥H∥t) steps would have applications such as
• approximately computing exponential sums
• breaking pseudorandom generators derived from strongly 

regular graphs.


