
The relationship between
continuous- and discrete-time

quantum walk
Andrew Childs

Department of Combinatorics & Optimization
and Institute for Quantum Computing

University of Waterloo

arXiv:0810.0312 PacNQuInT 2009

http://arxiv.org/abs/0810.0312
http://arxiv.org/abs/0810.0312

Quantum walk algorithms

• Black box graph traversal [CCDFGS 03]

• Hidden sphere problem [CSV 07]

• Search on graphs [Shenvi, Kempe, Whaley 02], [CG 03, 04],
[Ambainis, Kempe, Rivosh 04]

• Element distinctness [Ambainis 03]

• Triangle finding [Magniez, Santha, Szegedy 03]

• Checking matrix multiplication [Buhrman, Špalek 04]

• Testing group commutativity [Magniez, Nayak 05]

• Formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRŠZ 07],
[Cleve, Gavinsky, Yeung 08], [Reichardt, Špalek 08]

• Unstructured search [Grover 96] (+ many applications)

Exponential speedups

Polynomial speedups

Two models, both alike in dignity

Continuous Discrete

state space

simplicity

ease of
implementation

Two models, both alike in dignity

Continuous Discrete

state space

simplicity

ease of
implementation

vertices directed edges
(“quantum coin”)

Two models, both alike in dignity

Continuous Discrete

state space

simplicity

ease of
implementation

✓

vertices directed edges
(“quantum coin”)

Two models, both alike in dignity

Continuous Discrete

state space

simplicity

ease of
implementation

✓

✓

vertices directed edges
(“quantum coin”)

Walks on lines

!100 !50 0 50 100

!100 !50 0 50 100

Continuous

Discrete

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)
for d > 2 [CG 04]O(

√
N)

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)
for d > 2 [CG 04]O(

√
N)

exponential speedup
over classical

[CCDFGS 03]

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)
for d > 2 [CG 04]O(

√
N)

exponential speedup
over classical

[CCDFGS 03]
?

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)
for d > 2 [CG 04]O(

√
N)

exponential speedup
over classical

[CCDFGS 03]
?

O(N2/3) [Ambainis 03]

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)
for d > 2 [CG 04]O(

√
N)

exponential speedup
over classical

[CCDFGS 03]
?

? O(N2/3) [Ambainis 03]

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)
for d > 2 [CG 04]O(

√
N)

exponential speedup
over classical

[CCDFGS 03]
?

? O(N2/3) [Ambainis 03]

[FGG 07]O(
√

N)

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)
for d > 2 [CG 04]O(

√
N)

exponential speedup
over classical

[CCDFGS 03]
?

? O(N2/3) [Ambainis 03]

[FGG 07]O(
√

N)

 in circuit
model [CCJY 07]

N
1
2 +o(1)

Dueling algorithms
Continuous Discrete

searching a grid
(d dimensions)

glued trees

element
distinctness

balanced binary
AND-OR trees

for d > 4 [CG 03]O(
√

N)

for d > 2 [AKR 04]O(
√

N)
for d > 2 [CG 04]O(

√
N)

exponential speedup
over classical

[CCDFGS 03]
?

? O(N2/3) [Ambainis 03]

[FGG 07]O(
√

N)
[ACRŠZ 07]O(

√
N) in circuit

model [CCJY 07]
N

1
2 +o(1)

A formal equivalence?

Is there a single framework describing both kinds of walks?

A formal equivalence?

E.g., do the walks behave the same in some limit?

Is there a single framework describing both kinds of walks?

A formal equivalence?

E.g., do the walks behave the same in some limit?

Of course not! The state spaces aren’t even the same!

Is there a single framework describing both kinds of walks?

Reconciliation

In fact, there is a close correspondence between the continuous-
and discrete-time models (suitably defined).

In particular:

• There is a sequence of discrete-time quantum walks whose
behavior (in an appropriate subspace) converges to the
dynamics of the continuous-time quantum walk.

• By applying phase estimation instead of taking that limit, we
can obtain the continuous-time quantum walk more efficiently.
(⇒ improved simulations of Hamiltonian dynamics)

Outline
• Models
- Classical and quantum, continuous- and discrete-time
- Szegedy’s theorem
- Szegedizing Hamiltonians

• Continuous-time walk as a limit of discrete-time walks
• Hamiltonian simulation
• Applications
- Algorithms
- Hamiltonian oracles

• Open question: A sign problem for Hamiltonian simulation

Models

Random walk
A Markov process on a graph G = (V, E).

Random walk
A Markov process on a graph G = (V, E).

In discrete time:

Wkj ≥ 0,
∑

k Wkj = 1

probability of taking a step from j to k

Stochastic matrix ()W ∈ R|V |×|V |

with iff (j, k) ∈ EWkj != 0

Random walk
A Markov process on a graph G = (V, E).

In discrete time:

Wkj ≥ 0,
∑

k Wkj = 1

probability of taking a step from j to k

Stochastic matrix ()W ∈ R|V |×|V |

with iff (j, k) ∈ EWkj != 0

Dynamics: pt = Wtp0 pt ∈ R|V | t = 0, 1, 2, . . .

Random walk
A Markov process on a graph G = (V, E).

In discrete time:

Wkj ≥ 0,
∑

k Wkj = 1

probability of taking a step from j to k

Stochastic matrix ()W ∈ R|V |×|V |

with iff (j, k) ∈ EWkj != 0

Ex: Simple random walk. Wkj =

{
1

deg j (j, k) ∈ E

0 (j, k) "∈ E

Dynamics: pt = Wtp0 pt ∈ R|V | t = 0, 1, 2, . . .

Random walk
A Markov process on a graph G = (V, E).

In continuous time:

Random walk
A Markov process on a graph G = (V, E).

In continuous time:
∑

k Mkj = 0

probability per unit time of
taking a step from j to k

Generator matrix ()M ∈ R|V |×|V |

with iffMkj != 0 (j, k) ∈ E

Random walk
A Markov process on a graph G = (V, E).

In continuous time:
∑

k Mkj = 0

probability per unit time of
taking a step from j to k

Generator matrix ()M ∈ R|V |×|V |

with iffMkj != 0 (j, k) ∈ E

Dynamics: d

dt
p(t) = Mp(t) p(t) ∈ R|V | t ∈ R

Random walk
A Markov process on a graph G = (V, E).

In continuous time:
∑

k Mkj = 0

probability per unit time of
taking a step from j to k

Generator matrix ()M ∈ R|V |×|V |

with iffMkj != 0 (j, k) ∈ E

Dynamics: d

dt
p(t) = Mp(t) p(t) ∈ R|V | t ∈ R

Ex: Laplacian walk. Mkj =






− deg j j = k

1 (j, k) ∈ E

0 (j, k) "∈ E

Continuous-time quantum walk
Quantum analog of a random walk on a graph G = (V, E).

Continuous-time quantum walk
Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

amplitude for vertex v at time t

|ψ(t)〉 =
∑

v∈V

qv(t)|v〉

Continuous-time quantum walk
Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

amplitude for vertex v at time t

|ψ(t)〉 =
∑

v∈V

qv(t)|v〉

Define time-homogeneous, local dynamics on G.

i
d

dt
|ψ(t)〉 = H|ψ(t)〉

Continuous-time quantum walk
Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

amplitude for vertex v at time t

|ψ(t)〉 =
∑

v∈V

qv(t)|v〉

Define time-homogeneous, local dynamics on G.

i
d

dt
|ψ(t)〉 = H|ψ(t)〉

with iffH = H† Hkj != 0 (j, k) ∈ E

Continuous-time quantum walk
Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

amplitude for vertex v at time t

|ψ(t)〉 =
∑

v∈V

qv(t)|v〉

Define time-homogeneous, local dynamics on G.

i
d

dt
|ψ(t)〉 = H|ψ(t)〉

with iffH = H† Hkj != 0 (j, k) ∈ E

Ex: Adjacency matrix. Hkj =

{
1 (j, k) ∈ E

0 (j, k) "∈ E

Discrete-time quantum walk
We can also define a quantum walk with discrete steps. [Watrous 99]

Discrete-time quantum walk
We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix with iffU ∈ C|V |×|V | Ukj != 0 (j, k) ∈ E

Discrete-time quantum walk
We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix with iffU ∈ C|V |×|V | Ukj != 0 (j, k) ∈ E

Ex: On an infinite line, |x〉 "→ 1√
2
(|x − 1〉+ |x + 1〉)

Discrete-time quantum walk
We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix with iffU ∈ C|V |×|V | Ukj != 0 (j, k) ∈ E

Ex: On an infinite line, |x〉 "→ 1√
2
(|x − 1〉+ |x + 1〉)

but then |x + 2〉 "→ 1√
2
(|x + 1〉+ |x + 3〉)

which is not orthogonal!

Discrete-time quantum walk

[Meyer 96], [Severini 03]

In general, we must enlarge the state space.

We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix with iffU ∈ C|V |×|V | Ukj != 0 (j, k) ∈ E

Ex: On an infinite line, |x〉 "→ 1√
2
(|x − 1〉+ |x + 1〉)

but then |x + 2〉 "→ 1√
2
(|x + 1〉+ |x + 3〉)

which is not orthogonal!

Szegedy’s discrete-time quantum walk

Szegedy’s discrete-time quantum walk
State space: span{|j, k〉, |k, j〉 : (j, k) ∈ E}

Szegedy’s discrete-time quantum walk
State space: span{|j, k〉, |k, j〉 : (j, k) ∈ E}

Let W be a stochastic matrix (a discrete-time random walk).

Szegedy’s discrete-time quantum walk
State space: span{|j, k〉, |k, j〉 : (j, k) ∈ E}

Let W be a stochastic matrix (a discrete-time random walk).

|ψj〉 :=
∑

k∈V

√
Wkj|j, k〉Define 〈ψj|ψk〉 = δj,k(note)

Szegedy’s discrete-time quantum walk
State space: span{|j, k〉, |k, j〉 : (j, k) ∈ E}

Let W be a stochastic matrix (a discrete-time random walk).

|ψj〉 :=
∑

k∈V

√
Wkj|j, k〉Define 〈ψj|ψk〉 = δj,k(note)

R := 2
∑

j∈V

|ψj〉〈ψj| − I

Szegedy’s discrete-time quantum walk
State space: span{|j, k〉, |k, j〉 : (j, k) ∈ E}

Let W be a stochastic matrix (a discrete-time random walk).

|ψj〉 :=
∑

k∈V

√
Wkj|j, k〉Define 〈ψj|ψk〉 = δj,k(note)

S|j, k〉 := |k, j〉

R := 2
∑

j∈V

|ψj〉〈ψj| − I

Szegedy’s discrete-time quantum walk
State space: span{|j, k〉, |k, j〉 : (j, k) ∈ E}

Let W be a stochastic matrix (a discrete-time random walk).

|ψj〉 :=
∑

k∈V

√
Wkj|j, k〉Define 〈ψj|ψk〉 = δj,k(note)

Then a step of the walk is the unitary operator U := iSR.

S|j, k〉 := |k, j〉

R := 2
∑

j∈V

|ψj〉〈ψj| − I

Szegedy’s spectral theorem

Let .T :=
∑

j |ψj〉〈j|

are eigenvectors of with eigenvalues .U := iS(2TT † − I) ±e±i arcsin λ

Then
I − e±i arccos λS√

2(1 − λ2)
T |λ〉

Theorem. Let where .|ψj〉 :=
∑

k

√
Wkj|j, k〉

∑
k |Wkj| = 1

Suppose the matrix has an eigenvector ∣λ⟩
with eigenvalue λ.

∑
j,k

√
W∗

jkWkj|k〉〈j|

Szegedizing a Hamiltonian
Idea: Let H be a Hermitian matrix. If we find a matrix W with
 and
∑

k |Wkj| = 1

for some real number h, then W defines a discrete-time quantum
walk closely related to H.

Hjk = h
√

WjkW∗
kj

[ACRŠZ 07]

Szegedizing a Hamiltonian
Idea: Let H be a Hermitian matrix. If we find a matrix W with
 and
∑

k |Wkj| = 1

for some real number h, then W defines a discrete-time quantum
walk closely related to H.

Hjk = h
√

WjkW∗
kj

Two strategies:

[ACRŠZ 07]

Szegedizing a Hamiltonian
Idea: Let H be a Hermitian matrix. If we find a matrix W with
 and
∑

k |Wkj| = 1

for some real number h, then W defines a discrete-time quantum
walk closely related to H.

Hjk = h
√

WjkW∗
kj

Two strategies:

Let be the principal eigenvector of abs(H).|d〉 =
∑

j dj|j〉

Let abs(H) denote the matrix with elements abs(H)jk = ∣Hjk∣.

Wjk =
Hjk

‖abs(H)‖
dk

dj
Then gives h = ∥abs(H)∥.

1.

[ACRŠZ 07]

Szegedizing a Hamiltonian
Idea: Let H be a Hermitian matrix. If we find a matrix W with
 and
∑

k |Wkj| = 1

for some real number h, then W defines a discrete-time quantum
walk closely related to H.

Hjk = h
√

WjkW∗
kj

Two strategies:
Let .‖H‖1 := max

j

∑

k

|Hjk|

Introduce another state, denoted ∣∅⟩.

2.

Then gives h = ∥H∥1.W =
H

‖H‖1
+

∑

k

(
1 −

∑

j

|Hjk|

‖H‖1

)
|∅〉〈k|

[ACRŠZ 07]

Continuous-time walk as a
limit of discrete-time walks

Classical case
Discrete-time random walk: pt+1 = W pt

Classical case
Discrete-time random walk:

“Lazy walk”: Only move with probability ɛ, so W → ɛW + (1 - ɛ)I

pt+1 = W pt

Classical case
Discrete-time random walk:

“Lazy walk”: Only move with probability ɛ, so W → ɛW + (1 - ɛ)I

pt+1 = [εW + (1 − ε)I]pt

pt+1 = W pt

Classical case
Discrete-time random walk:

“Lazy walk”: Only move with probability ɛ, so W → ɛW + (1 - ɛ)I

pt+1 = [εW + (1 − ε)I]pt

pt+1 − pt

ε
= (W − I)pt

pt+1 = W pt

Classical case
Discrete-time random walk:

“Lazy walk”: Only move with probability ɛ, so W → ɛW + (1 - ɛ)I

pt+1 = [εW + (1 − ε)I]pt

pt+1 − pt

ε
= (W − I)pt

As ɛ → 0 with τ = ɛt, d

dτ
p(τ) = (W − I)p(τ)

pt+1 = W pt

Quantum case
With a suitable “lazy discrete-time quantum walk” Uɛ, defined by
an isometry ,Tε :=

∑
j,k

√
Wkj(ε)|j, k〉〈j|

Quantum case
With a suitable “lazy discrete-time quantum walk” Uɛ, defined by
an isometry ,Tε :=

∑
j,k

√
Wkj(ε)|j, k〉〈j|

1. Apply to the input state ∣ψ⟩.I + iS√
2

Tε

Quantum case
With a suitable “lazy discrete-time quantum walk” Uɛ, defined by
an isometry ,Tε :=

∑
j,k

√
Wkj(ε)|j, k〉〈j|

2. Perform ht/ɛ steps of the walk,
(where h = ∥abs(H)∥ or ∥H∥1).

Uε := iS(2TεT †
ε − I)

1. Apply to the input state ∣ψ⟩.I + iS√
2

Tε

Quantum case
With a suitable “lazy discrete-time quantum walk” Uɛ, defined by
an isometry ,Tε :=

∑
j,k

√
Wkj(ε)|j, k〉〈j|

2. Perform ht/ɛ steps of the walk,
(where h = ∥abs(H)∥ or ∥H∥1).

Uε := iS(2TεT †
ε − I)

1. Apply to the input state ∣ψ⟩.I + iS√
2

Tε

3. Measure in the basis .
{

I + iS√
2

Tε|j〉
}

Quantum case
With a suitable “lazy discrete-time quantum walk” Uɛ, defined by
an isometry ,Tε :=

∑
j,k

√
Wkj(ε)|j, k〉〈j|

2. Perform ht/ɛ steps of the walk,
(where h = ∥abs(H)∥ or ∥H∥1).

Uε := iS(2TεT †
ε − I)

1. Apply to the input state ∣ψ⟩.I + iS√
2

Tε

3. Measure in the basis .
{

I + iS√
2

Tε|j〉
}

Then as ɛ → 0, .Pr(j) → |〈j|e−iHt|ψ〉|2

Quantum case
With a suitable “lazy discrete-time quantum walk” Uɛ, defined by
an isometry ,Tε :=

∑
j,k

√
Wkj(ε)|j, k〉〈j|

2. Perform ht/ɛ steps of the walk,
(where h = ∥abs(H)∥ or ∥H∥1).

Uε := iS(2TεT †
ε − I)

1. Apply to the input state ∣ψ⟩.I + iS√
2

Tε

3. Measure in the basis .
{

I + iS√
2

Tε|j〉
}

Then as ɛ → 0, .Pr(j) → |〈j|e−iHt|ψ〉|2

(We can get error at most δ in steps.)O(ht, (‖H‖t)3/2/
√

δ)

Hamiltonian simulation

Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time
evolution e-iHt for any desired t.

Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time
evolution e-iHt for any desired t.

Suppose H is sparse: for any x, we can efficiently compute all the
nonzero matrix elements ⟨y∣H∣x⟩ (so in particular, there are only
polynomially many such y).

Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time
evolution e-iHt for any desired t.

Approach: Color the graph of H. Then the simulation breaks into
small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

Suppose H is sparse: for any x, we can efficiently compute all the
nonzero matrix elements ⟨y∣H∣x⟩ (so in particular, there are only
polynomially many such y).

Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time
evolution e-iHt for any desired t.

Approach: Color the graph of H. Then the simulation breaks into
small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

Suppose H is sparse: for any x, we can efficiently compute all the
nonzero matrix elements ⟨y∣H∣x⟩ (so in particular, there are only
polynomially many such y).

Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time
evolution e-iHt for any desired t.

Approach: Color the graph of H. Then the simulation breaks into
small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

Suppose H is sparse: for any x, we can efficiently compute all the
nonzero matrix elements ⟨y∣H∣x⟩ (so in particular, there are only
polynomially many such y).

Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time
evolution e-iHt for any desired t.

Approach: Color the graph of H. Then the simulation breaks into
small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

= + +

Suppose H is sparse: for any x, we can efficiently compute all the
nonzero matrix elements ⟨y∣H∣x⟩ (so in particular, there are only
polynomially many such y).

Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time
evolution e-iHt for any desired t.

Approach: Color the graph of H. Then the simulation breaks into
small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

Any sufficiently sparse graph can be efficiently colored using only
local information. [Linial 87]

= + +

Suppose H is sparse: for any x, we can efficiently compute all the
nonzero matrix elements ⟨y∣H∣x⟩ (so in particular, there are only
polynomially many such y).

Simulating sparse Hamiltonians
Problem: For a given Hamiltonian H, simulate the unitary time
evolution e-iHt for any desired t.

Approach: Color the graph of H. Then the simulation breaks into
small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

Any sufficiently sparse graph can be efficiently colored using only
local information. [Linial 87]

= + +

Suppose H is sparse: for any x, we can efficiently compute all the
nonzero matrix elements ⟨y∣H∣x⟩ (so in particular, there are only
polynomially many such y).

So we can simulate H in poly(deg(H), log dim(H), t, 1/ɛ) steps.

Simulating a sum of Hamiltonians
Lie product formula: lim

n→∞

(
e−iA/Ne−iB/n

)n
= e−i(A+B)

[C 04], [Berry, Ahokas, Cleve, Sanders 05]

Simulating a sum of Hamiltonians
Lie product formula: lim

n→∞

(
e−iA/Ne−iB/n

)n
= e−i(A+B)

[C 04], [Berry, Ahokas, Cleve, Sanders 05]

We can approximately simulate A + B for time t using

To get error ɛ, it suffices to use O(t2/ɛ) steps.

(
e−iAt/ne−iBt/n

)n ≈ e−i(A+B)t.

Simulating a sum of Hamiltonians
Lie product formula: lim

n→∞

(
e−iA/Ne−iB/n

)n
= e−i(A+B)

[C 04], [Berry, Ahokas, Cleve, Sanders 05]

We can approximately simulate A + B for time t using

To get error ɛ, it suffices to use O(t2/ɛ) steps.

(
e−iAt/ne−iBt/n

)n ≈ e−i(A+B)t.

We can do better using a higher-order formula:

Then O(t3/2/ɛ1/2) steps suffice.

(
e−iAt/2ne−iBt/ne−iAt/2n

)n ≈ e−i(A+B)t.

Simulating a sum of Hamiltonians
Lie product formula: lim

n→∞

(
e−iA/Ne−iB/n

)n
= e−i(A+B)

[C 04], [Berry, Ahokas, Cleve, Sanders 05]

Using even better approximations (systematically constructed by
Suzuki), we can simulate A + B for time t in t1 + o(1) steps.

We can approximately simulate A + B for time t using

To get error ɛ, it suffices to use O(t2/ɛ) steps.

(
e−iAt/ne−iBt/n

)n ≈ e−i(A+B)t.

We can do better using a higher-order formula:

Then O(t3/2/ɛ1/2) steps suffice.

(
e−iAt/2ne−iBt/ne−iAt/2n

)n ≈ e−i(A+B)t.

The no fast-forwarding theorem

[Berry, Ahokas, Cleve, Sanders 05]

Can we simulate H for time t using a number of operations that is
sublinear in t?

In special cases, yes! (e.g., whenever for a small τ)e−iHτ = I

The no fast-forwarding theorem

[Berry, Ahokas, Cleve, Sanders 05]

Can we simulate H for time t using a number of operations that is
sublinear in t?

In special cases, yes! (e.g., whenever for a small τ)

But this is not possible in general: for some Hamiltonians, Ω(t)
operations are required.

Proof is by reduction of parity to simulating a Hamiltonian.

e−iHτ = I

Phase estimation

1√
n

n−1∑

x=0

|x〉 • QFT−1
n |φ̃〉

|ψ〉 Ux |ψ〉

U|ψ〉 = eiφ|ψ〉

Precision δ with error probability at most ɛ using O(1/δɛ)
applications of U.

Hamiltonian simulation by discrete-time
quantum walk
To simulate H for time t:

Hamiltonian simulation by discrete-time
quantum walk

1. Apply T to the input state ∣ψ⟩.
To simulate H for time t:

Hamiltonian simulation by discrete-time
quantum walk

1. Apply T to the input state ∣ψ⟩.
To simulate H for time t:

2. Perform phase estimation with , estimating
a phase for the component of T∣ψ⟩
corresponding to an eigenvector of H with eigenvalue λ.

U = iS(2TT † − I)
±e±i arcsin λ

Hamiltonian simulation by discrete-time
quantum walk

1. Apply T to the input state ∣ψ⟩.
To simulate H for time t:

2. Perform phase estimation with , estimating
a phase for the component of T∣ψ⟩
corresponding to an eigenvector of H with eigenvalue λ.

U = iS(2TT † − I)
±e±i arcsin λ

3. Use the estimate of arcsin λ to estimate λ, and apply the
phase .e−iλt

Hamiltonian simulation by discrete-time
quantum walk

1. Apply T to the input state ∣ψ⟩.
To simulate H for time t:

2. Perform phase estimation with , estimating
a phase for the component of T∣ψ⟩
corresponding to an eigenvector of H with eigenvalue λ.

U = iS(2TT † − I)
±e±i arcsin λ

3. Use the estimate of arcsin λ to estimate λ, and apply the
phase .e−iλt

4. Uncompute the phase estimation and T, giving an
approximation of .e−iHt|ψ〉

Hamiltonian simulation by discrete-time
quantum walk

1. Apply T to the input state ∣ψ⟩.
To simulate H for time t:

2. Perform phase estimation with , estimating
a phase for the component of T∣ψ⟩
corresponding to an eigenvector of H with eigenvalue λ.

U = iS(2TT † − I)
±e±i arcsin λ

3. Use the estimate of arcsin λ to estimate λ, and apply the
phase .e−iλt

4. Uncompute the phase estimation and T, giving an
approximation of .e−iHt|ψ〉

This is linear in t, and works even in cases where H is not sparse!

Theorem. To achieve fidelity 1 - ɛ, it suffices to use
 steps of the discrete-time quantum walk.O(‖abs(H)‖t/ε3/2)

Applications

in out

Algorithms
Glued trees

Element distinctness

There is a discrete-time
quantum walk that travels
from “in” to “out” in
polynomial time.

Given a black box for f : {0, 1, ..., n} → S, are there are distinct
indices x,y such that f(x) = f(y)?
There is a continuous-time quantum walk algorithm that can be
implemented with O(N2/3) queries.
Walk takes place on a Johnson graph (not sparse).

Hamiltonian query model

Hamiltonian query model
Conventional quantum query model:

Qx|i, b〉 = |i, b⊕ xi〉• Query operator Qx, where .
• Unitary operators U0, U1, ..., Un.
• Algorithm is UnQx...QxU1QxU0.

Hamiltonian query model

Hamiltonian query model:
• Hamiltonian Hx that generates Qx.
• Driving Hamiltonian HD(t).
• Algorithm is HD(t) + Hx, from t = 0 to T.

Conventional quantum query model:
Qx|i, b〉 = |i, b⊕ xi〉• Query operator Qx, where .

• Unitary operators U0, U1, ..., Un.
• Algorithm is UnQx...QxU1QxU0.

Hamiltonian query model

Hamiltonian query model:
• Hamiltonian Hx that generates Qx.
• Driving Hamiltonian HD(t).
• Algorithm is HD(t) + Hx, from t = 0 to T.

Conventional quantum query model:
Qx|i, b〉 = |i, b⊕ xi〉• Query operator Qx, where .

• Unitary operators U0, U1, ..., Un.
• Algorithm is UnQx...QxU1QxU0.

The Hamiltonian model is potentially more powerful!

Hamiltonian query model

Hamiltonian query model:
• Hamiltonian Hx that generates Qx.
• Driving Hamiltonian HD(t).
• Algorithm is HD(t) + Hx, from t = 0 to T.

Conventional quantum query model:
Qx|i, b〉 = |i, b⊕ xi〉• Query operator Qx, where .

• Unitary operators U0, U1, ..., Un.
• Algorithm is UnQx...QxU1QxU0.

The Hamiltonian model is potentially more powerful!
Theorem. [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 08]
If a function can be evaluated with Hamiltonian queries for time
T, then it can be evaluated with O(T log T) discrete queries.

Hamiltonian query model

Hamiltonian query model:
• Hamiltonian Hx that generates Qx.
• Driving Hamiltonian HD(t).
• Algorithm is HD(t) + Hx, from t = 0 to T.

Conventional quantum query model:
Qx|i, b〉 = |i, b⊕ xi〉• Query operator Qx, where .

• Unitary operators U0, U1, ..., Un.
• Algorithm is UnQx...QxU1QxU0.

The Hamiltonian model is potentially more powerful!
Theorem. [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 08]
If a function can be evaluated with Hamiltonian queries for time
T, then it can be evaluated with O(T log T) discrete queries.

Theorem. If HD is time-independent, O(∥abs(HD)∥T) discrete
queries suffice.

Open question:
A sign problem for

Hamiltonain simulation

How hard is it to simulate H?

How hard is it to simulate H?
By the no fast forwarding theorem, Ω(∥H∥t) operations are
necessary.

How hard is it to simulate H?
By the no fast forwarding theorem, Ω(∥H∥t) operations are
necessary.

We have seen that O(∥abs(H)∥t) steps (of the corresponding
discrete-time quantum walk) are sufficient. Is this a fundamental
barrier?

How hard is it to simulate H?
By the no fast forwarding theorem, Ω(∥H∥t) operations are
necessary.

We have seen that O(∥abs(H)∥t) steps (of the corresponding
discrete-time quantum walk) are sufficient. Is this a fundamental
barrier?

For , we have

(and these bounds are the best possible).
‖H‖ ≤ ‖abs(H)‖ ≤

√
N‖H‖

H ∈ CN×N

How hard is it to simulate H?
By the no fast forwarding theorem, Ω(∥H∥t) operations are
necessary.

We have seen that O(∥abs(H)∥t) steps (of the corresponding
discrete-time quantum walk) are sufficient. Is this a fundamental
barrier?

For , we have

(and these bounds are the best possible).
‖H‖ ≤ ‖abs(H)‖ ≤

√
N‖H‖

H ∈ CN×N

Simulations using O(∥H∥t) steps would have applications such as
• approximately computing exponential sums
• breaking pseudorandom generators derived from strongly

regular graphs.

