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Deciding connectivity
Given an n-vertex graph G (in terms of a black box for its adjacency 
matrix), how hard is it to tell if G is connected?

­(n2) queries are required

vs.

Ex:



Testing connectivity
Promise: Either G is connected or it is ²-far from connected.

(must change        edges to make it connected)�
�n
2

�

Trivial fact: for                         , no graph is ²-far from connected.� > (n− 1)/
�n
2

�

Ex (nontrivial): Bipartiteness, k-colorability, k-clique, etc. 

Many natural graph properties can be tested in only poly(1/²) queries.

[Goldreich, Goldwasser, Ron 95]

Ex (trivial): Eulerian, Hamiltonian, acyclicity, planarity, regularity, etc.

So we can test connectivity in poly(1/²) queries.



Quantum testing of graph properties

To say anything nontrivial, we need a property that can’t be already be 
tested fast classically.

Can there be a significant quantum speedup for testing some graph 
property?

Can there be an exponential quantum speedup?
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Property testing

Property P ⊆ ΣN

Promise: either           or x is ²-far from Px ∈ P

Determine (with error probability at most 1/3) which holds

x ∈ ΣNGiven a black-box input

Say x is ²-far from P if min{∆(x, y) : y ∈ P} > �N

Hamming distance

(equivalently, a function                                )fx : {1, . . . , N} → Σ



Quantum property testing
• O(1) quantum vs. ­(log N) classical [Buhrman, Fortnow, Newman, 

and Roehrig 03]

• Exponential separation between quantum and classical testing 
[BFNR 03]

• Some properties need ­(N) quantum queries [BFNR 03]

• Testing juntas logarithmically faster than the best known classical 
tester [Atici and Servedio 07]

• Efficient quantum algorithm for testing solvability of a black box 
group [Inui and Le Gall 08]

• Quantum algorithms for testing uniformity/orthogonality of 
distributions [Bravyi, Harrow, Hassidim 09; Chakraborty, Fischer, 
Matsliah, de Wolf 09]

• ... but no work on testing graph properties



Sparse graphs

Note: Can still test connectivity in time poly(1/²) in this model 
[Goldreich and Ron 97].

Quantumly: |v, i, z� �→ |v, i, z ⊕ fG(v, i)�

²-far means we must change ² nd edges

Call a graph d-sparse if every vertex has degree at most d.
Fix a positive integer d.

Black box description of a graph G (“adjacency-list model”):

fG : V (G)× {1, . . . , d}→ V ∪ {∗}

fG(v, i) =

�
w if w is the ith neighbor of v in G

∗ if v has fewer than i neighbors



Results

No nontrivial quantum lower bound!

Both tasks require            queries classically [Goldreich and Ron 97].Ω(
√

n)

Quantum algorithms for

• ²-testing bipartiteness in time

• testing whether a graph is an ®-vertex expander or ²-far from a 
cµ ®  2-vertex expander in time O(n

1
3+3µpoly(log N, 1/�, 1/α))

O(n1/3poly(log n, 1/�))



Bipartiteness



The problem
Given an adjacency-list black box for a d-sparse graph, decide whether 
the graph is

²-far from bipartitebipartite

or



Classical algorithm
Idea: Take many (short) random walks in G starting from a fixed 

vertex; look for a pair of walks that form an odd cycle.

Algorithm.
Repeat the following O(1/²) times:

Pick a random               .
For i=1 to K, where                                      : 

Let wi,0 = v.
Let j = 1.
Repeat L times, where                                :

With probability 1/2d, let wi,j be the kth neighbor of wi,j-1 
(assuming such a neighbor exists) and increment j.

If                    for some              with j even and    odd, reject.
If no iteration rejected, accept.

K =
√

n poly(log n, 1/�)

L = poly(log n, 1/�)

v ∈ V (G)

wi,j = wi�,j� i, i�, j, j� j�

Theorem [Goldreich and Ron 99]: This algorithm accepts when G is 
bipartite, rejects with constant probability when G is ²-far from 
bipartite, and runs in time                                    .O(

√
n poly(log n, 1/�))



Element distinctness
Given a black-box input            , are there distinctx ∈ ΣN i, j ∈ {1, . . . , N}
such that             (a collision)?xi = xj

Classical query complexity £(N).

When a collision exists, the algorithm returns one.

There is a quantum algorithm that decides element distinctness using 
only               queries [Ambainis 04].O(N2/3)

Strategy: Quantum walk on the Johnson graph                  , with 
vertices corresponding to subsets of         indices.

J(N,N2/3)
N2/3



A quantum strategy

Search for an odd collision among the endpoints of the walks using the 
element distinctness algorithm.

Caveat: Just flipping the coins takes time           , so the running time is 
significantly more than the query complexity.

Ω(
√

n)

Query complexity:
�√

n poly(log n, 1/�)
�2/3= n1/3 poly(log n, 1/�)

Fix a choice of random bits for the classical algorithm.

of themO(
√

n poly(log n, 1/�))



Derandomization
We modify the classical tester to use significantly less randomess.

We call a set of random variables t-wise independent if the distribution 
is uniform for any subset of t or fewer random variables.

Idea: Replace the uniformly random bits by t-wise independent bits 
(where                                       ).t = poly(log n, log d, 1/�)

Theorem [Alon, Babai, Itai 86]: There is an algorithm to generate m 
bits that are t-wise independent in time                 , using                 
uniformly random bits.

O(t log m) O(t log m)

Key idea: the analysis only depends on correlations among at most 4 
random walks (and the walks are not very long).

By taking the random walk using t-wise independent random variables 
in place of uniformly random ones, we can give a classical bipartiteness 
testing algorithm whose running time is still                                    , 
and that only uses                                  random bits.

O(
√

n poly(log n, 1/�))
poly(log n, log d, 1/�)



The quantum algorithm

Theorem: This algorithm accepts when G is bipartite, rejects with 
constant probability when G is ²-far from bipartite, and runs in 
time                                     .O(n1/3 poly(log n, 1/�))

Algorithm.
Repeat the following O(1/²) times:

Use the element distinctness algorithm to search for a “collision”, 
where such an event is defined as an odd cycle obtained from a pair 
of pseudorandom walks executed as in the algorithm of Goldreich 
and Ron, but using                                 -wise independent random 
variables in place of uniformly random ones.
If a collision is found, reject.

If no iteration rejected, accept.

poly(log n, log d, 1/�)



Expansion



Expansion
Informally, expanders are graphs that are well-connected.

Many applications: Derandomization, PCP, hash functions, error 
correcting codes, network design, ...

How hard is it to test if a (d-sparse) graph is an ®-expander or ²-far 
from an ®-expander?

We’ll actually consider something slightly weaker: either the graph is an 
®-expander or ²-far from a ¯-expander, where  ̄< ®.

U ⊂ V (G)Definition. We say G is an ®-expander if for every 
with                        ,                       .|U | ≤ |V (G)|/2 |∂(U)| ≥ α|U |

vertex boundary of U: vertices in           
adjacent to some vertex in U

V (G) \ U

Even this weaker task requires            classical queries [GR 97].Ω(
√

n)



Classical algorithm
Idea: Random walks on expanders are rapidly mixing.

Take many (short) random walks in G starting from a fixed 
vertex; check whether there are more collisions between their 
endpoints than expected from a near-uniform distribution.

Theorem [Nachmias and Shapira 07]: If G is an ®-expander, we accept 
with probability at least 2/3.  If G is ²-far from a c µ ®  2-expander, 
where the constant c depends on d, we reject with probability at least 
2/3.  The running time is                                              .O(n

1
2+µpoly(log n, 1/�, 1/α))

Algorithm(  µ) [GR 00].
Repeat the following O(1/²) times:

Pick a random               .
For i=1 to         : 

Let wi be the endpoint of a random walk of length              
starting from v, with steps taken as in the bipartiteness tester.

If the number of pairwise collisions among the wi is more 
than                          , reject.

If no iteration rejected, accept.

v ∈ V (G)

16d2

α2 log n
n

1
2+µ

1
2n2µ + 1

128n7µ/4



Derandomization
As before, it is helpful to reduce the amount of randomness used by 
the classical algorithm.

One can show that it suffices to use t-wise independent random 
variables, where                                          .t = poly(log n, d, 1/�, 1/α)

The result is a classical algorithm using only                                
random bits whose running time is still                                                .

poly(log n, d, 1/�, 1/α)
O(n1/2+µpoly(log n, 1/�, 1/α))



Counting collisions
The classical algorithm counts the collisions between walk endpoints.

In general, counting collisions is hard! (­(N) [Buhrman et al. 01])

But we only care of the number of collisions is above some small 
threshold M.

Strategy: Repeatedly find collisions, unmarking those found previously.

Claim. There is a bounded-error quantum algorithm to decide whether 
there are M or more collisions using                             queries.O(N2/3

M log M)



The quantum algorithm

O(n
1
3+3µpoly(log N, 1/�, 1/α))

Theorem: If G is an ®-expander, we accept with probability at least 
2/3.  If G is ²-far from a c µ ®  2-expander, where the constant c 
depends on d, we reject with probability at least 2/3.  The running 
time is                                                .

Algorithm(  µ).
Repeat the following O(1/²) times:

Use the element distinctness algorithm to determine whether there 
are more than                           collisions among the endpoints of 
pseudorandom walks executed as in the classical expansion-testing 
algorithm, but using                                    -wise independent 
random variables in place of uniformly random ones.
If more collisions are found, reject.

If no iteration rejected, accept.

1
2n2µ + 1

128n7µ/4

poly(log n, d, 1/�, 1/α)



Results

No nontrivial quantum lower bound!

Both tasks require            queries classically [Goldreich and Ron 97].Ω(
√

n)

Quantum algorithms for

• ²-testing bipartiteness in time

• testing whether a graph is an ®-vertex expander or ²-far from a 
cµ ®  2-vertex expander in time O(n

1
3+3µpoly(log N, 1/�, 1/α))

O(n1/3poly(log n, 1/�))



Open questions
• Find any nontrivial quantum lower bound.

• Improve the algorithms? Quantum walk?

• Time-efficient quantum collision finding without derandomization?

• Quantum property testing of other graph properties: is there any 
example with an exponential speedup?


