
Quantum property testing
for sparse graphs

Andrew Childs
Waterloo

Yi-Kai Liu
Caltech

Deciding connectivity
Given an n-vertex graph G (in terms of a black box for its adjacency
matrix), how hard is it to tell if G is connected?

­(n2) queries are required

vs.

Ex:

Testing connectivity
Promise: Either G is connected or it is ²-far from connected.

(must change edges to make it connected)�
�n
2

�

Trivial fact: for , no graph is ²-far from connected.� > (n− 1)/
�n
2

�

Ex (nontrivial): Bipartiteness, k-colorability, k-clique, etc.

Many natural graph properties can be tested in only poly(1/²) queries.

[Goldreich, Goldwasser, Ron 95]

Ex (trivial): Eulerian, Hamiltonian, acyclicity, planarity, regularity, etc.

So we can test connectivity in poly(1/²) queries.

Quantum testing of graph properties

To say anything nontrivial, we need a property that can’t be already be
tested fast classically.

Can there be a significant quantum speedup for testing some graph
property?

Can there be an exponential quantum speedup?

Outline
1. The model
2. Testing bipartiteness
3. Testing expansion
4. Open questions

Property testing

Property P ⊆ ΣN

Promise: either or x is ²-far from Px ∈ P

Determine (with error probability at most 1/3) which holds

x ∈ ΣNGiven a black-box input

Say x is ²-far from P if min{∆(x, y) : y ∈ P} > �N

Hamming distance

(equivalently, a function)fx : {1, . . . , N} → Σ

Quantum property testing
• O(1) quantum vs. ­(log N) classical [Buhrman, Fortnow, Newman,

and Roehrig 03]

• Exponential separation between quantum and classical testing
[BFNR 03]

• Some properties need ­(N) quantum queries [BFNR 03]

• Testing juntas logarithmically faster than the best known classical
tester [Atici and Servedio 07]

• Efficient quantum algorithm for testing solvability of a black box
group [Inui and Le Gall 08]

• Quantum algorithms for testing uniformity/orthogonality of
distributions [Bravyi, Harrow, Hassidim 09; Chakraborty, Fischer,
Matsliah, de Wolf 09]

• ... but no work on testing graph properties

Sparse graphs

Note: Can still test connectivity in time poly(1/²) in this model
[Goldreich and Ron 97].

Quantumly: |v, i, z� �→ |v, i, z ⊕ fG(v, i)�

²-far means we must change ² nd edges

Call a graph d-sparse if every vertex has degree at most d.
Fix a positive integer d.

Black box description of a graph G (“adjacency-list model”):

fG : V (G)× {1, . . . , d}→ V ∪ {∗}

fG(v, i) =

�
w if w is the ith neighbor of v in G

∗ if v has fewer than i neighbors

Results

No nontrivial quantum lower bound!

Both tasks require queries classically [Goldreich and Ron 97].Ω(
√

n)

Quantum algorithms for

• ²-testing bipartiteness in time

• testing whether a graph is an ®-vertex expander or ²-far from a
cµ ® 2-vertex expander in time O(n

1
3+3µpoly(log N, 1/�, 1/α))

O(n1/3poly(log n, 1/�))

Bipartiteness

The problem
Given an adjacency-list black box for a d-sparse graph, decide whether
the graph is

²-far from bipartitebipartite

or

Classical algorithm
Idea: Take many (short) random walks in G starting from a fixed

vertex; look for a pair of walks that form an odd cycle.

Algorithm.
Repeat the following O(1/²) times:

Pick a random .
For i=1 to K, where :

Let wi,0 = v.
Let j = 1.
Repeat L times, where :

With probability 1/2d, let wi,j be the kth neighbor of wi,j-1
(assuming such a neighbor exists) and increment j.

If for some with j even and odd, reject.
If no iteration rejected, accept.

K =
√

n poly(log n, 1/�)

L = poly(log n, 1/�)

v ∈ V (G)

wi,j = wi�,j� i, i�, j, j� j�

Theorem [Goldreich and Ron 99]: This algorithm accepts when G is
bipartite, rejects with constant probability when G is ²-far from
bipartite, and runs in time .O(

√
n poly(log n, 1/�))

Element distinctness
Given a black-box input , are there distinctx ∈ ΣN i, j ∈ {1, . . . , N}
such that (a collision)?xi = xj

Classical query complexity £(N).

When a collision exists, the algorithm returns one.

There is a quantum algorithm that decides element distinctness using
only queries [Ambainis 04].O(N2/3)

Strategy: Quantum walk on the Johnson graph , with
vertices corresponding to subsets of indices.

J(N,N2/3)
N2/3

A quantum strategy

Search for an odd collision among the endpoints of the walks using the
element distinctness algorithm.

Caveat: Just flipping the coins takes time , so the running time is
significantly more than the query complexity.

Ω(
√

n)

Query complexity:
�√

n poly(log n, 1/�)
�2/3= n1/3 poly(log n, 1/�)

Fix a choice of random bits for the classical algorithm.

of themO(
√

n poly(log n, 1/�))

Derandomization
We modify the classical tester to use significantly less randomess.

We call a set of random variables t-wise independent if the distribution
is uniform for any subset of t or fewer random variables.

Idea: Replace the uniformly random bits by t-wise independent bits
(where).t = poly(log n, log d, 1/�)

Theorem [Alon, Babai, Itai 86]: There is an algorithm to generate m
bits that are t-wise independent in time , using
uniformly random bits.

O(t log m) O(t log m)

Key idea: the analysis only depends on correlations among at most 4
random walks (and the walks are not very long).

By taking the random walk using t-wise independent random variables
in place of uniformly random ones, we can give a classical bipartiteness
testing algorithm whose running time is still ,
and that only uses random bits.

O(
√

n poly(log n, 1/�))
poly(log n, log d, 1/�)

The quantum algorithm

Theorem: This algorithm accepts when G is bipartite, rejects with
constant probability when G is ²-far from bipartite, and runs in
time .O(n1/3 poly(log n, 1/�))

Algorithm.
Repeat the following O(1/²) times:

Use the element distinctness algorithm to search for a “collision”,
where such an event is defined as an odd cycle obtained from a pair
of pseudorandom walks executed as in the algorithm of Goldreich
and Ron, but using -wise independent random
variables in place of uniformly random ones.
If a collision is found, reject.

If no iteration rejected, accept.

poly(log n, log d, 1/�)

Expansion

Expansion
Informally, expanders are graphs that are well-connected.

Many applications: Derandomization, PCP, hash functions, error
correcting codes, network design, ...

How hard is it to test if a (d-sparse) graph is an ®-expander or ²-far
from an ®-expander?

We’ll actually consider something slightly weaker: either the graph is an
®-expander or ²-far from a ¯-expander, where ̄< ®.

U ⊂ V (G)Definition. We say G is an ®-expander if for every
with , .|U | ≤ |V (G)|/2 |∂(U)| ≥ α|U |

vertex boundary of U: vertices in
adjacent to some vertex in U

V (G) \ U

Even this weaker task requires classical queries [GR 97].Ω(
√

n)

Classical algorithm
Idea: Random walks on expanders are rapidly mixing.

Take many (short) random walks in G starting from a fixed
vertex; check whether there are more collisions between their
endpoints than expected from a near-uniform distribution.

Theorem [Nachmias and Shapira 07]: If G is an ®-expander, we accept
with probability at least 2/3. If G is ²-far from a c µ ® 2-expander,
where the constant c depends on d, we reject with probability at least
2/3. The running time is .O(n

1
2+µpoly(log n, 1/�, 1/α))

Algorithm(µ) [GR 00].
Repeat the following O(1/²) times:

Pick a random .
For i=1 to :

Let wi be the endpoint of a random walk of length
starting from v, with steps taken as in the bipartiteness tester.

If the number of pairwise collisions among the wi is more
than , reject.

If no iteration rejected, accept.

v ∈ V (G)

16d2

α2 log n
n

1
2+µ

1
2n2µ + 1

128n7µ/4

Derandomization
As before, it is helpful to reduce the amount of randomness used by
the classical algorithm.

One can show that it suffices to use t-wise independent random
variables, where .t = poly(log n, d, 1/�, 1/α)

The result is a classical algorithm using only
random bits whose running time is still .

poly(log n, d, 1/�, 1/α)
O(n1/2+µpoly(log n, 1/�, 1/α))

Counting collisions
The classical algorithm counts the collisions between walk endpoints.

In general, counting collisions is hard! (­(N) [Buhrman et al. 01])

But we only care of the number of collisions is above some small
threshold M.

Strategy: Repeatedly find collisions, unmarking those found previously.

Claim. There is a bounded-error quantum algorithm to decide whether
there are M or more collisions using queries.O(N2/3

M log M)

The quantum algorithm

O(n
1
3+3µpoly(log N, 1/�, 1/α))

Theorem: If G is an ®-expander, we accept with probability at least
2/3. If G is ²-far from a c µ ® 2-expander, where the constant c
depends on d, we reject with probability at least 2/3. The running
time is .

Algorithm(µ).
Repeat the following O(1/²) times:

Use the element distinctness algorithm to determine whether there
are more than collisions among the endpoints of
pseudorandom walks executed as in the classical expansion-testing
algorithm, but using -wise independent
random variables in place of uniformly random ones.
If more collisions are found, reject.

If no iteration rejected, accept.

1
2n2µ + 1

128n7µ/4

poly(log n, d, 1/�, 1/α)

Results

No nontrivial quantum lower bound!

Both tasks require queries classically [Goldreich and Ron 97].Ω(
√

n)

Quantum algorithms for

• ²-testing bipartiteness in time

• testing whether a graph is an ®-vertex expander or ²-far from a
cµ ® 2-vertex expander in time O(n

1
3+3µpoly(log N, 1/�, 1/α))

O(n1/3poly(log n, 1/�))

Open questions
• Find any nontrivial quantum lower bound.

• Improve the algorithms? Quantum walk?

• Time-efficient quantum collision finding without derandomization?

• Quantum property testing of other graph properties: is there any
example with an exponential speedup?

