Quantum property testing
for sparse graphs

Andrew Childs Yi-Kai Liu
Waterloo Caltech

Deciding connectivity

Given an n-vertex graph G (in terms of a black box for its adjacency
matrix), how hard is it to tell if G is connected?

OO

(2(n?) queries are required

Testing connectivity

Promise: Either (G is connected or it is e-far from connected.
(must change e(g) edges to make it connected)

Trivial fact: for € > (n — 1)/(1), no graph is e-far from connected.

So we can test connectivity in poly(1/€) queries.

Many natural graph properties can be tested in only poly(1/€) queries.
Ex (trivial): Eulerian, Hamiltonian, acyclicity, planarity, regularity, etc.

Ex (nontrivial): Bipartiteness, k-colorability, k-clique, etc.

[Goldreich, Goldwasser, Ron 95]

Quantum testing of graph properties

Can there be a significant quantum speedup for testing some graph
property!?

To say anything nontrivial, we need a property that can’t be already be
tested fast classically.

Can there be an exponential quantum speedup!?

Outline

|. The model
2. Testing bipartiteness
3. Testing expansion

4. Open questions

Property testing

Given a black-box input z € ¥
(equivalently, a function f, : {1,..., N} —)

Property P C &%
Say x is e-far from Pif min{A(x,y) : y € P} > eN
Hamming distance

Promise: either x € P or x is e-far from P

Determine (with error probability at most 1/3) which holds

Quantum property testing

e O(1) quantum vs. (log N) classical [Buhrman, Fortnow, Newman,
and Roehrig 03]

* Exponential separation between quantum and classical testing
[BFNR 03]

e Some properties need 2(N) quantum queries [BFNR 03]

e Testing juntas logarithmically faster than the best known classical
tester [Atici and Servedio 0/]

e Efficient quantum algorithm for testing solvability of a black box
group [Inui and Le Gall 08]

e Quantum algorithms for testing uniformity/orthogonality of

distributions [Bravyi, Harrow, Hassidim 09; Chakraborty, Fischer,
Matsliah, de Wolf 09]

e ...but no work on testing graph properties

Sparse graphs

Fix a positive integer d.
Call a graph d-sparse if every vertex has degree at most d.

Black box description of a graph GG (“adjacency-list model™):

fa:V(G) x{1,...,d} - VU {x}

fg(?},i) — {

w if w is the th neighbor of v in G

x 1f v has fewer than ¢ neighbors

Quantumly: |v,7,2) — |v,7,2 D fa(v,1))
e-far means we must change end edges

Note: Can still test connectivity in time poly(1/¢) in this model
[Goldreich and Ron 97].

Results

Quantum algorithms for

3poly(logn, 1/e))

* testing whether a graph is an a-vertex expander or e-far from a
cua2-vertex expander in time O(n3+3“poly(log N,1/e,1/a))

* c-testing bipartiteness in time O(n

Both tasks require Q(1/n) queries classically [Goldreich and Ron 97].

No nontrivial quantum lower bound!

Bipartiteness

The problem

Given an adjacency-list black box for a d-sparse graph, decide whether
the graph is

or

bipartite e-far from bipartite

Classical algorithm

|ldea: Take many (short) random walks in G starting from a fixed
vertex; look for a pair of walks that form an odd cycle.

Repeat the following O(1/¢) times:
Pick a randomv € V(G).
For i=1 to K,where K = \/npoly(logn, 1/¢):
Let w;o=.
Let 7= 1.
Repeat L times, where L = poly(logn,1/¢):
With probability 1/2d, let w; ; be the kth neighbor of w; ;.1
(assuming such a neighbor exists) and increment 3.
If w; ; = wy ; for some ¢,7’, j, 7 with j even and j’ odd, reject.
If no iteration rejected, accept.

Theorem [Goldreich and Ron 99]: This algorithm accepts when G is
bipartite, rejects with constant probability when G is e-far from
bipartite, and runs in time O(y/n poly(logn,1/¢)).

Element distincthess

Given a black-box input = € >N are there distinct i,7€{1,...,N}
such that x; = x; (a collision)?

Classical query complexity ©O(N).

There is a quantum algorithm that decides element distinctness using
only O(N?2/3) queries [Ambainis 04].

Strategy: Quantum walk on the Johnson graph J(IV, N2/3), with

vertices corresponding to subsets of N2/ indices.

When a collision exists, the algorithm returns one.

A quantum strategy

Fix a choice of random bits for the classical algorithm.

\O(\/ﬁ poly(logn, 1/¢)) of them

Search for an odd collision among the endpoints of the walks using the
element distinctness algorithm.

Query complexity: (v/n poly(logn, 1/6))2/3 = n'/3 poly(logn,1/e)

Caveat: Just flipping the coins takes time £2(1/n), so the running time is
significantly more than the query complexity.

Derandomization

We modify the classical tester to use significantly less randomess.

|dea: Replace the uniformly random bits by ¢-wise independent bits
(where t = poly(logn,logd, 1/¢)).

We call a set of random variables t-wise independent if the distribution
is uniform for any subset of ¢ or fewer random variables.

Theorem [Alon, Babai, Itai 86]: There is an algorithm to generate m
bits that are ¢t-wise independent in time O(tlogm), using O(tlogm)
uniformly random bits.

By taking the random walk using ¢-wise independent random variables
in place of uniformly random ones, we can give a classical bipartiteness
testing algorithm whose running time is still O(y/n poly(log n, 1/¢)),
and that only uses poly(logn,logd, 1/¢) random bits.

Key idea: the analysis only depends on correlations among at most 4
random walks (and the walks are not very long).

The quantum algorithm

Repeat the following O(1/¢) times:
Use the element distinctness algorithm to search for a “collision”,
where such an event is defined as an odd cycle obtained from a pair
of pseudorandom walks executed as in the algorithm of Goldreich
and Ron, but using poly(log n,log d, 1/¢)-wise independent random
variables in place of uniformly random ones.
If a collision is found, reject.

If no iteration rejected, accept.

This algorithm accepts when (is bipartite, rejects with
constant probability when G is e-far from bipartite, and runs in

time O(n'/3 poly(logn, 1/¢)).

Expansion

Expansion

Informally, expanders are graphs that are well-connected.

We say G is an a-expander if for every U C V(G)
with|U| < [V (G)|/2, |0(U)| > a|U|.

\

vertex boundary of U: vertices in V(G) \ U
adjacent to some vertex in U

Many applications: Derandomization, PCP, hash functions, error
correcting codes, network design, ...

How hard is it to test if a (d-sparse) graph is an a-expander or e-far
from an a-expander?

We'll actually consider something slightly weaker: either the graph is an
a-expander or e-far from a (3-expander, where 8<a.

Even this weaker task requires 2(1/n) classical queries [GR 97].

Classical algorithm

ldea: Random walks on expanders are rapidly mixing.
Take many (short) random walks in GG starting from a fixed

vertex; check whether there are more collisions between their
endpoints than expected from a near-uniform distribution.

[GR 00]
Repeat the following O(1/¢) times:
Pick a randomv € V(G).
For i=1tonz
Let w; be the endpoint of a random walk of length 126212
starting from v, with steps taken as in the bipartiteness tester.
If the number of pairwise collisions among the w; is more
than 1n?* + L n"#/4 reject.

2 128
If no iteration rejected, accept.

Theorem [Nachmias and Shapira 07]: If G is an a-expander, we accept
with probability at least 2/3. If G is e-far from a cua?-expander,
where the constant ¢ depends on d, we reject with probability at least

2/3. The running time is O(n2+“poly(logn 1/e,1/a)).

logn

Derandomization

As before, it is helpful to reduce the amount of randomness used by
the classical algorithm.

One can show that it suffices to use t-wise independent random
variables, where ¢t = poly(logn,d,1/¢,1/a).

The result is a classical algorithm using only poly(logn,d,1/¢,1/a)
random bits whose running time is still O(n'/?*#poly(logn, 1/¢,1/a)).

Counting collisions

The classical algorithm counts the collisions between walk endpoints.
In general, counting collisions is hard! (€2(/N) [Buhrman et al. 01])

But we only care of the number of collisions is above some small
threshold M.

Strategy: Repeatedly find collisions, unmarking those found previously.

There is a bounded-error quantum algorithm to decide whether
there are M or more collisions using O(N?/3M log M) queries.

The quantum algorithm

Repeat the following O(1/¢) times:
Use the element distinctness algorithm to determine whether there
are more than %n2“ | 158 n /% collisions among the endpoints of
pseudorandom walks executed as in the classical expansion-testing
algorithm, but using poly(logn,d,1/¢,1/a)-wise independent
random variables in place of uniformly random ones.
If more collisions are found, reject.

If no iteration rejected, accept.

If G is an a-expander, we accept with probability at least
2/3. If G is e-far from a cua2-expander, where the constant c

depends on d, we reject with probability at least 2/3. The running
time is O(n3+3“poly(log]\f 1/€e,1/a)).

Results

Quantum algorithms for

3poly(logn, 1/e))

* testing whether a graph is an a-vertex expander or e-far from a
cua2-vertex expander in time O(n3+3“poly(log N,1/e,1/a))

* c-testing bipartiteness in time O(n

Both tasks require Q(1/n) queries classically [Goldreich and Ron 97].

No nontrivial quantum lower bound!

Open questions

* Find any nontrivial quantum lower bound.
* [mprove the algorithms? Quantum walk?
e Time-efficient quantum collision finding without derandomization?

e Quantum property testing of other graph properties: is there any
example with an exponential speedup!?

