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Query complexity

Minimum number of queries needed to compute f is called its query 
complexity

Problem:  Compute a function

Input                    is given by a black box

• Deterministic classical algorithm: D(f)
• Randomized classical algorithm, bounded error: R(f)
• Quantum algorithm, bounded error: Q(f)

Models



Classical vs. quantum query complexity

Classical query complexity depends on the kind of formula; it can take 
many values between                                andR(f) = Θ(m0.753...) R(f) = Θ(m)

Example:  AND-OR formulas
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[Farhi, Goldstone, Gutmann 07], [ ACRŠZ 07], [Reichardt 09]

Quantum query complexity is               independent of the formula!



Classical vs. quantum query complexity

Example:  Graph properties

f is a graph property if it doesn’t depend on the vertex labels

bits                    represent the edges of an n-vertex graph G

Classical:                        for most graph properties (including all the 
properties in this talk)

Quantum:  Can have                         for any                 [BBCMW 98]



Subgraph detection

H is a subgraph of G if H can be obtained from G by
(1) deleting edges and
(2) deleting isolated vertices

Triangle problem:  Does G contain a triangle as a subgraph?
Quantum query complexity:                         [Magniez, Santha, Szegedy 05]

More generally, does G contain a d-vertex graph H as a subgraph?
[Magniez, Santha, Szegedy 05]

We call the property of not containing any of the subgraphs
                      a forbidden subgraph property (FSP)



Minor-closed graph properties

H is a minor of G if H can be obtained from G by
(1) deleting edges,
(2) deleting isolated vertices, and
(3) contracting edges

A graph property is minor closed if all minors of a graph with the 
property also have the property

Examples:  planarity, acyclicity, not containing a path of length `

Edge contraction:



Graph minor theorem

Theorem:  Any minor-closed property is characterized by a finite list of 
forbidden minors [Robertson, Seymour 83-04]

So deciding minor-closed graph properties can be viewed as the 
problem of detecting forbidden minors.

No path of length 3:

Examples

Planarity:

Acyclicity:



Sparse graph properties

Theorem:  Minor-closed properties are sparse [Mader 67]

Call a graph property sparse if graphs                   with the property 
have

Examples

If G is acyclic (a forest) then

If G is planar (and             ) then



Relationships between graph properties

Sparse Subgraph
closedMinor closed

FSP



Minor closed

Query complexity of minor-closed properties

Sparse Subgraph
closed

FSP

Extract the entire 
graph by repeatedly 
searching for an edge

O(n3/2) Ω(n)

Adversary method/
reduction from search

Examples

Planarity:               [AINNRTY 08]

Emptiness:          [Grover 96], [BBBV 97]



Our results

Sparse Subgraph
closedMinor closed

FSP

O(n3/2) Ω(n)

Θ(n3/2) O(nα), α < 3/2

Plus improved algorithms for other subgraph-finding problems, e.g.,
bipartite H, d vertices: 



1. Lower bound

Ω(n3/2)



Lower bound for acyclicity

Proof uses the quantum adversary method [Ambainis 00]

Very roughly:  If there are a lot of similar “yes” and “no” instances, then 
many queries are required to distinguish them

(Similar to lower bound for connectivity [DHHM 06])

Hard instances:

path long path + long cycle

Claim:  The quantum query complexity of acyclicity is



Topological minors

Definition:  H is a topological minor of G if some subdivision of H is a 
subgraph of G

(Can only contract edges for which one vertex has degree 2)

Theorem:  Any minor-closed property can be characterized by a finite 
list of forbidden topological minors [Robertson, Seymour 90]

A subdivision of H is a graph obtained by inserting extra vertices along 
some of the edges:

is a topological minor of



Generalization

How to construct hard instances for acyclicity:

Lemma:  Consider some graph property that is closed under 
topological minors.  Let H be a graph that does not have the property.  
If H has an edge such that deleting the edge and adding paths of any 
length to its two vertices gives a graph with the property, then              
quantum queries are needed to decide the property.

yes
no



Topological minor containment

When can this be characterized by a forbidden subgraph?

Problem:  Does G contain H as a topological minor?

Lemma:  Containing H as a topological minor is the same as containing 
it as a subgraph if and only H does not contain a cycle or a path 
joining two vertices of degree 3 or more

Theorem:  Topological minor containment problems that are not FSP 
have quantum query complexity             

noyesExamples: yes no



Lower bound for minor-closed properties

General minor-closed properties may be characterized by many 
forbidden (topological) minors

If the property is not FSP then at least one (but not necessarily all) of 
its forbidden topological minors cannot equivalently be viewed as a 
forbidden subgraph

But replacing the edge by a pair of paths may introduce one of the 
other forbidden topological minors!

Main idea:  We identify a forbidden topological minor that is minimal in 
a certain sense and argue by contradiction that it must contain a 
suitable edge

Theorem:  Minor-closed graph properties that are not FSP have 
quantum query complexity 



2. Upper bounds



Random walk search

Create a Markov chain whose states represent possible solutions

Designate some of the states as “marked”

Create a new Markov chain with steps defined as follows:
If the current state is marked, stay there
Otherwise, run the original Markov chain for t steps

Costs:
• S = number of queries to set up the initial state
• U = number of queries to move to an adjacent state
• C = number of queries to check if a state is marked

Parameters:
• ² = fraction of marked vertices
• ± = spectral gap of the Markov chain

Such a process can find a marked item using                          queriesS + 1
� (

1
δU + C)



Quantum walk search

Theorem:  The quantum walk can be used to detect a marked state 
with                               queries [Ambainis 04], [Szegedy 04], [Magniez, Nayak, 
Roland, Santha 07]

S + 1√
�
( 1√

δ
U + C)

Idea:  Replace the classical Markov chain with a quantum walk

Quantum walk provides a powerful framework:

• Grover’s algorithm [Grover 96]:  search on the complete graph

• Spatial search [CG 04], [AKR 05]: search on a d-dimensional lattice

• Element distinctness [Ambainis 04], 
triangle finding [MSS 05], etc.:  search on a Johnson graph



Quantum counting

Problem:  Given a black box for an input                  , how many bits of 
x are 1?

Theorem:  We can estimate the number of 1s to within a constant 
multiplicative factor using              quantum queries [BHMT 02]

Applications to black-box graphs:

• Detect graphs with         edges using O(n) queries (so when 
deciding sparse graph properties, we can assume that the input 
graph is sparse)

• Approximate the degree of a vertex using             queries

• Approximately count the number of vertices of degree 
approximately q using          queries



Detecting subgraphs of sparse G:  Setup

To take advantage of sparsity, we treat vertices differently depending 
on their approximate degree

Assume vertices 1, ..., d of H have approximate degree q1, ..., qd in G

There are O(log n) ranges for the degrees, so we can iterate over the 
possible qi s with overhead only poly(log n)

Search space:

• Subsets of size k1, ..., kd (to be optimized) of the vertices of G of 
approximate degree q1, ..., qd

• For each vertex, store its complete neighbor list

Approximately count the number of vertices of degree near q1, ..., qd; 
call the number of vertices t1, ..., td



Detecting subgraphs of sparse G:  The walk

Start from a uniform superposition over k1, ..., kd-tuples of vertices of 
degree near q1, ..., qd, along with their neighbor lists

Optimize the choices of k1, ..., kd and ®1, ..., ®d

Optimized running time is

For i =  1, ..., d
Repeat ®i times

Replace one of the vertices of degree near qi (randomly 
selected among the ki possibilities) with another vertex of 
degree near qi (randomly selected among the ti possibilites)

End repeat
End for

Quantize this Markov chain:



Improvements

In fact we can also delete degree-one vertices of H (that do not 
belong to an isolated edge)

Since we store the complete neighbor list for each vertex, we don’t 
need to explicitly search for every vertex of H

Example:

detect as neighbors

store

Query complexity

In general, it suffices to look for a vertex cover of H, a subset of vertices 
such that every edge is incident to at least one of them:

⇒ Õ(n) for detecting stars



Relaxing sparsity:  Bipartite subgraphs

The bound                      is not essential; we can do something similar 
given any bound

Query complexity

) If H is a d-vertex bipartite graph, we can detect H using
queries

Theorem:  If G does not contain Ks,t as a subgraph, where                , 
then                                          [Kövári, Sós, Turán 54]|E(G)| ≤ cs,t|V (G)|2−1/s

) We can detect C2 ` using                        queries

Theorem:  If G does not contain C2  ` as a subgraph, then
                                           [Bondy, Simonovits 74]|E(G)| ≤ 100� |V (G)|1+1/�



Relaxing sparsity:  C4

Sometimes we can do even better with a nontrivial checking step

Contrast with C3:  Best known upper bound is              [MSS 05]!

Theorem:  The quantum query complexity of deciding whether G 
contains C4 as a subgraph is

Why?

• Graphs with              edges must contain a 4-cycle

• Graphs with           edges might or might not contain a triangle



Open problems

Algorithms:

• Use other properties of minor-closed graphs (e.g., bounded 
degeneracy)

• Focus on particular cases (e.g., paths)

Lower bounds:

• Cannot do better using the positive adversary method (certificate 
complexity barrier)

• Major challenge:  Prove a superlinear lower bound for any FSP
(Might be easier for non-sparse properties, but still seems hard in 
that case, e.g., for triangle)

Close the gap between         and             for minor-closed FSPs


