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1. Introduction



•Prepare n qubits in the state
•Apply a sequence of unitary operations acting on one or two qubits 

at a time
•Perform a measurement to get the result

The universal quantum computer
(The ultimate quantum physics lab!)
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Note:  Many equivalent models exist (Hamiltonian dynamics of coupled 
spins, braiding of nonabelian anyons, quantum cellular automata, ...).



Implementations of quantum computers

... and many others!
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Motivation

• Coherent control of an artificial two-level system in solid-
state device

• Understanding the mechanism of decoherence
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The threshold theorem
Realistic quantum systems are subject to noise.  Is quantum 
computation still possible?
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below some threshold value, any computation can be performed with 
success probability arbitrarily close to 1, by encoding the computation 
redundantly (incurring only logarithmic overhead).

Realistic quantum systems are subject to noise.  Is quantum 
computation still possible?

Shor 1996, Aharonov and Ben-Or 1997, Kitaev 1997, et al.:  Similar result 
for quantum computers.  Threshold estimates             to        .≈ 10−3 10−5

In the rest of this talk, we assume a perfectly functioning quantum computer.
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Interference as a resource

Classically:  Two queries required.

But don’t classical systems exhibit interference too?

Quantumly:  One query sufficient!
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Hilbert space is a big place

n classical bits:  2n discrete values

How can we exploit the efficient representation of 
interference phenomena to perform fast computations?

n random bits:  2n real numbers (probabilities)

But probabilities do not exhibit interference!

n quantum bits:  2n complex numbers |ψ〉 =
2n−1∑

x=0

αx|x〉
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Random walk on G

State:  Probability pj(t) of being at vertex j at time t

Dynamics:
d
dt

!p = −γL!p
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1 −3 0 1 1
1 0 −2 1 0
0 1 1 −3 1
0 1 0 1 −2


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Laplacian

Quantum walk on G

State:  Amplitude qj(t) to be at vertex j at time t

Dynamics: i
d
dt

!q = −γL!q



2. Exponential speedup
by quantum walk

•Childs, Farhi, and Gutmann, Quantum Inf. Proc. 1, 35-43 (2002).
•Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman, in Proc. STOC (2003), pp. 59-68.
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Claim:  There is a family of graphs Gn (with designated in and out 
vertices) for which a quantum walk starting at the in vertex finds the 
out vertex in time poly(n), but any classical algorithm using poly(n) 
queries finds the out vertex with exponentially small probability.

in outTypical G4:
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{
2j 0 ≤ j ≤ n

22n+1−j n + 1 ≤ j ≤ 2n + 1

|col j〉 =
1√
Nj

∑

a∈column j

|a〉

where

Reduced adjacency matrix
〈col j|A|col j + 1〉

=






√
2 0 ≤ j ≤ n− 1 ,

n + 1 ≤ j ≤ 2n

2 j = ncol 0 col 1 col 2 col 3 col 4 col 5 col 6 col 7 col 8 col 9
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√
2

√
2

√
2

√
2

√
2

√
2

√
2



Implementing the walk
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(Cf. implementing a random walk, which is easy.)
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Implementing the walk
Problem: Given a black box for G, implement the quantum walk on G, 
i.e., simulate the unitary time evolution e—iHt where H=L (or A).
(Cf. implementing a random walk, which is easy.)

Main idea: Color the graph.  Then the simulation breaks into small 
pieces that are easy to handle.

Any sufficiently sparse graph can be efficiently colored using only local 
information (Linial 1987).

= + +

This idea is useful for simulating Hamiltonians whenever the graph of 
nonzero matrix elements is sufficiently sparse.
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3. Spatial search by quantum walk

•Childs and Goldstone, Phys. Rev. A 70, 022314 (2004).
•Childs and Goldstone, Phys. Rev. A 70, 042312 (2004).
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Unstructured search

Search space: N items, 

Goal: Find one marked item, w
x ∈ {1, 2, . . . , N}

Query:  “is w = x?”

i.e., black box function f(x) =

{
0 x != w

1 x = w

Classical complexity: Θ(N)
Quantum algorithm [Grover 1996]: O(

√
N)

Quantum lower bound [BBBV 1996]: Ω(
√

N)

Grover searching can be applied to many computational problems.
But can it be used to search a physical database, in which the N items 
are distributed in space?
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d = 4, N = 64 = 1296



Results

Graph Success amplitude Run time

Complete 1 – o(1) O(N 1/2)

Hypercube 1 – o(1) O(N 1/2)

Lattice, d > 4 O(1) O(N 1/2)

Lattice, d = 4 O(1/log1/2
 N) O((N  log N)1/2)

Lattice, d = 3 O(N -1/6) O(N 2/3)

Lattice, d = 2 O((log N/N)1/2) O(N /log N)
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Behavior for d>4

where

Ij,d =
1

(2π)d

∫ π
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Run time:

Success probability:

γ∗ = I1,d

T =
π
√

I2,dN

2I1,d

|〈w|e−iHT |s〉|2 =
I2
1,d

I2,d

∫

0

dd!k

|!k|p
∼

∫

0

kd−1dk

|!k|p
Note:

converges for d>p.

E(!k) = 2γ
(
d−

∑d
j=1 cos kj

)



The Dirac equation: Faster search for d = 2, 3, 4
Dirac Hamiltonian:                                            ,HDirac =
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j=1 αjpj + βm

{αj ,αk} = 2δjk , {αj ,β} = 0 , β2 = 1with

pj = i d
dxj
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Dirac Hamiltonian:                                            ,HDirac =

∑d
j=1 αjpj + βm

{αj ,αk} = 2δjk , {αj ,β} = 0 , β2 = 1with

pj = i d
dxj

Lattice version:                               , Pj |!x〉 = i
2 (|!x + êj〉 − |!x− êj〉)

E(!k) = ±ω
√∑d

j=1 sin2 kj

H0 = ω
∑d

j=1 αjPj
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Run time:
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√

N)
O(
√
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in d > 2,
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4. Evaluating Boolean formulas

•Childs, Cleve, Jordan, and Yeung, quant-ph/0702160.
•Childs, Reichardt, Špalek, and Zhang, quant-ph/0703015.
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Evaluating Boolean formulas
Fix a Boolean formula on N variables.

Given a black box for determining how the variables are assigned, how 
many variables must we query to determine the value of the formula?

Example: Unstructured search (OR)

Classical complexity: Θ(N)
Quantum algorithm [Grover 1996]: O(

√
N)

Quantum lower bound [BBBV 1996]: Ω(
√

N)

0 1

0 0 0 0 0



AND-OR trees (aka game trees)
and

or or

and and and and

or or or or or or or or



AND-OR trees (aka game trees)
and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0



AND-OR trees (aka game trees)
and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0



AND-OR trees (aka game trees)
and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0



AND-OR trees (aka game trees)
and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

1 1



AND-OR trees (aka game trees)
and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

1 1

1



AND-OR trees (aka game trees)

Classical complexity:                  [Snir 85, Saks-Wigderson 86, Santha 95]Θ(N0.753)

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

1 1

1



AND-OR trees (aka game trees)

Classical complexity:                  [Snir 85, Saks-Wigderson 86, Santha 95]Θ(N0.753)

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

1 1

1

Quantum lower bound [Barnum-Saks 02]: Ω(
√

N)



AND-OR trees (aka game trees)

Classical complexity:                  [Snir 85, Saks-Wigderson 86, Santha 95]Θ(N0.753)

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

1 1

1

Quantum lower bound [Barnum-Saks 02]: Ω(
√

N)

Quantum walk algorithm [FGG 07]: query time
                                   (in the Hamiltonian oracle model)

O(
√

N)



AND-OR trees (aka game trees)

Classical complexity:                  [Snir 85, Saks-Wigderson 86, Santha 95]Θ(N0.753)

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

1 1

1

Quantum lower bound [Barnum-Saks 02]: Ω(
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Discretized version [Childs-Cleve-Jordan-Yeung 07]: O(
√
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Evaluating AND-OR trees by scattering
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k

Claim: For small k, the transmission coefficient is large if the formula 
(translated into NAND gates) evaluates to 0, and small if it evaluates to 1.
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General formulas

Main idea:  The quantum walk on the (expanded, appropriately 
weighted) tree has a zero eigenvalue if the formula evaluates to 1, and 
a smallest eigenvalue             if it evaluates to 0.  Use phase estimation.O( 1√

N
)
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Summary and outlook
• Physics ↔ Information

• Quantum systems can encode and process information in a 
fundamentally non-classical way.

• While we have many examples of this phenomenon, we are far from 
having a general understanding of the information processing power 
of quantum mechanics.

• In particular, we would like to develop new ways of exploiting 
quantum interference to perform information processing tasks.


