ASSIGNMENT 10

Due in tutorial on Monday, July 27.

- 1. The balanced binary tree of height n, T_n , is defined recursively as follows. T_0 is a single vertex. T_1 is obtained by adding two new vertices to T_0 and connecting each of them to the original vertex. In general, for $n \ge 2$, T_n is obtained from T_{n-1} by adding two new vertices for every leaf vertex and connecting each of them to the original leaf vertex.
 - (a) Draw T_4 .
 - (b) How many leaves does T_n have?
 - (c) How many vertices does T_n have?
 - (d) How many edges does T_n have?
- 2. A graph with no cycles is called a *forest*. Prove that a forest with n vertices and m edges has n m components.
- 3. Prove or disprove the following statement: Given a graph G, if T and U are spanning trees of G, then T and U are isomorphic.
- 4. Construct a breadth-first search tree for the 3-cube. Denote each tree edge by an arrow from a vertex to its parent, and indicate each non-tree edge by a dashed line.