ASSIGNMENT 2

Due in tutorial on Monday, May 25.

1. In this problem, suppose that n is an integer.
(a) What is the contrapositive of the statement "If $n^{2}+4 n+3$ is odd, then n is even"?
(b) Prove the statement "If $n^{2}+4 n+3$ is odd, then n is even".
2. Prove that for all $n \in \mathbb{N}, \sum_{j=1}^{n} j^{3}=\frac{1}{4} n^{2}(n+1)^{2}$.
3. Consider an $x \times y$ rectangular grid of unit squares, where x and y are positive integers. Suppose we can break the grid into two smaller grids along any horizontal or vertical grid line. (In other words, we can break the $x \times y$ grid into an $x^{\prime} \times y$ grid and an $\left(x-x^{\prime}\right) \times y$ grid, where $1 \leq x^{\prime} \leq x-1$; or an $x \times y^{\prime}$ grid and an $x \times\left(y-y^{\prime}\right)$ grid, where $1 \leq y^{\prime} \leq y-1$.) Prove that $x y-1$ breaks are needed to break the original $x \times y$ grid into individual unit squares.
4. For each pair a and b, compute the quotient and remainder when a is divided by b.
(a) $a=273, b=11$
(b) $a=-273, b=11$
(c) $a=273, b=-11$
(d) $a=-273, b=-11$
