ASSIGNMENT 2

Due in tutorial on Monday, May 25.

- 1. In this problem, suppose that n is an integer.
 - (a) What is the contrapositive of the statement "If $n^2 + 4n + 3$ is odd, then n is even"?
 - (b) Prove the statement "If $n^2 + 4n + 3$ is odd, then n is even".

2. Prove that for all
$$n \in \mathbb{N}$$
, $\sum_{j=1}^{n} j^{3} = \frac{1}{4}n^{2}(n+1)^{2}$.

- 3. Consider an $x \times y$ rectangular grid of unit squares, where x and y are positive integers. Suppose we can break the grid into two smaller grids along any horizontal or vertical grid line. (In other words, we can break the $x \times y$ grid into an $x' \times y$ grid and an $(x-x') \times y$ grid, where $1 \le x' \le x-1$; or an $x \times y'$ grid and an $x \times (y y')$ grid, where $1 \le y' \le y 1$.) Prove that xy 1 breaks are needed to break the original $x \times y$ grid into individual unit squares.
- 4. For each pair a and b, compute the quotient and remainder when a is divided by b.

(a)
$$a = 273, b = 11$$

(b)
$$a = -273, b = 11$$

- (c) a = 273, b = -11
- (d) a = -273, b = -11