ASSIGNMENT 6

Due in tutorial on Monday, June 29.

1. Solve the simultaneous linear congruences

$$
\begin{aligned}
& 11 x \equiv 1 \quad(\bmod 21) \\
& 15 x \equiv 20 \quad(\bmod 40)
\end{aligned}
$$

2. Solve the polynomial congruence $x^{3}+x^{2} \equiv 42(\bmod 72)$. (Hint: $72=8 \cdot 9$, and $\operatorname{GCD}(8,9)=1$.)
3. (a) Prove that for all $n \in \mathbb{N}, 7 \mid 5 n^{7}+7 n^{5}+23 n$.
(b) Prove that for all $n \in \mathbb{N}, 5 n^{7}+7 n^{5}+23 n \equiv 0(\bmod 35)$.
4. Let p be a prime number, and let a be a positive integer that is not a multiple of p. Fermat's Little Theorem says that $a^{p-1} \equiv 1(\bmod p)$, but $p-1$ might not be the lowest power of a with this property.
(a) Let s be the smallest positive integer such that $a^{s} \equiv 1(\bmod p)$. By the Division Algorithm, write $p-1=q s+r$, where $q, r \in \mathbb{Z}$ with $0 \leq r<s$. Prove that $a^{r} \equiv 1(\bmod p)$.
(b) Explain why it must be the case that $r=0$, i.e., that $s \mid p-1$.
(c) Find the smallest positive integer s such that $8^{s} \equiv 1(\bmod 17)$.
