ASSIGNMENT 9

ECE 103 (Spring 2009)
Due in tutorial on Monday, July 20.

1. Consider the graphs G_{1}, G_{2}, G_{3}, H as follows:

G_{1}

G_{2}

G_{3}

H
(a) Prove that no two of G_{1}, G_{2}, or G_{3} are isomorphic.
(b) One of G_{1}, G_{2}, G_{3} is isomorphic to H. Determine which, with proof.
2. For any $n \in \mathbb{N}$, the n-grid G_{n} is the graph with n^{2} vertices (x, y) where the integers x, y satisfy $1 \leq x \leq n$ and $1 \leq y \leq n$. Vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are joined by an edge if and only if $\left|x-x^{\prime}\right|=1$ and $y=y^{\prime}$, or $\left|y-y^{\prime}\right|=1$ and $x=x^{\prime}$.
(a) How many edges does G_{n} have?
(b) Prove that G_{n} is bipartite.
3. (a) Given a graph G, a k-clique is a subset of k vertices of G such that every pair of vertices in the subset is adjacent in G.
i. How many k-cliques are there in the complete graph K_{n} ?
ii. How many k-cliques are there in the complete bipartite graph $K_{n, n}$?
(b) A Hamiltonian cycle in a graph is a cycle that visits every vertex.
i. How many Hamiltonian cycles are there in the complete graph K_{n} ?
ii. How many Hamiltonian cycles are there in the complete bipartite graph $K_{n, n}$?
4. Prove that if G is a connected graph, any two longest paths in G have a vertex in common.

