ASSIGNMENT 9

Due in tutorial on Monday, July 20.

1. Consider the graphs G_1, G_2, G_3, H as follows:

- (a) Prove that no two of G_1 , G_2 , or G_3 are isomorphic.
- (b) One of G_1, G_2, G_3 is isomorphic to H. Determine which, with proof.
- 2. For any $n \in \mathbb{N}$, the *n*-grid G_n is the graph with n^2 vertices (x, y) where the integers x, y satisfy $1 \leq x \leq n$ and $1 \leq y \leq n$. Vertices (x, y) and (x', y') are joined by an edge if and only if |x x'| = 1 and y = y', or |y y'| = 1 and x = x'.
 - (a) How many edges does G_n have?
 - (b) Prove that G_n is bipartite.
- 3. (a) Given a graph G, a k-clique is a subset of k vertices of G such that every pair of vertices in the subset is adjacent in G.
 - i. How many k-cliques are there in the complete graph K_n ?
 - ii. How many k-cliques are there in the complete bipartite graph $K_{n,n}$?
 - (b) A Hamiltonian cycle in a graph is a cycle that visits every vertex.
 - i. How many Hamiltonian cycles are there in the complete graph K_n ?
 - ii. How many Hamiltonian cycles are there in the complete bipartite graph $K_{n,n}$?
- 4. Prove that if G is a connected graph, any two longest paths in G have a vertex in common.