
Quantum algorithms (CO 781) Winter 2008

ASSIGNMENT 1 due Monday 4 February (in class)

Problem 1 (Parallelizing the QFT).
Consider the Fourier transform over Z2n ,

FZ2n :=
1√
2n

∑
x,y∈Z2n

ωxy
2n |y〉〈x|.

Here we will show that FZ2n can be implemented with a circuit of only logarithmic depth, meaning
that it can be implemented very quickly if gates can be performed in parallel.

a. What is the depth of the standard quantum circuit for FZ2n (both the exact version of size
O(n2) and the approximate version of size O(n log n))?

b. Let |x̃〉 := FZ2n |x〉 denote a Fourier basis state. Define three operators A,B, C by

A|x, 0〉 = |x, x̃〉
B|x̃, 0〉 = |x̃, x̃〉

C|x̃〉⊗k|0〉 = |x̃〉⊗k|x〉

where k ∈ N is some constant. Show how to produce a quantum circuit for FZ2n using
quantum circuits for A, B, and C.

c. Modify the standard quantum circuit for FZ2n to give a quantum circuit for A. Show that an
approximate version of this circuit has depth O(log n).

d. Show that D|x̃, ỹ〉 = |x̃, x̃ + y〉, where the operator D is defined by D|x, y〉 = |x − y, y〉.
Explain how this observation can be used to give a quantum circuit for B of depth O(log n).
(Note that addition of n-bit integers can be performed by a classical circuit of depth O(log n).)

e. Challenge problem: Give an implementation of C by a circuit of logarithmic depth. (Hint:
k = 3 is possible, but the construction is somewhat involved.)

Problem 2 (Discrete log with χ states).
Let G = 〈g〉 be a cyclic group of order N . For each α ∈ ZN , define the state

|χα〉 :=
1√
N

∑
β∈ZN

ωαβ
N |gβ〉.

These states turn out to give an alternative method for computing discrete logarithms over G.

a. For any x ∈ G, let Dx denote the “division operator” defined by Dx|α, y〉 = |α, y/xα〉 where
α ∈ ZN and y ∈ G. Explain how to implement Dx efficiently on a quantum computer.

b. Show that |α, χβ〉 is an eigenvector of Dx, and compute its eigenvalue.

c. Show that (F †
ZN

⊗ I)Dx(FZN
⊗ I)|0, χ1〉 = | logg x, χ1〉, where

FZN
:=

1√
N

∑
α,β∈ZN

ωαβ
n |β〉〈α|

denotes the Fourier transform over the additive group ZN .

This shows how to compute logg x, provided we are given a copy of the state |χ1〉.
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Note that |χα〉 is simply the Fourier transform of |gα〉 over G. However, even though we know
how to implement FZN

(the Fourier transform over the additive group ZN ), this does not let us
implement the Fourier transform over the multiplicative group G, unless we can compute discrete
logarithms. Nevertheless, it is possible to create |χ1〉 using only simple operations.

d. Show that (FZN
⊗ I)Dg−1(FZN

⊗ I)|0, g0〉 = 1√
N

∑
α∈ZN

|α, χα〉.

e. For any α ∈ ZN , let Dα denote another “division operator,” this one defined by Dα|x, y〉 =
|x, y/xα〉 where x, y ∈ G. Show that Dα|χβ, χγ〉 = |χβ+αγ , χγ〉.

f. Suppose we measure the first register of the state from part d and obtain a value α, leaving
the second register in the state |χα〉. Furthermore, suppose that gcd(α, N) = 1, so that α−1 is
well-defined modulo N . (Note that this happens with probability φ(N)/N = Ω(1/ log log N),
so we don’t have to repeat the procedure from part d many times before obtaining such an
α.) Show how to use the state |χα〉 to prepare |χ1〉. (Hint: Use part e.)

g. Explain why part e also shows that |χ1〉 can be easily copied.

Problem 3 (Relative difficulty of breaking RSA and elliptic curve cryptography).

The best known classical algorithm for factoring a number N , the number field sieve, takes time
exp(O((log N)1/3(log log N)2/3)). In contrast, the best known algorithms for computing the discrete
logarithm over an elliptic curve of order N take time O(

√
N). Thus, it is widely accepted that

elliptic curve cryptography (ECC) provides greater security than RSA for a given key size. For
example, Certicom (the company that provides the ECC software used on BlackBerry devices)
claims that ECC with a key size of 512 bits provides comparable security to RSA with a key size
of 15360 bits.

a. Estimate the number of qubits and number of elementary gates that Shor’s algorithm would
need to break RSA with a key size of 15360 bits and ECC with a key size of 512 bits,
respectively. A rough estimate is fine, but you should justify whatever assumptions you
make.

b. Briefly comment on the implications of your estimate.

Problem 4 (Properties of the solutions to Pell’s equation and of algebraic integers).

Consider Pell’s equation, x2 − dy2 = 1, where d ∈ Z is squarefree. Associate the solution x, y ∈ Z
with the real number ξ = x + y

√
d ∈ Z[

√
d], whose conjugate is defined as ξ̄ := x− y

√
d.

a. Show that the set of solutions to Pell’s equation forms a group, where the group operation
corresponds to multiplication of the associated elements of Z[

√
d], and inversion corresponds

to conjugation.

b. A solution (x, y) of Pell’s equation is called positive if x > 0 and y > 0. Let (x1, y1) be the
positive solution of Pell’s equation for which x1 + y1

√
d is smallest. Show that the set of all

positive solutions is {(x1 + y1

√
d)n : n ∈ N}. (Hint: Suppose there is some solution lying

strictly between (x1 +y1

√
d)j and (x1 +y1

√
d)j+1 for some j ∈ N, and derive a contradiction.)

c. Recall that ξ = x + y
√

d ∈ Q[
√

d] is called an algebraic integer if it is the root of a monic
polynomial with integer coefficients. Prove that ξ is an algebraic integer if and only if 2x and
x2 − dy2 are integers. (Hint: Consider the quantities ξ + ξ̄ and ξξ̄, where ξ̄ is defined the
same way for arbitrary elements of Q[

√
d] as it is for elements of Z[

√
d].)
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Problem 5 (The hidden parabola problem).
Suppose we are given a black box function fα,β : F2

p → S, where p is a prime and S is a finite set,
satisfying the promise that

fα,β(x, y) = fα,β(x′, y′) if and only if αx2 + βx− y = αx′2 + βx′ − y′

for some unknown α ∈ F×p and β ∈ Fp. In other words, fα,β is constant on the parabola

Pα,β,γ := {(x, y) ∈ F2
p : y = αx2 + βx + γ}

for any fixed γ ∈ Fp, and distinct on parabolas corresponding to different values of γ. Given the
ability to query fα,β, the hidden parabola problem asks us to determine the values of α and β.

a. Explain why a classical computer must query fα,β exponentially many times (in log p) to solve
the hidden parabola problem.

b. Show that the quantum query complexity of determining α and β is poly(log p).

Problem 6 (Weak Fourier sampling fails for the symmetric group).
Consider the hidden subgroup problem in an arbitrary finite group G.

a. Compute the distributions over Ĝ that are observed when we perform weak Fourier sampling
in two cases: the hidden subgroup is trivial, or the hidden subgroup is {1, π} where π is an
involution. Your answer should be expressed in terms of the characters of G.

b. Show that the total variation distance between these two distributions is upper bounded by√
1
|G|
∑

σ∈Ĝ |χσ(π)|2.

c. Prove that
∑

σ∈Ĝ |χσ(π)|2 = |G|/|conj(π)|, where conj(π) denotes the conjugacy class of G to
which π belongs. (Hint: Use the orthogonality relations for the character table of G.)

d. Let G = Sn, the symmetric group on n items, and find a choice of π for which the total
variation distance is exponentially small in n. This shows that weak Fourier sampling fails to
solve the hidden subgroup problem in Sn.

Problem 7 (Nonabelian Fourier sampling for the dihedral group).
In lecture, we attacked the hidden subgroup problem over the dihedral group of order 2N ,

DN := 〈r, s|r2 = sN = rsrs = 1〉,

using the Fourier transform over the cyclic group ZN . In this problem you will show that this is
essentially the same as performing the nonabelian Fourier transform over DN . You will also give a
representation-theoretic interpretation of Kuperberg’s algorithm.

For reference, the irreducible representations of DN are as follows: there are two one-dimensional
irreps, σtriv and σsign, with

σtriv(r) := 1 σtriv(s) := 1
σsign(r) := −1 σsign(s) := 1;

and dN/2e − 1 two-dimensional irreps, σj for j = 1, 2, . . . , dN/2e − 1, with

σj(r) :=
(

0 1
1 0

)
σj(s) :=

(
ωj

N 0
0 ω−j

N

)
.

(If N is even then there are two additional one-dimensional irreps, but let us assume for simplicity
that N is odd.)
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a. Consider the HSP in DN with the hidden subgroup {1, rsα}. Write down the state obtained by
Fourier sampling over DN , assuming you measure a two-dimensional irrep σj . Compare to the
possible states obtained by Fourier sampling over ZN , obtaining some measurement outcome
k ∈ ZN with k 6= 0, and describe a correspondence between the two procedures. (Hint: There
are more possible values of k than values of j, so each value of j must correspond to multiple
values of k.)

b. Describe a similar correspondence between the one-dimensional irreps of DN and the state
obtained when Fourier sampling over ZN yields the measurement outcome 0.

c. Decompose the representation σj ⊗ σk as a direct sum of irreducible representations of DN .

d. In view of the correspondence established in parts a and b, interpret the combination operation
used in Kuperberg’s algorithm in the light of representation theory.

e. Challenge problem: Give a quantum circuit for FDN
that uses FZN

as a subroutine.
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