Quantum algorithms (CO 781) ASSIGNMENT 1

Winter 2008 due Monday 4 February (in class)

Problem 1 (Parallelizing the QFT).

Consider the Fourier transform over \mathbb{Z}_{2^n} ,

$$F_{\mathbb{Z}_{2^n}} := \frac{1}{\sqrt{2^n}} \sum_{x,y \in \mathbb{Z}_{2^n}} \omega_{2^n}^{xy} |y\rangle \langle x|.$$

Here we will show that $F_{\mathbb{Z}_{2^n}}$ can be implemented with a circuit of only logarithmic depth, meaning that it can be implemented very quickly if gates can be performed in parallel.

- a. What is the depth of the standard quantum circuit for $F_{\mathbb{Z}_{2^n}}$ (both the exact version of size $O(n^2)$ and the approximate version of size $O(n \log n)$)?
- b. Let $|\tilde{x}\rangle := F_{\mathbb{Z}_{2^n}}|x\rangle$ denote a Fourier basis state. Define three operators A, B, C by

$$\begin{split} A|x,0\rangle &= |x,\tilde{x}\rangle\\ B|\tilde{x},0\rangle &= |\tilde{x},\tilde{x}\rangle\\ C|\tilde{x}\rangle^{\otimes k}|0\rangle &= |\tilde{x}\rangle^{\otimes k}|x\rangle \end{split}$$

where $k \in \mathbb{N}$ is some constant. Show how to produce a quantum circuit for $F_{\mathbb{Z}_{2^n}}$ using quantum circuits for A, B, and C.

- c. Modify the standard quantum circuit for $F_{\mathbb{Z}_{2^n}}$ to give a quantum circuit for A. Show that an approximate version of this circuit has depth $O(\log n)$.
- d. Show that $D|\tilde{x}, \tilde{y}\rangle = |\tilde{x}, \tilde{x} + y\rangle$, where the operator D is defined by $D|x, y\rangle = |x y, y\rangle$. Explain how this observation can be used to give a quantum circuit for B of depth $O(\log n)$. (Note that addition of *n*-bit integers can be performed by a classical circuit of depth $O(\log n)$.)
- e. Challenge problem: Give an implementation of C by a circuit of logarithmic depth. (Hint: k = 3 is possible, but the construction is somewhat involved.)

Problem 2 (Discrete log with χ states).

Let $G = \langle g \rangle$ be a cyclic group of order N. For each $\alpha \in \mathbb{Z}_N$, define the state

$$|\chi^{\alpha}\rangle := \frac{1}{\sqrt{N}} \sum_{\beta \in \mathbb{Z}_N} \omega_N^{\alpha\beta} |g^{\beta}\rangle$$

These states turn out to give an alternative method for computing discrete logarithms over G.

- a. For any $x \in G$, let D_x denote the "division operator" defined by $D_x |\alpha, y\rangle = |\alpha, y/x^{\alpha}\rangle$ where $\alpha \in \mathbb{Z}_N$ and $y \in G$. Explain how to implement D_x efficiently on a quantum computer.
- b. Show that $|\alpha, \chi^{\beta}\rangle$ is an eigenvector of D_x , and compute its eigenvalue.
- c. Show that $(F_{\mathbb{Z}_N}^{\dagger} \otimes I) D_x(F_{\mathbb{Z}_N} \otimes I) |0, \chi^1\rangle = |\log_g x, \chi^1\rangle$, where

$$F_{\mathbb{Z}_N} := \frac{1}{\sqrt{N}} \sum_{\alpha, \beta \in \mathbb{Z}_N} \omega_n^{\alpha \beta} |\beta\rangle \langle \alpha |$$

denotes the Fourier transform over the additive group \mathbb{Z}_N .

This shows how to compute $\log_q x$, provided we are given a copy of the state $|\chi^1\rangle$.

Note that $|\chi^{\alpha}\rangle$ is simply the Fourier transform of $|g^{\alpha}\rangle$ over G. However, even though we know how to implement $F_{\mathbb{Z}_N}$ (the Fourier transform over the *additive* group \mathbb{Z}_N), this does not let us implement the Fourier transform over the *multiplicative* group G, unless we can compute discrete logarithms. Nevertheless, it is possible to create $|\chi^1\rangle$ using only simple operations.

- d. Show that $(F_{\mathbb{Z}_N} \otimes I)D_{g^{-1}}(F_{\mathbb{Z}_N} \otimes I)|0, g^0\rangle = \frac{1}{\sqrt{N}}\sum_{\alpha \in \mathbb{Z}_N} |\alpha, \chi^{\alpha}\rangle.$
- e. For any $\alpha \in \mathbb{Z}_N$, let D^{α} denote another "division operator," this one defined by $D^{\alpha}|x,y\rangle = |x,y/x^{\alpha}\rangle$ where $x, y \in G$. Show that $D^{\alpha}|\chi^{\beta}, \chi^{\gamma}\rangle = |\chi^{\beta+\alpha\gamma}, \chi^{\gamma}\rangle$.
- f. Suppose we measure the first register of the state from part d and obtain a value α , leaving the second register in the state $|\chi^{\alpha}\rangle$. Furthermore, suppose that $gcd(\alpha, N) = 1$, so that α^{-1} is well-defined modulo N. (Note that this happens with probability $\phi(N)/N = \Omega(1/\log \log N)$, so we don't have to repeat the procedure from part d many times before obtaining such an α .) Show how to use the state $|\chi^{\alpha}\rangle$ to prepare $|\chi^{1}\rangle$. (Hint: Use part e.)
- g. Explain why part e also shows that $|\chi^1\rangle$ can be easily copied.

Problem 3 (Relative difficulty of breaking RSA and elliptic curve cryptography).

The best known classical algorithm for factoring a number N, the number field sieve, takes time $\exp(O((\log N)^{1/3}(\log \log N)^{2/3}))$. In contrast, the best known algorithms for computing the discrete logarithm over an elliptic curve of order N take time $O(\sqrt{N})$. Thus, it is widely accepted that elliptic curve cryptography (ECC) provides greater security than RSA for a given key size. For example, Certicom (the company that provides the ECC software used on BlackBerry devices) claims that ECC with a key size of 512 bits provides comparable security to RSA with a key size of 15360 bits.

- a. Estimate the number of qubits and number of elementary gates that Shor's algorithm would need to break RSA with a key size of 15360 bits and ECC with a key size of 512 bits, respectively. A rough estimate is fine, but you should justify whatever assumptions you make.
- b. Briefly comment on the implications of your estimate.

Problem 4 (Properties of the solutions to Pell's equation and of algebraic integers).

Consider Pell's equation, $x^2 - dy^2 = 1$, where $d \in \mathbb{Z}$ is squarefree. Associate the solution $x, y \in \mathbb{Z}$ with the real number $\xi = x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$, whose conjugate is defined as $\overline{\xi} := x - y\sqrt{d}$.

- a. Show that the set of solutions to Pell's equation forms a group, where the group operation corresponds to multiplication of the associated elements of $\mathbb{Z}[\sqrt{d}]$, and inversion corresponds to conjugation.
- b. A solution (x, y) of Pell's equation is called *positive* if x > 0 and y > 0. Let (x_1, y_1) be the positive solution of Pell's equation for which $x_1 + y_1\sqrt{d}$ is smallest. Show that the set of all positive solutions is $\{(x_1 + y_1\sqrt{d})^n : n \in \mathbb{N}\}$. (Hint: Suppose there is some solution lying strictly between $(x_1 + y_1\sqrt{d})^j$ and $(x_1 + y_1\sqrt{d})^{j+1}$ for some $j \in \mathbb{N}$, and derive a contradiction.)
- c. Recall that $\xi = x + y\sqrt{d} \in \mathbb{Q}[\sqrt{d}]$ is called an *algebraic integer* if it is the root of a monic polynomial with integer coefficients. Prove that ξ is an algebraic integer if and only if 2x and $x^2 - dy^2$ are integers. (Hint: Consider the quantities $\xi + \overline{\xi}$ and $\xi\overline{\xi}$, where $\overline{\xi}$ is defined the same way for arbitrary elements of $\mathbb{Q}[\sqrt{d}]$ as it is for elements of $\mathbb{Z}[\sqrt{d}]$.)

Problem 5 (The hidden parabola problem).

Suppose we are given a black box function $f_{\alpha,\beta} : \mathbb{F}_p^2 \to S$, where p is a prime and S is a finite set, satisfying the promise that

$$f_{\alpha,\beta}(x,y) = f_{\alpha,\beta}(x',y')$$
 if and only if $\alpha x^2 + \beta x - y = \alpha x'^2 + \beta x' - y'$

for some unknown $\alpha \in \mathbb{F}_p^{\times}$ and $\beta \in \mathbb{F}_p$. In other words, $f_{\alpha,\beta}$ is constant on the parabola

$$P_{\alpha,\beta,\gamma} := \{(x,y) \in \mathbb{F}_p^2 : y = \alpha x^2 + \beta x + \gamma\}$$

for any fixed $\gamma \in \mathbb{F}_p$, and distinct on parabolas corresponding to different values of γ . Given the ability to query $f_{\alpha,\beta}$, the *hidden parabola problem* asks us to determine the values of α and β .

- a. Explain why a classical computer must query $f_{\alpha,\beta}$ exponentially many times (in log p) to solve the hidden parabola problem.
- b. Show that the quantum query complexity of determining α and β is poly(log p).

Problem 6 (Weak Fourier sampling fails for the symmetric group).

Consider the hidden subgroup problem in an arbitrary finite group G.

- a. Compute the distributions over \hat{G} that are observed when we perform weak Fourier sampling in two cases: the hidden subgroup is trivial, or the hidden subgroup is $\{1, \pi\}$ where π is an involution. Your answer should be expressed in terms of the characters of G.
- b. Show that the total variation distance between these two distributions is upper bounded by $\sqrt{\frac{1}{|G|}\sum_{\sigma\in\hat{G}}|\chi_{\sigma}(\pi)|^2}$.
- c. Prove that $\sum_{\sigma \in \hat{G}} |\chi_{\sigma}(\pi)|^2 = |G|/|\operatorname{conj}(\pi)|$, where $\operatorname{conj}(\pi)$ denotes the conjugacy class of G to which π belongs. (Hint: Use the orthogonality relations for the character table of G.)
- d. Let $G = S_n$, the symmetric group on n items, and find a choice of π for which the total variation distance is exponentially small in n. This shows that weak Fourier sampling fails to solve the hidden subgroup problem in S_n .

Problem 7 (Nonabelian Fourier sampling for the dihedral group).

In lecture, we attacked the hidden subgroup problem over the dihedral group of order 2N,

$$D_N := \langle r, s | r^2 = s^N = rsrs = 1 \rangle,$$

using the Fourier transform over the cyclic group \mathbb{Z}_N . In this problem you will show that this is essentially the same as performing the nonabelian Fourier transform over D_N . You will also give a representation-theoretic interpretation of Kuperberg's algorithm.

For reference, the irreducible representations of D_N are as follows: there are two one-dimensional irreps, σ_{triv} and σ_{sign} , with

$$\begin{aligned} \sigma_{\rm triv}(r) &:= 1 & \sigma_{\rm triv}(s) &:= 1 \\ \sigma_{\rm sign}(r) &:= -1 & \sigma_{\rm sign}(s) &:= 1; \end{aligned}$$

and $\lfloor N/2 \rfloor - 1$ two-dimensional irreps, σ_j for $j = 1, 2, \ldots, \lfloor N/2 \rfloor - 1$, with

$$\sigma_j(r) := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad \sigma_j(s) := \begin{pmatrix} \omega_N^j & 0 \\ 0 & \omega_N^{-j} \end{pmatrix}.$$

(If N is even then there are two additional one-dimensional irreps, but let us assume for simplicity that N is odd.)

- a. Consider the HSP in D_N with the hidden subgroup $\{1, rs^{\alpha}\}$. Write down the state obtained by Fourier sampling over D_N , assuming you measure a two-dimensional irrep σ_j . Compare to the possible states obtained by Fourier sampling over \mathbb{Z}_N , obtaining some measurement outcome $k \in \mathbb{Z}_N$ with $k \neq 0$, and describe a correspondence between the two procedures. (Hint: There are more possible values of k than values of j, so each value of j must correspond to multiple values of k.)
- b. Describe a similar correspondence between the one-dimensional irreps of D_N and the state obtained when Fourier sampling over \mathbb{Z}_N yields the measurement outcome 0.
- c. Decompose the representation $\sigma_j \otimes \sigma_k$ as a direct sum of irreducible representations of D_N .
- d. In view of the correspondence established in parts a and b, interpret the combination operation used in Kuperberg's algorithm in the light of representation theory.
- e. Challenge problem: Give a quantum circuit for F_{D_N} that uses $F_{\mathbb{Z}_N}$ as a subroutine.