Problem 1 (The triangle problem).
In the triangle problem, you are asked to decide whether an n-vertex graph G contains a triangle (a complete subgraph on 3 vertices). The graph is specified by a black box that, for any pair of vertices of G, returns a bit indicating whether those vertices are connected by an edge in G.

a. What is the classical query complexity of the triangle problem?

b. We say that an edge of G is a triangle edge if it is part of a triangle in G. What is the quantum query complexity of deciding whether a particular edge of G is a triangle edge?

c. Now suppose you know the vertices and edges of some m-vertex subgraph of G. Explain how you can decide whether this subgraph contains a triangle edge using $O(m^2/3\sqrt{n})$ quantum queries.

d. Consider a quantum walk algorithm for the triangle problem (or, equivalently, deciding whether a graph contains a triangle edge). The walk takes place on a graph G whose vertices correspond to subgraphs of G on m vertices, and whose edges correspond to subgraphs that differ by changing one vertex. A vertex of G is marked if it contains a triangle edge. How many queries does this algorithm use to decide whether G contains a triangle? (Hint: Be sure to account for the queries used to initialize the walk, the queries used to move between neighboring vertices of G, and the queries used to check whether a given vertex of G is marked. To get a nontrivial result, you should use the search framework mentioned in class that takes many steps according to the walk on G with no marked vertices before performing a phase flip at marked vertices.)

e. Choose a value of m that minimizes the number of queries used by the algorithm. What is the resulting upper bound on the quantum query complexity of the triangle problem?

f. Challenge problem: Generalize this algorithm to decide whether G contains a k-clique. How many queries does the algorithm use?

Problem 2 (Grover's algorithm by formula evaluation).
Grover’s algorithm computes the OR of n bits using $O(\sqrt{n})$ quantum queries to those bits. In this problem you will give an alternative algorithm for computing OR by evaluating a NAND formula.

Since $\text{OR}(x_1,\ldots,x_n) = \text{NAND}(\bar{x}_1,\ldots,\bar{x}_n)$, we can represent the OR formula by a NAND tree in which the root has n children, and each of those children has one child, which is a leaf. Given an input x_1,\ldots,x_n, we modify the tree by deleting every leaf in the original tree corresponding to an index i for which $x_i = 1$.

We will start our quantum algorithm from the root, so you can restrict your attention to the subspace $S := \text{span}\{H^j|\text{root} : j = 0, 1, 2, \ldots\}$, where H is a weighted adjacency matrix of the tree (with weights to be determined).

a. First consider the input $x_1 = \cdots = x_n = 0$, for which the formula evaluates to 0. Define the weighted adjacency matrix H of the corresponding tree by assigning a weight of α to the edges connected to the root and a weight of 1 to the remaining edges. Compute the spectrum (both eigenvalues and eigenvectors) of H within the subspace S.

b. For what values of α does H (as defined in part a) have an eigenstate of eigenvalue 0 with overlap $\Omega(1)$ on the root?
c. Now consider an input with \(x_i = 1 \) for precisely one index \(i \). Compute the spectrum of \(H \) within the subspace \(S \).

d. For what values of \(\alpha \) does \(H \) (as defined in part c) have a minimum eigenvalue of \(\Omega(1/\sqrt{n}) \) (in absolute value)? Choose a value of \(\alpha \) so that this condition and the one from part b are satisfied simultaneously.

e. Compute the spectrum of \(H \) for an arbitrary input, and show that the minimum eigenvalue of \(H \) (again in absolute value) can only be larger than in part c if there is more than one index \(i \) for which \(x_i = 1 \).

f. Explain why your calculations imply a discrete-time quantum walk algorithm for computing the OR of \(n \) bits using \(O(\sqrt{n}) \) queries. (Hint: Refer to problem 5 from assignment 2.)

g. Challenge problem: Describe a simulation of the continuous-time quantum walk generated by \(H \) that computes OR using \(O(\sqrt{n}) \) queries. (Notice that the root of the tree has high degree, so you cannot use results on the simulation of sparse Hamiltonians.)

Problem 3 (Adiabatic evolution of a qubit).

Consider a spin in a magnetic field that is rotated from the \(-x\) direction to the \(-z\) direction in a total time \(T \). Such a spin is described by the Hamiltonian

\[
H(t) = -\cos\left(\frac{\pi t}{2T}\right) \sigma_x - \sin\left(\frac{\pi t}{2T}\right) \sigma_z.
\]

Suppose that at time \(t = 0 \), the spin is in the ground state of \(H(0) \). Plot the behavior of the \(x \), \(y \), and \(z \) components of the spin as a function of time from \(t = 0 \) to \(t = T \), where \(T = 5, 10, \) or 50. Comment on the results in light of the adiabatic theorem.

Problem 4 (Perturbation theory).

Let \(H(s) \) be a Hermitian matrix depending smoothly on a parameter \(s \in \mathbb{R} \). Let \(P(s) \) be the projector onto the eigenstate of \(H(s) \) with the smallest eigenvalue, which is separated by a gap \(\Delta(s) > 0 \) from the rest of the spectrum. (In particular, the eigenstate is non-degenerate for all values of \(s \)).

a. Prove that

\[
\|\dot{P}(s)\| \leq c_1 \frac{\|\dot{H}(s)\|}{\Delta(s)}
\]

for some constant \(c_1 > 0 \), where \(\dot{X}(s) := \frac{d}{ds} X(s) \), and as usual, \(\|X\| \) denotes the spectral norm of \(X \). (Hint: This is a formalization of first-order non-degenerate perturbation theory, as discussed in any introductory textbook on quantum mechanics; you could give a proof along those lines. Alternatively, if you are comfortable with complex analysis, define the resolvent, \(R(z, s) := (H(s) - z)^{-1} \), in terms of which \(P(s) = -\frac{1}{2\pi i} \int_{\Gamma} R(z, s) dz \), where \(\Gamma \) is a contour enclosing only the smallest eigenvalue of \(H(s) \); upper bound \(\|\dot{P}(s)\| \) by integrating around some circular contour.)

b. Prove that

\[
\|\ddot{P}(s)\| \leq c_2 \frac{\|\ddot{H}(s)\|}{\Delta(s)} + c_3 \frac{\|\dot{H}(s)\|^2}{\Delta(s)^2}
\]

for some constants \(c_2, c_3 > 0 \), where \(\dot{X}(s) := \frac{d^2}{ds^2} X \).
Problem 5 (Tunneling in the adiabatic algorithm).

In quantum mechanics, particles can tunnel through a classically impenetrable barrier. In this problem you will see how tunneling allows an adiabatic algorithm to minimize a cost function that could not be minimized by a classical local search algorithm such as simulated annealing.

a. Consider adiabatic optimization of a cost function $h : \{0,1\}^n \to \mathbb{R}$ for which $h(x)$ depends only on $|x| := \sum_i x_i$, the Hamming weight of x. In particular, consider the Hamiltonian $H(s) := (1 - s)H_B + sH_P$, where the initial and final Hamiltonians are

$$H_B := -\sum_{j=1}^n \sigma_x^{(j)} \quad H_P := \sum_{x \in \{0,1\}^n} h(x)|x\rangle\langle x|.$$

Show that evolution of the initial state $|u\rangle := \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$ according to the Hamiltonian $H(t/T)$ remains in the subspace span\{[k] : k = 0, 1, \ldots, n\}, where [k] denotes the set of n-bit strings of Hamming weight k.

b. Suppose that $h(x) = |x|$, and compute the spectrum of $H(s)$ in the subspace of Hamming weight states as a function of $s \in [0, 1]$. In particular, show that the minimum gap between the ground and excited states of $H(s)$ is at least some constant, independent of n.

c. Now suppose that $h(x) = |x| + \Delta(|x|)$, where $\Delta(w)$ is a non-negative function of width $\approx n^\delta$ and height $\approx n^\epsilon$ centered around $w = w_0$. For concreteness, suppose that

$$\Delta(w) = \begin{cases}
0 & w < w_0 - n^\delta \text{ or } w > w_0 + n^\delta \\
\epsilon & w_0 - n^\delta \leq w \leq w_0 + n^\delta.
\end{cases}$$

Define a local search algorithm as a classical randomized algorithm that works as follows:

- Initialize x to a random bit string.
- For $i = 1$ to $\text{poly}(n)$:
 - Let y_i be some string with $O(1)$ bits equal to 1.
 - If $h(x \oplus y_i) > h(x) + O(1)$, leave x unchanged. Otherwise, leave x unchanged or set x equal to $x \oplus y_i$ according to some specified rule.
- Output x.

Argue that if $\delta, \epsilon > 0$ are constants and $w_0 < cn$ for some constant $c < 1/2$, a local search algorithm is unlikely to find the minimum of $h(x)$.

d. Finally, analyze the performance of the adiabatic algorithm for minimizing $h(x) = |x| + \Delta(|x|)$. Since $\Delta(w) \geq 0$, the eigenvalues of $H(s)$ can only be larger than in part b. Thus, to lower bound the gap between the ground and first excited states of $H(s)$, it suffices to upper bound the perturbed ground state energy. Using the original ground state as an ansatz, give an upper bound on the ground state energy of $H(s)$. What are the conditions on δ, ϵ such that the minimum gap is at least $1/\text{poly}(n)$?