1. Let \(V \) be an \(n \)-dimensional inner product space over \(\mathbb{F} \), and let \(T \in \mathcal{L}(V) \) be self-adjoint. We call \(T \) positive semidefinite if it satisfies \(\langle T(x), x \rangle \geq 0 \) for all \(x \in V \). Prove that the following are equivalent:

(i) \(T \) is positive semidefinite.

(ii) The eigenvalues of \(T \) are non-negative.

(iii) There exists a \(U \in \mathcal{L}(V) \) such that \(T = U^*U \).

(Of course, we can make similar statements about matrices. If \(A \in M_{n \times n}(\mathbb{F}) \) satisfies \(A = A^* \), then we call \(A \) positive semidefinite if \(x^*Ax \geq 0 \) for all \(x \in M_{n \times 1}(\mathbb{F}) \). While you are not asked to include the proof with your assignment, you are encouraged to convince yourself that \(A \) is positive semidefinite if and only if its eigenvalues are non-negative, if and only if there is a \(B \in M_{n \times n}(\mathbb{F}) \) such that \(A = B^*B \), if and only if \(L_A \) is positive semidefinite.)

2. The set of solutions \((x, y, z) \in \mathbb{R}^3\) to an equation of the form

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\]

is called an ellipsoid. The volume of this ellipsoid is \(\frac{4\pi}{3}abc \). The set of solutions to the equation

\[
4(x^2 + y^2 + z^2) + 2(xy + xz + yz) = 1
\]

is also an ellipsoid. What is its volume? (Hint: You can make use of your solution to question 5 on assignment 6.)

3. Let \(n \) be a positive integer, and let \(\omega := e^{2\pi i/n} \). The matrix

\[
F := \frac{1}{\sqrt{n}} \begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\
1 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2}
\end{pmatrix} \in M_{n \times n}(\mathbb{C})
\]

is called the discrete Fourier transform modulo \(n \).

(a) Show that \(F \) is unitary.

(b) Recall from assignment 4 that a matrix of the form

\[
C := \begin{pmatrix}
a_0 & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} \\
a_{n-1} & a_0 & a_1 & \cdots & a_{n-2} & \vdots \\
a_{n-2} & a_{n-1} & a_0 & \cdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \cdots & \vdots \\
a_2 & \cdots & \cdots & \cdots & a_0 & a_1 \\
a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} & a_0
\end{pmatrix} \in M_{n \times n}(\mathbb{C})
\]

is called a circulant matrix. Show that if \(C \) is a circulant matrix, then \(F^*CF \) is diagonal.
(c) Prove that if \(\lambda \) is an eigenvalue of \(F \), then \(\lambda \in \{1, -1, i, -i\} \).

4. Recall that if \(A \in M_{n \times n}(\mathbb{C}) \), the exponential of \(A \) is defined as the matrix \(e^A := \sum_{j=0}^{\infty} \frac{A^j}{j!} \).

(a) Prove that if \(A \in M_{n \times n}(\mathbb{C}) \) is Hermitian, then \(e^{iA} \) is unitary.

(b) Prove that if \(U \in M_{n \times n}(\mathbb{C}) \) is unitary, then there exists a Hermitian matrix \(A \) such that \(U = e^{iA} \). Is \(A \) unique?

5. For any \(\theta \in \mathbb{R} \), let

\[
P_\theta := \begin{pmatrix}
\cos^2 \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin^2 \theta
\end{pmatrix}.
\]

(a) Show that \(P_\theta \) is an orthogonal projection matrix.

(b) Let \(\theta \in (0, \pi) \). Compute \(\lim_{n \to \infty} (P_{n\theta} \cdots P_{2\theta}P_\theta) \).

(c) Compute \(\lim_{n \to \infty} (P_\theta \cdots P_{2\theta/n}P_{\theta/n}) \) and compare your result with the previous part.

6. (Bonus question) If \(E \in \mathcal{L}(\mathcal{L}(V)) \) for some vector space \(V \), then \(E \) is called a superoperator. In this problem, let \(V = \mathbb{C}^n \). By a slight abuse of notation, we will identify a linear transformation \(T \in \mathcal{L}(V) \) with its matrix \([T]_\beta \in M_{n \times n}(\mathbb{C}) \) in a fixed orthonormal basis \(\beta \), and thus we will call \(E \in \mathcal{L}(M_{n \times n}(\mathbb{C})) \) a superoperator.

(a) A superoperator \(E \) is called positive if, for all positive semidefinite matrices \(A \in M_{n \times n}(\mathbb{C}) \), \(E(A) \) is positive semidefinite. Define \(T : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C}) \) by \(T(A) = A^t \). Show that \(T \) is a positive superoperator.

(b) A superoperator \(E \) is called completely positive if, for all positive integers \(m \) and all positive semidefinite matrices \(A \in M_{mn \times mn}(\mathbb{C}) \), \((E \otimes I)(A) \) is positive semidefinite, where \(I \) denotes the identity superoperator on \(M_{m \times m}(\mathbb{C}) \). Show that \(T \) is not completely positive.

(c) Given a set of matrices \(E_1, \ldots, E_k \in M_{n \times n}(\mathbb{C}) \), we call

\[
E(A) = \sum_{i=1}^{k} E_i A E_i^*
\]

a Kraus representation for \(E : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C}) \). Show that any \(E \) with a Kraus representation is a completely positive superoperator.

(d) Prove the Kraus Representation Theorem: if \(E \) is a completely positive superoperator, then it has a Kraus representation.