
ASSIGNMENT 7 Math 245 (Winter 2009)
Due at the start of class on Wednesday 11 March.

1. Let V be an n-dimensional inner product space over F, and let T ∈ L(V) be self-adjoint. We
call T positive semidefinite if it satisfies 〈T(x), x〉 ≥ 0 for all x ∈ V. Prove that the following are
equivalent:

(i) T is positive semidefinite.
(ii) The eigenvalues of T are non-negative.
(iii) There exists a U ∈ L(V) such that T = U∗U.

(Of course, we can make similar statements about matrices. If A ∈ Mn×n(F) satisfies A = A∗,
then we call A positive semidefinite if x∗Ax ≥ 0 for all x ∈ Mn×1(F). While you are not asked
to include the proof with your assignment, you are encouraged to convince yourself that A is
positive semidefinite if and only if its eigenvalues are non-negative, if and only if there is a
B ∈ Mn×n(F) such that A = B∗B, if and only if LA is positive semidefinite.)

2. The set of solutions (x, y, z) ∈ R3 to an equation of the form

x2

a2
+
y2

b2
+
z2

c2
= 1

is called an ellipsoid. The volume of this ellipsoid is 4π
3 abc. The set of solutions to the equation

4(x2 + y2 + z2) + 2(xy + xz + yz) = 1

is also an ellipsoid. What is its volume? (Hint: You can make use of your solution to question
5 on assignment 6.)

3. Let n be a positive integer, and let ω := e2πi/n. The matrix

F :=
1√
n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

 ∈ Mn×n(C)

is called the discrete Fourier transform modulo n.

(a) Show that F is unitary.
(b) Recall from assignment 4 that a matrix of the form

C :=



a0 a1 a2 · · · an−2 an−1

an−1 a0 a1 a2 an−2

an−2 an−1 a0 a1
. . .

...
... an−2 an−1

. . . . . . a2

a2
. . . . . . a0 a1

a1 a2 · · · an−2 an−1 a0


∈ Mn×n(C)

is called a circulant matrix. Show that if C is a circulant matrix, then F ∗CF is diagonal.
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(c) Prove that if λ is an eigenvalue of F , then λ ∈ {1,−1, i,−i}.

4. Recall that if A ∈ Mn×n(C), the exponential of A is defined as the matrix eA :=
∞∑
j=0

Aj/j!.

(a) Prove that if A ∈ Mn×n(C) is Hermitian, then eiA is unitary.

(b) Prove that if U ∈ Mn×n(C) is unitary, then there exists a Hermitian matrix A such that
U = eiA. Is A unique?

5. For any θ ∈ R, let

Pθ :=
(

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

)
.

(a) Show that Pθ is an orthogonal projection matrix.

(b) Let θ ∈ (0, π). Compute lim
n→∞

(Pnθ · · ·P2θPθ).

(c) Compute lim
n→∞

(Pθ · · ·P2θ/nPθ/n) and compare your result with the previous part.

6. (Bonus question) If E ∈ L(L(V)) for some vector space V, then E is called a superoperator. In
this problem, let V = Cn. By a slight abuse of notation, we will identify a linear transformation
T ∈ L(V) with its matrix [T]β ∈ Mn×n(C) in a fixed orthonormal basis β, and thus we will call
E ∈ L(Mn×n(C)) a superoperator.

(a) A superoperator E is called positive if, for all positive semidefinite matrices A ∈ Mn×n(C),
E(A) is positive semidefinite. Define T : Mn×n(C) → Mn×n(C) by T (A) = At. Show that
T is a positive superoperator.

(b) A superoperator E is called completely positive if, for all positive integers m and all positive
semidefinite matrices A ∈ Mnm×nm(C), (E ⊗I)(A) is positive semidefinite, where I denotes
the identity superoperator on Mm×m(C). Show that T is not completely positive.

(c) Given a set of matrices E1, . . . , Ek ∈ Mn×n(C), we call

E(A) =
k∑
i=1

EiAE
∗
i

a Kraus representation for E : Mn×n(C) → Mn×n(C). Show that any E with a Kraus
representation is a completely positive superoperator.

(d) Prove the Kraus Representation Theorem: if E is a completely positive superoperator, then
it has a Kraus representation.
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