Quantum algorithms (CO 781/CS 867/QIC 823) Winter 2011
ASSIGNMENT 3 due Tuesday 29 March (in class)

Problem 1 (The triangle problem).

In the triangle problem, you are asked to decide whether an n-vertex graph G contains a triangle
(a complete subgraph on 3 vertices). The graph is specified by a black box that, for any pair of
vertices of G, returns a bit indicating whether those vertices are connected by an edge in G.

a. What is the classical query complexity of the triangle problem?

b. Say that an edge of G is a triangle edge if it is part of a triangle in G. What is the quantum
query complexity of deciding whether a particular edge of G is a triangle edge?

c¢. Now suppose you know the vertices and edges of some m-vertex subgraph of G. Explain how
you can decide whether this subgraph contains a triangle edge using O(m2/ 3/n) quantum
queries.

d. Consider a quantum walk algorithm for the triangle problem (or, equivalently, deciding
whether a graph contains a triangle edge). The walk takes place on a graph G whose vertices
correspond to subgraphs of G on m vertices, and whose edges correspond to subgraphs that
differ by changing one vertex. A vertex of G is marked if it contains a triangle edge. How
many queries does this algorithm use to decide whether G contains a triangle? (Hint: Be
sure to account for the queries used to initialize the walk, the queries used to move between
neighboring vertices of G, and the queries used to check whether a given vertex of G is marked.
To get a nontrivial result, you should use the search framework mentioned in class that takes
many steps according to the walk on G with no marked vertices before performing a phase
flip at marked vertices.)

e. Choose a value of m that minimizes the number of queries used by the algorithm. What is
the resulting upper bound on the quantum query complexity of the triangle problem?

f. Challenge problem: Generalize this algorithm to decide whether G contains a k-clique. How
many queries does the algorithm use?

Problem 2 (Unstructured search by formula evaluation).

Grover’s algorithm computes the OR of n bits using O(y/n) quantum queries to those bits. In this
problem you will give an alternative algorithm for computing OR by evaluating a NAND formula.

Since OR(x1, ..., ;) = NAND(Z1, ..., T, ), we can represent the OR formula by a NAND tree in which
the root has n children, and each of those children has one child, which is a leaf. Given an input
x1,...,Tn, we modify the tree by deleting every leaf in the original tree corresponding to an index
1 for which x; = 1.

We will start our quantum algorithm from the root, so you can restrict your attention to the
subspace S := span{H/|root) : j = 0,1,2,...}, where H is a weighted adjacency matrix of the tree
(with weights to be determined).

a. First consider the input ;1 = --- = z, = 0, for which the formula evaluates to 0. Define
the weighted adjacency matrix H of the corresponding tree by assigning a weight of « to the
edges connected to the root and a weight of 1 to the remaining edges. Compute the spectrum
(both eigenvalues and eigenvectors) of H within the subspace S.

b. For what values of & does H (as defined in part a) have an eigenstate of eigenvalue 0 with
overlap €2(1) on the root?



c. Now consider an input with x; = 1 for precisely one index ¢. Compute the spectrum of H
within the subspace S.

d. For what values of a does H (as defined in part c¢) have a minimum eigenvalue of Q(1/y/n)
(in absolute value)? Choose a value of a so that this condition and the one from part b are
satisfied simultaneously.

e. Compute the spectrum of H for an arbitrary input, and show that the minimum eigenvalue
of H (again in absolute value) can only be larger than in part c if there is more than one
index ¢ for which z; = 1.

f. Challenge problem: Describe a simulation of the continuous-time quantum walk generated by
H that computes OR using O(y/n) queries. (Notice that the root of the tree has high degree,
so you cannot use results on the simulation of sparse Hamiltonians.)

Problem 3 (Original formulation of the adversary method).

For a Boolean function f: {0,1}" — S, the adversary method says that Qc(f) > 22velizd) V;(I_E) Adv(f),
where Adv(f) := maxp ||||FLJ\|\’ with the maximization is over all adversary matrices I
Ambainis originally formulated the adversary method differently, as follows. Let X, Y < {0,1}"

such that f(z) # f(y) for all z € X,y € Y. For any relation R C X x Y, define

m::rréi)r(lHer: (z,y) € R| 0= max HyeY: (z,y) € R and z; # y;}|
’ iefl,...,n}

m' :=min |[{z € X: (z,y) € R| ¢ := max |[{z € X:(z,y) € R and x; # y;}|.
yey ' {yleY y
1€1,....,n

Then define Amb(f) := maxxyr \/"}TT'}/.
Prove that Adv(f) > Amb(f), and hence that Q.(f) > 122vdizd v26(1_6)Amb(f).

Problem 4 (Applying the adversary method).

Use the adversary method to prove the following lower bounds. (You should apply the adversary
method directly to the given function rather than giving a reduction from some other problem.)

a. (Parity) Define PARITY: {0,1}" — {0, 1} by PARITY(2) = 21®- - -®x,,. Show that Q(PARITY) =
b. (Two-level NAND tree) Define NAND?: {0,1}"" — {0,1} by

NAND?(2) = NAND(NAND(Z1, . . ., 5 ), NAND(Zpi 1y -+« T2p )y« « s NAND(Zp2_py 15 - - -, Tpp2)).-

Show that Q(NAND?) = Q(n).

c. (Graph connectivity) With x € {0, 1}(3) specifying an n-vertex graph as in Problem 1, define
con: {0,1}(2)  {0,1} by

CON(z) =

1 if the graph described by «x is connected
0 otherwise.

Show that Q(coN) = Q(n3/?).



Problem 5 (A limitation on quantum speedup for total functions).

In this problem, you will show that quantum computers can obtain at most a polynomial speedup
for the query complexity of total functions.

a.

Given a Boolean function f: {0,1}" — {0, 1}, a certificate for f on input z € {0,1}" is a
subset of the bits of = such that the value of f(x) is determined by those bits alone. Let Cy(f)
denote the size of the smallest certificate for f on input z, and let C(f) := max,c(o,1}» Cx(f)
(this is called the certificate complexity of f). What is C'(OR)?

Consider the following algorithm for computing f(z):

Let ¢+ 0
While ¢ does not certify that f(x) =0
Choose z’ € {0,1}" such that f(2') =1 and z; = ] for all i € ¢
Let ¢’ be a minimal certificate for 2’
Query x; for i €
Let c < cU(
If ¢ certifies that f(x) =1 then return “1”
End while
Return “0”

Show that this algorithm uses at most C(f)? queries.

. For z € {0,1}* and S C {1,...,n}, let 25 denote = with z; replaced by z; for all i € S.

Call S a sensitive block of z if f(x) # f(x(%)). Prove that if Sy,..., Sy is a maximal set of
disjoint sensitive blocks of z (i.e., there is no other sensitive block that is disjoint from all of
S1,...,SE), then S; U---U Sk is a certificate for f(x).

. Let bs,(f) denote the largest possible number of disjoint sensitive blocks of x, and let bs(f) :=

max,e(o,1}» bsz(f) (this is called the block sensitivity of f). Call a sensitive block S minimal
if no subset of S is sensitive. Show that if S is a minimal sensitive block of some input, then
S| < bs(f).

. Prove that C(f) < bs(f)2.

Let z € {0,1}" have disjoint sensitive blocks S1, ..., Syf). For any y € {0, 1) et xl¥]
denote x with z; replaced by z; if i € S; and y; = 1 for some j € {1,...,bs(f)}. Given
a polynomial p: {0,1}"* — R, define a polynomial p’: {0,1}*() — R by p/(y) := p(zl¥)).
Explain why deg(p’) < deg(p).

Prove that Eeé(f) = Q(4/bs(f)). (Hint: Generalize the proof that (/i—(\ag(OR) = Q(y/n), using
p’ in place of the original approximating polynomial p.)

Conclude that Q(f) = Q(D(f)"®), where D(f) denotes the deterministic classical query
complexity of f.



