
Quantum algorithms (CO 781/CS 867/QIC 823) Winter 2011

ASSIGNMENT 3 due Tuesday 29 March (in class)

Problem 1 (The triangle problem).

In the triangle problem, you are asked to decide whether an n-vertex graph G contains a triangle
(a complete subgraph on 3 vertices). The graph is specified by a black box that, for any pair of
vertices of G, returns a bit indicating whether those vertices are connected by an edge in G.

a. What is the classical query complexity of the triangle problem?

b. Say that an edge of G is a triangle edge if it is part of a triangle in G. What is the quantum
query complexity of deciding whether a particular edge of G is a triangle edge?

c. Now suppose you know the vertices and edges of some m-vertex subgraph of G. Explain how
you can decide whether this subgraph contains a triangle edge using O(m2/3√n) quantum
queries.

d. Consider a quantum walk algorithm for the triangle problem (or, equivalently, deciding
whether a graph contains a triangle edge). The walk takes place on a graph G whose vertices
correspond to subgraphs of G on m vertices, and whose edges correspond to subgraphs that
differ by changing one vertex. A vertex of G is marked if it contains a triangle edge. How
many queries does this algorithm use to decide whether G contains a triangle? (Hint: Be
sure to account for the queries used to initialize the walk, the queries used to move between
neighboring vertices of G, and the queries used to check whether a given vertex of G is marked.
To get a nontrivial result, you should use the search framework mentioned in class that takes
many steps according to the walk on G with no marked vertices before performing a phase
flip at marked vertices.)

e. Choose a value of m that minimizes the number of queries used by the algorithm. What is
the resulting upper bound on the quantum query complexity of the triangle problem?

f. Challenge problem: Generalize this algorithm to decide whether G contains a k-clique. How
many queries does the algorithm use?

Problem 2 (Unstructured search by formula evaluation).

Grover’s algorithm computes the or of n bits using O(
√
n) quantum queries to those bits. In this

problem you will give an alternative algorithm for computing or by evaluating a nand formula.

Since or(x1, . . . , xn) = nand(x̄1, . . . , x̄n), we can represent the or formula by a nand tree in which
the root has n children, and each of those children has one child, which is a leaf. Given an input
x1, . . . , xn, we modify the tree by deleting every leaf in the original tree corresponding to an index
i for which xi = 1.

We will start our quantum algorithm from the root, so you can restrict your attention to the
subspace S := span{Hj |root〉 : j = 0, 1, 2, . . .}, where H is a weighted adjacency matrix of the tree
(with weights to be determined).

a. First consider the input x1 = · · · = xn = 0, for which the formula evaluates to 0. Define
the weighted adjacency matrix H of the corresponding tree by assigning a weight of α to the
edges connected to the root and a weight of 1 to the remaining edges. Compute the spectrum
(both eigenvalues and eigenvectors) of H within the subspace S.

b. For what values of α does H (as defined in part a) have an eigenstate of eigenvalue 0 with
overlap Ω(1) on the root?

1

c. Now consider an input with xi = 1 for precisely one index i. Compute the spectrum of H
within the subspace S.

d. For what values of α does H (as defined in part c) have a minimum eigenvalue of Ω(1/
√
n)

(in absolute value)? Choose a value of α so that this condition and the one from part b are
satisfied simultaneously.

e. Compute the spectrum of H for an arbitrary input, and show that the minimum eigenvalue
of H (again in absolute value) can only be larger than in part c if there is more than one
index i for which xi = 1.

f. Challenge problem: Describe a simulation of the continuous-time quantum walk generated by
H that computes or using O(

√
n) queries. (Notice that the root of the tree has high degree,

so you cannot use results on the simulation of sparse Hamiltonians.)

Problem 3 (Original formulation of the adversary method).

For a Boolean function f : {0, 1}n → S, the adversary method says that Qε(f) ≥ 1−2
√
ε(1−ε)
2 Adv(f),

where Adv(f) := maxΓ
‖Γ‖
‖Γi‖ , with the maximization is over all adversary matrices Γ.

Ambainis originally formulated the adversary method differently, as follows. Let X,Y ⊂ {0, 1}n
such that f(x) 6= f(y) for all x ∈ X, y ∈ Y . For any relation R ⊂ X × Y , define

m := min
x∈X
|{y ∈ Y : (x, y) ∈ R| ` := max

x∈X
i∈{1,...,n}

|{y ∈ Y : (x, y) ∈ R and xi 6= yi}|

m′ := min
y∈Y
|{x ∈ X : (x, y) ∈ R| `′ := max

y∈Y
i∈{1,...,n}

|{x ∈ X : (x, y) ∈ R and xi 6= yi}|.

Then define Amb(f) := maxX,Y,R

√
mm′

``′ .

Prove that Adv(f) ≥ Amb(f), and hence that Qε(f) ≥ 1−2
√
ε(1−ε)
2 Amb(f).

Problem 4 (Applying the adversary method).

Use the adversary method to prove the following lower bounds. (You should apply the adversary
method directly to the given function rather than giving a reduction from some other problem.)

a. (Parity) Define parity : {0, 1}n → {0, 1} by parity(x) = x1⊕· · ·⊕xn. Show thatQ(parity) =
Ω(n).

b. (Two-level nand tree) Define nand2 : {0, 1}n2 → {0, 1} by

nand2(x) = nand(nand(x1, . . . , xn),nand(xn+1, . . . , x2n), . . . ,nand(xn2−n+1, . . . , xn2)).

Show that Q(nand2) = Ω(n).

c. (Graph connectivity) With x ∈ {0, 1}(
n
2) specifying an n-vertex graph as in Problem 1, define

con : {0, 1}(
n
2) → {0, 1} by

con(x) =

{
1 if the graph described by x is connected

0 otherwise.

Show that Q(con) = Ω(n3/2).

2

Problem 5 (A limitation on quantum speedup for total functions).

In this problem, you will show that quantum computers can obtain at most a polynomial speedup
for the query complexity of total functions.

a. Given a Boolean function f : {0, 1}n → {0, 1}, a certificate for f on input x ∈ {0, 1}n is a
subset of the bits of x such that the value of f(x) is determined by those bits alone. Let Cx(f)
denote the size of the smallest certificate for f on input x, and let C(f) := maxx∈{0,1}n Cx(f)
(this is called the certificate complexity of f). What is C(or)?

b. Consider the following algorithm for computing f(x):

Let c← ∅
While c does not certify that f(x) = 0

Choose x′ ∈ {0, 1}n such that f(x′) = 1 and xi = x′i for all i ∈ c
Let c′ be a minimal certificate for x′

Query xi for i ∈ c′
Let c← c ∪ c′
If c certifies that f(x) = 1 then return “1”

End while
Return “0”

Show that this algorithm uses at most C(f)2 queries.

c. For x ∈ {0, 1}n and S ⊆ {1, . . . , n}, let x(S) denote x with xi replaced by x̄i for all i ∈ S.
Call S a sensitive block of x if f(x) 6= f(x(S)). Prove that if S1, . . . , Sk is a maximal set of
disjoint sensitive blocks of x (i.e., there is no other sensitive block that is disjoint from all of
S1, . . . , Sk), then S1 ∪ · · · ∪ Sk is a certificate for f(x).

d. Let bsx(f) denote the largest possible number of disjoint sensitive blocks of x, and let bs(f) :=
maxx∈{0,1}n bsx(f) (this is called the block sensitivity of f). Call a sensitive block S minimal
if no subset of S is sensitive. Show that if S is a minimal sensitive block of some input, then
|S| ≤ bs(f).

e. Prove that C(f) ≤ bs(f)2.

f. Let x ∈ {0, 1}n have disjoint sensitive blocks S1, . . . , Sbs(f). For any y ∈ {0, 1}bs(f), let x[y]

denote x with xi replaced by x̄i if i ∈ Sj and yj = 1 for some j ∈ {1, . . . ,bs(f)}. Given
a polynomial p : {0, 1}n → R, define a polynomial p′ : {0, 1}bs(f) → R by p′(y) := p(x[y]).
Explain why deg(p′) ≤ deg(p).

g. Prove that d̃eg(f) = Ω(
√

bs(f)). (Hint: Generalize the proof that d̃eg(or) = Ω(
√
n), using

p′ in place of the original approximating polynomial p.)

h. Conclude that Q(f) = Ω(D(f)1/8), where D(f) denotes the deterministic classical query
complexity of f .

3

