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LECTURE 2: The abelian QFT and phase estimation

Quantum Fourier transform

Perhaps the most important unitary transformation in quantum computing is the quantum Fourier
transform (QFT). Later, we will discuss the QFT over arbitrary finite groups, but for now we will
focus on the case of an abelian group G. Here the transformation is

FG :=
1√
|G|

∑
x∈G

∑
y∈Ĝ

χy(x)|y〉〈x| (1)

where Ĝ is a complete set of characters of G, and χy(x) denotes the yth character of G evaluated
at x. (You can verify that this is a unitary operator using the orthogonality of characters.) Since
G and Ĝ are isomorphic, we can label the elements of Ĝ using elements of G, and it is often useful
to do so.

The simplest QFT over a family of groups is the QFT over G = Zn2 . The characters of this
group are χy(x) = (−1)x·y, so the QFT is simply

FZn
2

=
1√
2n

∑
x,y∈Zn

2

(−1)x·y|y〉〈x| = H⊗n. (2)

You have presumably seen how this transformation is used in the solution of Simon’s problem.

QFT over Z2n

A more complex quantum Fourier transform is the QFT over G = Z2n :

FZ2n
=

1√
2n

∑
x,y∈Z2n

ωxy2n |y〉〈x| (3)

where ωm := exp(2πi/m) is a primitive mth root of unity. To see how to realize this transformation
by a quantum circuit, it is helpful to represent the input x as a string of bits, x = xn−1 . . . x1x0,
and to consider how an input basis vector is transformed:

|x〉 7→ 1√
2n

∑
y∈Z2n

ωxy2n |y〉 (4)

=
1√
2n

∑
y∈Z2n

ω
x(

∑n−1
k=0 yk2

k)
2n |yn−1 . . . y1y0〉 (5)

=
1√
2n

∑
y∈Z2n

n−1∏
k=0

ωxyk2
k

2n |yn−1 . . . y1y0〉 (6)

=
1√
2n

n−1⊗
k=0

∑
yk∈Z2

ωxyk2
k

2n |yk〉 (7)

=
n−1⊗
k=0

|zk〉 (8)
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where

|zk〉 :=
1√
2

∑
yk∈Z2

ωxyk2
k

2n |yk〉 (9)

=
1√
2

(|0〉+ ωx2
k

2n |1〉) (10)

=
1√
2

(|0〉+ ω
∑n−1

j=0 xj2
j+k

2n |1〉) (11)

=
1√
2

(|0〉+ e2πi(x02
k−n+x12k+1−n+···+xn−1−k2

−1)|1〉). (12)

(A more succinct way to write this is |zk〉 = 1√
2
(|0〉 + ωx

2n−k |1〉), but the above expression is more

helpful for understanding the circuit.) In other words, F |x〉 is a tensor product of single-qubit
states, where the kth qubit only depends on the k least significant bits of x.

This decomposition immediately gives a circuit for the QFT over Z2n . Let Rk denote the
single-qubit unitary operator

Rk :=

(
1 0
0 ω2k

)
. (13)

Then the circuit can be written as follows:

|x0〉 · · · • · · · • · · · • H |zn−1〉

|x1〉 · · · • · · · • · · · H R2 |zn−2〉

...
... . .

.
. .
. ...

...

|xn−3〉 • · · · • · · · · · · |z2〉
|xn−2〉 • · · · H R2 · · · Rn−2 Rn−1 · · · |z1〉

|xn−1〉 H R2 R3 · · · Rn−1 Rn · · · · · · |z0〉

This circuit uses O(n2) gates. However, there are many rotations by small angles that do not
affect the final result very much. If we simply omit the gates Rk with k = Ω(log n), then we obtain
a circuit with O(n log n) gates that implements the QFT with precision 1/ poly(n).

Phase estimation

Aside from being directly useful in quantum algorithms, such as Shor’s algorithm, The QFT over
Z2n provides a useful quantum computing primitive called phase estimation. In the phase estimation
problem, we are given a unitary operator U (either as an explicit circuit, or as a black box that
lets us apply a controlled-U j operation for integer values of j). We are also given a state |φ〉 that
is promised to be an eigenvector of U , namely U |φ〉 = eiφ|φ〉 for some φ ∈ R. The goal is to output
an estimate of φ to some desired precision.

The procedure for phase estimation is straightforward. To get an n-bit estimate of φ, prepare
the quantum computer in the state

1√
2n

∑
x∈Z2n

|x, φ〉, (14)
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apply the operator ∑
x∈Z2n

|x〉〈x| ⊗ Ux (15)

to give the state
1√
2n

∑
x∈Z2n

eiφx|x, φ〉, (16)

apply an inverse Fourier transform on the first register, and measure. If the binary expansion of
φ/2π terminates after at most n bits (i.e., if φ = 2πy/2n for some y ∈ Z2n), then the state (16) is
F2n |y〉⊗|φ〉, so the result is guaranteed to be the binary expansion of φ/2π. In general, we obtain a
good approximation with high probability. (You have probably seen this kind of calculation before,
and we will see the details of a similar calculation when we discuss period finding.)

QFT over ZN and over a general finite abelian group

One useful application of phase estimation is to implement the QFT over an arbitrary cyclic group
ZN :

FZN
=

1√
N

∑
x,y∈ZN

ωxyN |y〉〈x|. (17)

The circuit we derived using the binary representation of the input and output only works when N
is a power of two (or, with a slight generalization, some other small integer). But there is a simple
way to realize FZN

(approximately) using phase estimation.

We would like to perform the transformation that maps |x〉 7→ |x̃〉, where |x̃〉 := FZN
|x〉 denotes

a Fourier basis state. (By linearity, if the transformation acts correctly on a basis, it acts correctly
on all states.) It is straightforward to perform the transformation |x, 0〉 7→ |x, x̃〉; then it remains
to erase the register |x〉 from such a state.

Consider the unitary operator that adds 1 modulo N :

U :=
∑
x∈ZN

|x+ 1〉〈x|. (18)

The eigenstates of this operator are precisely the Fourier basis states |x̃〉 := FZN
|x〉, since (as a

simple calculation shows)

F †ZN
UFZN

=
∑
x∈ZN

ωxN |x〉〈x|. (19)

Thus, using phase estimation on U (with n bits of precision where n = O(logN)), we can perform
the transformation

|x̃, 0〉 7→ |x̃, x〉 (20)

(actually, phase estimation only gives an approximation of x, so we implement this transformation
only approximately). By running this operation in reverse, we can erase |x〉, and thereby produce
the desired QFT.

Given the Fourier transform over ZN , it is straightforward to implement the QFT over an
arbitrary finite abelian group: any finite abelian group can be written as a direct product of cyclic
factors, and the QFT over a direct product of groups is simply the tensor product of QFTs over
the individual groups.
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