
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2011)

Andrew Childs, University of Waterloo

LECTURE 3: The HSP and Shor’s algorithm for discrete log

In this lecture we will discuss the discrete logarithm problem and its relevance to cryptography.
We will introduce the general hidden subgroup problem, and show how Shor’s algorithm solves a
particular instance of it, giving an efficient quantum algorithm for discrete log.

Discrete log

Let G = 〈g〉 be a cyclic group generated by g, written multiplicatively. Given an element x ∈ G, the
discrete logarithm of x in G with respect to g, denoted logg x, is the smallest non-negative integer
α such that gα = x. The discrete logarithm problem is the problem of calculating logg x.

Here are some simple examples of discrete logarithms:

• For any G = 〈g〉, logg 1 = 0

• For G = Z×7 , log3 2 = 2

• For G = Z×541, log126 282 = 101

The discrete logarithm seems like a good candidate for a one-way function. We can efficiently
compute gα, even if α is exponentially large (in log |G|), using repeated squaring. But given x,
it is not immediately clear how to compute logg x, other than by checking exponentially many
possibilities. (There are better algorithms than brute force search, but none is known that works
in polynomial time.)

Diffie-Hellman key exchange

The apparent hardness of the discrete logarithm problem is the basis of the Diffie-Hellman key
exchange protocol, the first published public-key cryptographic protocol.

The goal of key exchange is for two distant parties, Alice and Bob, to agree on a secret key
using only an insecure public channel. The Diffie-Hellman protocol works as follows:

1. Alice and Bob publicly agree on a large prime p and an integer g of high order. For simplicity,
suppose they choose a g for which 〈g〉 = Z×p (i.e., a primitive root modulo p). (In general,
finding such a g might be hard, but it can be done efficiently given certain restrictions on p.)

2a. Alice chooses some a ∈ Zp−1 uniformly at random. She computes A := ga mod p and sends
the result to Bob (keeping a secret).

2b. Bob chooses some b ∈ Zp−1 uniformly at random. He computes B := gb mod p and sends the
result to Alice (keeping b secret).

3a. Alice computes K := Ba mod p = gab mod p.

3b. Bob computes Ab mod p = gab mod p = K.

At the end of the protocol, Alice and Bob share a key K, and Eve has only seen p, g, A, and B.

The security of the Diffie-Hellman protocol relies on the assumption that discrete log is hard.
Clearly, if Eve can compute discrete logarithms, she can recover a and b, and hence the key. (Note

1

that it is an open question whether, given the ability to break the protocol, Eve can calculate
discrete logarithms, thoush some partial results in this direction are known.)

This protocol only provides a means of exchanging a secret key, not of sending private messages.
However, very similar ideas can be used to create a public-key cryptosystem (similar in spirit to
RSA).

The hidden subgroup problem

It turns out that discrete logarithms can be calculated efficiently on a quantum computer, rendering
cryptographic protocols such as Diffie-Hellman key exchange insecure. The quantum algorithm for
discrete log solves a particular instance of the hidden subgroup problem (HSP).

In the general HSP, we are given a black box function f : G → S, where G is a known group
and S is a finite set. The function is promised to satisfy

f(x) = f(y) if and only if x−1y ∈ H
i.e., y = xh for some h ∈ H

(1)

for some unknown subgroup H ≤ G. We say that such a function hides H. The goal of the HSP
is to learn H (say, specified in terms of a generating set) using queries to f .

It’s clear that H can in principle be reconstructed if we are given the entire truth table of f .
Notice in particular that f(1) = f(x) if and only if x ∈ H: the hiding function is constant on the
hidden subgroup, and does not take that value anywhere else.

But the hiding function has a lot more structure as well. If we fix some element g ∈ G with
g /∈ H, we see that f(g) = f(x) if and only if x ∈ gH, a left coset of H in G with coset representative
g. So f is constant on the left cosets of H in G, and distinct on different left cosets.

In the above definition of the HSP, we have made an arbitrary choice to multiply by elements
of H on the right, which is why the hiding function is constant on left cosets. We could just as well
have chosen to multiply by elements of H on the left, in which case the hiding function would be
constant on right cosets; the resulting problem would be equivalent. Of course, in the case where G
is abelian, we don’t need to make such a choice. For reasons that we will see later, this case turns
out to be considerably simpler than the general case; and indeed, there is an efficient quantum
algorithm for the HSP in any abelian group, whereas there are only a few nonabelian groups for
which efficient algorithms are known.

You should be familiar with Simon’s problem, the HSP with G = Zn2 and H = {0, s} for some
s ∈ Zn2 . There is a very simple quantum algorithm for this problem, yet one can prove that any
classical algorithm for finding s must query the hiding function exponentially many times (in n).
The gist of the argument is that, since the set S is unstructured, we can do no better than querying
random group elements so long as we do not know two elements x, y for which f(x) = f(y). But by
the birthday problem, we are unlikely to see such a collision until we make Ω(

√
|G|/|H|) random

queries.

A similar argument applies to any HSP with a large number of trivially intersecting subgroups.
More precisely, we have

Theorem. Suppose that G has a set H of N subgroups whose only common element is the identity.
Then a classical computer must make Ω(

√
N) queries to solve the HSP.

2

Proof. Suppose the oracle does not a priori hide a particular subgroup, but instead behaves adver-
sarially, as follows. On the `th query, the algorithm queries g`, which we assume to be different
from g1, . . . , g`−1 without loss of generality. If there is any subgroup H ∈ H for which gk /∈ gjH for
all 1 ≤ j < k ≤ ` (i.e., there is some consistent way the oracle could assign g` to an as-yet-unqueried
coset of a hidden subgroup from H), then the oracle simply outputs `; otherwise the oracle conceeds
defeat and outputs a generating set for some H ∈ H consistent with its answers so far (which must
exist, by construction).

The goal of the algorithm is to force the oracle to conceed, and we want to lower bound the
number of queries required. (Given an algorithm for the HSP in G, there is clearly an algorithm
that forces this oracle to conceed using only one more query.) Now consider an algorithm that
queries the oracle t times before forcing the oracle to conceed. This algorithm simply sees a fixed
sequence of responses 1, 2, . . . , t, so for the first t queries, the algorithm cannot be adaptive. But
observe that, regardless of which t group elements are queried, there are at most

(
t
2

)
values of

gkg
−1
j , whereas there are N possible subgroups in H. Thus, to satisfy the N conditions that for all

H ∈ H, there is some pair j, k such that gkg
−1
j ∈ H, we must have

(
t
2

)
≥ N , i.e., t = Ω(

√
N).

Note that there are cases where a classical algorithm can find the hidden subgroup with a
polynomial number of queries. In particular, since a classical computer can easily test whether a
certain subgroup is indeed the hidden one, the HSP is easy for a group with only a polynomial
number of subgroups. Thus, for example, a classical computer can easily solve the HSP in Zp for
p prime (since it has only 2 subgroups) and in Z2n (since it has only n+ 1 subgroups).

Shor’s algorithm

Now we will see how Shor’s algorithm can be used to calculate discrete logarithms. This is a nice
example because it’s simpler than the factoring algorithm, but the problem it solves is actually at
least as hard: factoring N can be reduced to calculating discrete log in Z×N . (Unfortunately, this
does not by itself give a quantum algorithm for factoring, because Shor’s algorithm for discrete log
in G requires us to know the order of G—but computing |Z×N | = φ(N) is as hard as factoring N .)

Recall that we are given some element x of a cyclic group G = 〈g〉, we would like to calculate
logg x, the smallest integer α such that gα = x. For simplicity, let us assume that the order of G,
N := |G|, is known. (For example, if G = Z×p , then we know N = p − 1. In general, if we do not
know N , we can learn it using Shor’s period-finding algorithm, but we will not discuss that here.)
We can also assume that x 6= g (i.e., logg x 6= 1), since it is easy to check whether this is the case.

The discrete log problem can be cast as an abelian HSP in the (additive) group ZN×ZN . Define
a function f : ZN × ZN → G as follows:

f(α, β) = xαgβ. (2)

Since f(α, β) = gα logg x+β, f is constant on the lines

Lγ := {(α, β) ∈ Z2
N : α logg x+ β = γ}. (3)

In other words, it hides the subgroup

H = L0 = {(0, 0), (1,− logg x), (2,−2 logg x), . . . , (N − 1,−(N − 1) logg x)}. (4)

3

The cosets of H in ZN × ZN are of the form (γ, δ) + H with γ, δ ∈ ZN . In particular, the set of
cosets of the form

(0, δ) +H = {(α, δ − α logg x) : α ∈ ZN} = Lδ (5)

varying over all δ ∈ ZN gives a complete set of cosets (so the set {0} × ZN is a complete set of
coset representatives, i.e., a transversal of H in ZN × ZN).

Shor’s algorithm for finding H proceeds as follows. We start from the uniform superposition
over ZN × ZN and compute the hiding function:

|ZN × ZN 〉 :=
1

N

∑
α,β∈ZN

|α, β〉 7→ 1

N

∑
α,β∈ZN

|α, β, f(α, β)〉. (6)

Next we discard the third register. To see what this does, it may be conceptually helpful
to imagine that we actually measure the third register. Then the post-measurement state is a
superposition over group elements consistent with the observed function value, which by definition
is some coset of H. In particular, if the measurement outcome is gδ, we are left with the coset state
corresponding to (0, δ) +H, namely

|(0, δ) +H〉 = |Lδ〉 =
1√
N

∑
α∈ZN

|α, δ − α logg x〉 (7)

However, note that the measurement outcome is unhelpful: each possible value occurs with
equal probability, and we cannot obtain δ from gδ unless we know how to take discrete logarithms.
This is why we may as well simply discard the third register, leaving the system in the mixed state
described by the ensemble of pure states (7) where δ is uniformly random and unknown.

Now we can exploit the symmetry of the quantum state by performing a QFT over ZN × ZN ;
then the state becomes

1

N3/2

∑
α,µ,ν∈ZN

ω
µα+ν(δ−α logg x)

N |µ, ν〉 =
1

N3/2

∑
µ,ν∈ZN

ωνδN
∑
α∈ZN

ω
α(µ−ν logg x)
N |µ, ν〉, (8)

and using the identity
∑

α∈ZN
ωαβN = Nδβ,0, we have

1√
N

∑
ν∈ZN

ωνδN |ν logg x, ν〉. (9)

Now suppose we measure this state in the computational basis. Then we obtain some pair
(ν logg x, ν) for uniformly random ν ∈ ZN . If ν has a multiplicative inverse modulo N , we can
divide the first register by ν to get the desired answer. If ν does not have a multiplicative inverse,
we simply repeat the entire procedure again. The probability of success for each independent at-
tempt is φ(N)/N = Ω(1/ log logN), so we don’t have to repeat the procedure many times before
we find an invertible ν.

This algorithm can be carried out for any cyclic group G so long as we have a unique repre-
sentation of the group elements, and we are able to efficiently compute products in G. (We need
to be able to compute high powers of a group element, but recall that this can be done quickly by
repeated squaring.)

4

