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LECTURE 8: Fourier analysis in nonabelian groups

We have seen that hidden subgroup states contain sufficient information to determine the hidden
subgroup. Now we would like to know whether this information can be extracted efficiently. In this
lecture, we will introduce the theory of Fourier analysis over general groups, an important tool for
getting a handle on this problem.

A brief introduction to representation theory

To understand nonabelian Fourier analysis, we first need to introduce some notions from group
representation theory. For further information on this subject, a good basic reference is the book
Linear Representations of Finite Groups by Serre.

A linear representation (or simply representation) of a group G over the vector space Cn is a
homomorphism σ : G → GL(Cn), i.e., a map from group elements to nonsingular n × n complex
matrices satisfying σ(x)σ(y) = σ(xy) for all x, y ∈ G. Clearly, σ(1) = 1 and σ(x−1) = σ(x)−1. We
call Cn the representation space of σ, where n is called its dimension (or degree), denoted dσ.

Two representations σ and σ′ with representation spaces Cn are called isomorphic (denoted
σ ∼ σ′) if there is an invertible linear transformation M ∈ Cn×n such that Mσ(x) = σ′(x)M for all
x ∈ G. Otherwise they are called non-isomorphic (denoted σ 6∼ σ′). In particular, representations
of different dimensions are non-isomorphic. Every representation of a finite group is isomorphic to
a unitary representation, i.e., one for which σ(x)−1 = σ(x)† for all x ∈ G. Thus we can restrict our
attention to unitary representations without loss of generality.

The simplest representations are those of dimension one, such that σ(x) ∈ C with |σ(x)| = 1
for all x ∈ G. Every group has a one-dimensional representation called the trivial representation,
defined by σ(x) = 1 for all x ∈ G.

Two particularly useful representations of a group G are the left regular representation and the
right regular representation. Both of these representations have dimension |G|, and their represen-
tation space is the group algebra CG, the |G|-dimensional complex vector space spanned by basis
vectors |x〉 for x ∈ G. The left regular representation L satisfies L(x)|y〉 = |xy〉, and the right
regular representation R satisfies R(x)|y〉 = |yx−1〉. In particular, both regular representations are
permutation representations: each of their representation matrices is a permutation matrix.

Given two representations σ : G → V and σ′ : G → V ′, we can define their direct sum, a
representation σ ⊕ σ′ : G→ V ⊕ V ′ of dimension dσ⊕σ′ = dσ + dσ′ . The representation matrices of
σ ⊕ σ′ are block diagonal, of the form

(σ ⊕ σ′)(x) =

(
σ(x) 0

0 σ′(x)

)
(1)

for all x ∈ G.

A representation is called irreducible if it cannot be decomposed as the direct sum of two other
representations. Any representation of a finite group G can be written as a direct sum of irreducible
representations (or irreps) of G.

Another way to combine two representations is with the tensor product. The tensor product of
σ : G→ V and σ′ : G→ V ′ is σ⊗σ′ : G→ V ⊗V ′, a representation of G of dimension dσ⊗σ′ = dσdσ′ .
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The character of a representation σ is the function χσ : G→ C defined by χσ(x) := trσ(x). We
have

• χσ(1) = dσ (since σ(1) is Id, the d-dimensional identity matrix)

• χσ(x−1) = χσ(x)∗ (since we can assume that σ is unitary), and

• χσ(yx) = χσ(xy) for all x, y ∈ G (since the trace is cyclic).

In particular, χσ(yxy−1) = χσ(x), so characters are constant on conjugacy classes. For two repre-
sentations σ, σ′, we have χσ⊕σ′ = χσ + χσ′ and χσ⊗σ′ = χσ · χσ′ .

The most useful result in representation theory is probably Schur’s Lemma, which can be stated
as follows:

Theorem (Schur’s Lemma). Let σ and σ′ be two irreducible representations of G, and let M ∈
Cdσ×dσ′ be a matrix satisfying σ(x)M = Mσ′(x) for all x ∈ G. Then if σ 6∼ σ′, M = 0; and if
σ = σ′, M is a scalar multiple of the identity matrix.

Schur’s Lemma can be used to prove the following orthogonality relation for irreducible repre-
sentations:

Theorem (Orthogonality of irreps). For two irreps σ and σ′ of G, we have

dσ
|G|

∑
x∈G

σ(x)∗i,j σ
′(x)i′,j′ = δσ,σ′δi,i′δj,j′ , (2)

where we interpret δσ,σ′ to mean 1 if σ ∼ σ′, and 0 otherwise.

This implies a corresponding orthogonality relation for the irreducible characters (i.e., the char-
acters of the irreducible representations):

Theorem (Orthogonality of characters). For two irreps σ and σ′ of G, we have

(χσ, χσ′) :=
1

|G|
∑
x∈G

χσ(x)∗ χσ′(x) = δσ,σ′ . (3)

The characters of G supply an orthonormal basis for the space of class functions, functions that
are constant on conjugacy classes of G. (Recall that the characters themselves are class functions.)
This is expressed by the orthonormality of the character table of G, the square matrix whose rows
are labeled by irreps, whose columns are labeled by conjugacy classes, and whose entries are the
corresponding characters. The character orthogonality theorem says that the rows of this matrix
are orthonormal, provided each entry is weighted by the square root of the size of the corresponding
conjugagcy class divided by |G|. In fact the columns are orthonormal in the same sense.

Any representation of G can be broken up into its irreducible components. The regular repre-
sentations of G are useful for understanding such decompositions, since they contain every possible
irreducible representation of G, with each irrep occuring a number of times equal to its dimension.
Let Ĝ denote a complete set of irreps of G (which are unique up to isomorphism). Then we have

L ∼=
⊕
σ∈Ĝ

(
σ ⊗ Idσ

)
, R ∼=

⊕
σ∈Ĝ

(
Idσ ⊗ σ∗

)
. (4)

In fact, this holds with the same isomorphism for both L and R, since the left and right regular
representations commute. This isomorphism is simply the Fourier transform over G, which we
discuss further below.
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Considering χL(1) = χR(1) = |G| and using this decomposition, we find the well-known identity∑
σ∈Ĝ

d2σ = |G|. (5)

Also, noting that χL(x) = χR(x) = 0 for any x ∈ G \ {1}, we see that∑
σ∈Ĝ

dσ χσ(x) = 0. (6)

In general, the multiplicity of the irrep σ ∈ Ĝ in an arbitrary representation τ of G is given by
µτσ := (χσ, χτ ). This gives the decomposition

τ ∼=
⊕
σ∈Ĝ

σ ⊗ Iµτσ . (7)

Characters also provide a simple test for irreducibility: for any representation σ, (χσ, χσ) is a
positive integer, and is equal to 1 if and only if σ is irreducible.

Any representation σ of G can also be viewed as a representation of any subgroup H ≤ G, simply
by restricting its domain to elements of H. We denote the resulting restricted representation by
ResGH σ. Even if σ is irreducible over G, it may not be irreducible over H.

Fourier analysis for nonabelian groups

The Fourier transform is a unitary transformation from the group algebra, CG, to a complex vector
space whose basis vectors correspond to matrix elements of the irreps of G,

⊕
σ∈Ĝ(Cdσ⊗Cdσ). These

two spaces have the same dimension by (5).

The Fourier transform of the basis vector |x〉 ∈ CG corresponding to the group element x ∈ G
is a weighted superposition over all irreducible representations σ ∈ Ĝ, namely

|x̂〉 :=
∑
σ∈Ĝ

dσ√
|G|
|σ, σ(x)〉, (8)

where |σ〉 is a state that labels the irreducible representation, and |σ(x)〉 is a normalized, d2σ-
dimensional state whose amplitudes correspond to the entries of the matrix σ(x)/

√
dσ:

|σ(x)〉 :=

dσ∑
j,k=1

σ(x)j,k√
dσ
|j, k〉. (9)

(If σ is one-dimensional, then |σ(x)〉 is simply a phase factor σ(x) = χσ(x) ∈ C with |σ(x)| = 1.)
The Fourier transform over G is the unitary matrix

FG :=
∑
x∈G
|x̂〉〈x| (10)

=
∑
x∈G

∑
σ∈Ĝ

√
dσ
|G|

dσ∑
j,k=1

σ(x)j,k |σ, j, k〉〈x|. (11)
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Note that the Fourier transform over G is not uniquely defined, but rather, depends on a choice of
basis for each irreducible representation.

It is straightforward to check that FG is indeed a unitary transformation. Using the identity

〈σ(y)|σ(x)〉 = trσ†(y)σ(x)/dσ (12)

= trσ(y−1x)/dσ (13)

= χσ(y−1x)/dσ, (14)

we have

〈ŷ|x̂〉 =
∑
σ∈Ĝ

d2σ
|G|
〈σ(y)|σ(x)〉 (15)

=
∑
σ∈Ĝ

dσ
|G|

χσ(y−1x). (16)

Hence by (5–6) above, we see that 〈ŷ|x̂〉 = δx,y.

FG is precisely the transformation that decomposes both the left and right regular represen-
tations of G into their irreducible components. Let us check this explicitly for the left regular
representation L. Recall that this representation satisfies L(x)|y〉 = |xy〉, so we have

L̂(x) := FG L(x)F †G (17)

=
∑
y∈G
|x̂y〉〈ŷ| (18)

=
∑
y∈G

∑
σ,σ′∈Ĝ

dσ∑
j,k=1

dσ′∑
j′,k′=1

√
dσdσ′

|G|
σ(xy)j,k σ

′(y)∗j′,k′ |σ, j, k〉〈σ′, j′, k′| (19)

=
∑
y∈G

∑
σ,σ′∈Ĝ

dσ∑
j,k,`=1

dσ′∑
j′,k′=1

√
dσdσ′

|G|
σ(x)j,` σ(y)`,k σ

′(y)∗j′,k′ |σ, j, k〉〈σ′, j′, k′| (20)

=
∑
σ∈Ĝ

dσ∑
j,k,`=1

σ(x)j,` |σ, j, k〉〈σ, `, k| (21)

=
⊕
σ∈Ĝ

(
σ(x)⊗ Idσ

)
, (22)

where in the fourth line we have used the orthogonality relation for irreducible representations.

A similar calculation can be done for the right regular representation defined by R(x)|y〉 =
|yx−1〉, giving

R̂(x) := FGR(x)F †G (23)

=
⊕
σ∈Ĝ

(
Idσ ⊗ σ(x)∗

)
. (24)

This identity will be useful when analyzing the application of the quantum Fourier transform to
the hidden subgroup problem.
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To use the Fourier transform as part of a quantum computation, we must be able to implement
it efficiently by some quantum circuit. Efficient quantum circuits for the quantum Fourier transform
are known for many, but not all, nonabelian groups. Groups for which an efficient QFT is known
include metacyclic groups (i.e., semidirect products of cyclic groups), such as the dihedral group; the
symmetric group; and many families of groups that have suitably well-behaved towers of subgroups.
There are a few notable groups for which efficient QFTs are not known, such as the general linear
group GLn(q) of n× n invertible matrices over Fq, the finite field with q elements.
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