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LECTURE 11: The HSP in the Heisenberg group

We showed that the quantum query complexity of the general hidden subgroup problem is poly-

nomial by measuring ρ
⊗ poly(log |G|)
H using a particular measurement strategy (the pretty good mea-

surement) that identifies H with high probability. One strategy for finding an efficient quantum
algorithm for the HSP is to find an efficient way of implementing that particular measurement. In
this lecture, we will describe an efficient quantum algorithm for the HSP in the Heisenberg group
that effectively implements the pretty good measurement.

The Heisenberg group

There are several different ways to define the Heisenberg group. For those familiar with quantum
error correcting codes on higher-dimensional systems, perhaps the most familiar definition is as
follows. Given a prime number p, define operators X and Z acting on an orthonormal basis of
states {|x〉 : x ∈ Zp} by

X|x〉 = |x+ 1 mod p〉 (1)

Z|x〉 = ωxp |x〉. (2)

These operators satisfy the relation ZX = ωpXZ. Using this relation, any product of X’s and Z’s
can be written in the form ωapX

bZc, where a, b, c ∈ Zp. Thus the operators X and Z generate a
group of order p3, which is precisely the Heisenberg group. Writing the group elements in the form
(a, b, c) with a, b, c ∈ Zp, it is straightforward to work out the group law

(a, b, c) · (a′, b′, c′) = (a+ a′ + b′c, b+ b′, c+ c′). (3)

Equivalently, the Heisenberg group is the group of lower triangular 3× 3 matrices
1 0 0
b 1 0
a c 1

 : a, b, c ∈ Fp

 (4)

over Fp, and the semidirect product Z2
p oϕ Zp, where ϕ : Zp → Aut(Z2

p) is defined by ϕ(c)(a, b) =
(a+ bc, b).

To solve the HSP in the Heisenberg group, it is sufficient to be able to distinguish the following
cyclic subgroups of order p:

Ha,b := 〈(a, b, 1)〉 = {(a, b, 1)x : x ∈ Zp}. (5)

The reduction to this case is essentially the same as the reduction of the dihedral hidden subgroup
problem to the case of a hidden reflection, so we omit the details. The elements of such a subgroup
are

(a, b, 1)2 = (2a+ b, 2b, 2) (6)

(a, b, 1)3 = (a, b, 1)(2a+ b, 2b, 2) = (3a+ 3b, 3b, 3) (7)

(a, b, 1)4 = (a, b, 1)(3a+ 3b, 3b, 3) = (4a+ 6b, 4b, 4) (8)

(a, b, 1)5 = (a, b, 1)(4a+ 6b, 4b, 4) = (5a+ 10b, 5b, 5) (9)
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etc., and a straightforward inductive argument shows that a general element has the form

(a, b, 1)x = (xa+
(
x
2

)
b, xb, x). (10)

Furthermore, it is easy to see that the p2 elements (`,m, 0) for `,m ∈ Z2
p form a left transversal of

Ha,b in the Heisenberg group for any a, b ∈ Zp.

Fourier sampling

Suppose we are given a function that hides Ha,b in the Heisenberg group. Then the standard
method can be used to produce the coset state

|(`,m, 0)Ha,b〉 =
1
√
p

∑
x∈Zp

|`+ xa+
(
x
2

)
b,m+ xb, x〉 (11)

for some uniformly random, unknown `,m ∈ Zp. Our goal is to determine the parameters a, b ∈ Zp
using the ability to produce such states.

At this point, we could perform weak Fourier sampling over the Heisenberg group without
discarding any information. However, as in the case of the dihedral group, it will be simpler to
consider an abelian Fourier transform instead of the full nonabelian Fourier transform. Using the
representation theory of the Heisenberg group, one can show that this procedure is essentially
equivalent to nonabelian Fourier sampling.

Fourier transforming the first two registers over Z2
p, we obtain the state

(FZp ⊗ FZp ⊗ Ip)|(`,m, 0)Ha,b〉 =
1

p3/2

∑
x,s,t∈Zp

ω
s(`+xa+(x2)b)+t(m+xb)
p |s, t, x〉. (12)

Now suppose we measure the values s, t appearing in the first two registers. In fact this can be
done without loss of information, since the density matrix of the state (mixed over the uniformly
random values of `,m) is block diagonal, with blocks labeled by s, t. Collecting the coefficients of
the unknown parameters a, b, the resulting p-dimensional quantum state is

|Ĥa,b;s,t〉 :=
1
√
p

∑
x∈Zp

ω
s(xa+(x2)b)+t(xb)
p |x〉 (13)

=
1
√
p

∑
x∈Zp

ω
a(sx)+b(s(x2)+tx)
p |x〉. (14)

where the values s, t ∈ Zp are known, and are obtained uniformly at random. We would like to use
samples of this state to determine a, b ∈ Zp.

Two states are better than one

With only one copy of this state, there is insufficient information to recover the hidden subgroup:
Holevo’s theorem guarantees that a measurement on a p-dimensional quantum state can reliably
communicate at most p different outcomes, yet there are p2 possible values of (a, b) ∈ Z2

p. Thus
we have to use at least two copies of the state. One can show that there exist single-register
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measurements on this state that yield enough information to recover a, b with poly(log p) samples—
in fact, a random measurement has this property with high probability. But no single-register
measurement is known from which a and b can be extracted efficiently (i.e., in time poly(log p)).

However, by making a joint measurement on two copies of the state, we can recover the infor-
mation about a, b that is encoded in a quadratic function in the phase. To see this, consider the
two-copy state

|Ĥa,b;s,t〉 ⊗ |Ĥa,b;u,v〉 =
1

p

∑
x,y∈Zp

ω
a(sx+uy)+b(s(x2)+tx+u(

y
2)+vy)

p |j, j′〉 (15)

=
1

p

∑
x,y∈Zp

ωαa+βbp |x, y〉, (16)

where

α := sx+ uy (17)

β := s
(
x
2

)
+ tx+ u

(
y
2

)
+ vy (18)

and where we suppress the dependence of α, β on s, t, u, v, x, y for clarity. If we could replace |x, y〉
by |α, β〉, then the resulting state would be simply the Fourier transform of |a, b〉, and an inverse
Fourier transform would reveal the solution. So let’s compute the values of α, β in ancilla registers,
giving the state

1

p

∑
x,y∈Zp

ωαa+βbp |x, y, α, β〉, (19)

and attempt to uncompute the first two registers.

For fixed values of α, β, s, t, u, v ∈ Zp, the quadratic equations (17)–(18) could have zero, one, or
two solutions x, y ∈ Zp. Thus we cannot hope to erase the first and second registers by a classical
procedure conditioned on the values in the third and fourth registers (and the known values of
s, t, u, v). However, it is possible to implement a quantum procedure to erase the first two registers
by considering the full set of solutions

Ss,t,u,vα,β := {(x, y) ∈ Z2
p : sx+ uy = α and s

(
x
2

)
+ tx+ u

(
y
2

)
+ vy = β}. (20)

The state (19) can be rewritten

1

p

∑
x,y∈Zp

ωαa+βbp

√
|Ss,t,u,vα,β | |Ss,t,u,vα,β , α, β〉, (21)

where we use the convention that |S〉 :=
∑

s∈S |s〉/
√
|S| denotes the normalized uniform superpo-

sition over the elements of the set S. Thus, if we could perform a unitary transformation satisfying

|Ss,t,u,vα,β 〉 7→ |α, β〉 for |Ss,t,u,vα,β | 6= 0 (22)

(and defined in any way consistent with unitarity for other values of α, β), we could erase the first
two registers of (19), producing the state

1

p

∑
α,β∈Zp

ωαa+βbp

√
|Ss,t,u,vα,β | |α, β〉. (23)
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(Note that in fact we could just apply the transformation (22) directly to the state (16); there is
no need to explicitly compute the values α, β in an ancilla register.)

We refer to the inverse of the transformation (22) as quantum sampling, since the goal is to
produce a uniform superposition over the set of solutions, a natural quantum analog of random
sampling from those solutions.

Since the system of equations (17)–(18) consists of a pair of quadratic equations in two vari-
ables over Fp, it has either zero, one, or two solutions x, y ∈ Fp. In particular, a straightforward
calculation shows that the solutions can be expressed in closed form as

x =
αs+ sv − tu±

√
∆

s(s+ u)
y =

αu+ tu− sv ∓
√

∆

u(s+ u)
(24)

where
∆ := (2βs+ αs− α2 − 2αt)(s+ u)u+ (αu+ tu− sv)2. (25)

Provided su(s + u) 6= 0, the number of solutions is completely determined by the value of ∆. If
∆ is a nonzero square in Fp, then there are two distinct solutions; if ∆ = 0 then there is only
one solution; and if ∆ is a non-square then there are no solutions. In any event, since we can
efficiently compute an explicit list of solutions in each of these cases, we can efficiently perform the
transformation (22).

It remains to show that the state (23) can be used to recover a, b. This state is close to the
Fourier transform of |a, b〉 provided the solutions are nearly uniformly distributed. Since the values
of s, t, u, v are uniformly distributed over Fp, it is easy to see that ∆ is uniformly distributed over
Fp. This means that ∆ is a square about half the time, and is a non-square about half the time
(with ∆ = 0 occurring only with probability 1/p). Thus there are two solutions about half the
time and no solutions about half the time. This distribution of solutions is uniform enough for the
procedure to work.

Applying the inverse quantum Fourier transform over Zp × Zp, we obtain the state

1

p2

∑
α,β,k,`∈Zp

ωα(a−k)+β(b−`)p

√
|Ss,t,u,vα,β | |k, `〉. (26)

Measuring this state, the probability of obtaining the outcome k = a and ` = b for any particular
values of s, t, u, v is

1

p4

 ∑
α,β∈Zp

√
|Ss,t,u,vα,β |

2

. (27)

Since those values occur uniformly at random, the overall success probability of the algorithm is

1

p8

∑
s,t,u,v∈Zp

 ∑
α,β∈Zp

√
|Ss,t,u,vα,β |

2

≥ 1

p12

 ∑
s,t,u,v∈Zp

∑
α,β∈Zp

√
|Ss,t,u,vα,β |

2

(28)

≥ 1

p12

 ∑
α,β∈Zp

p4

2 + o(1)

√
2

2

(29)

=
1

2
(1− o(1)), (30)

which shows that the algorithm succeeds with probability close to 1/2.
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