
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2011)

Andrew Childs, University of Waterloo

LECTURE 16: Quantum walk algorithm for element distinctness

In this lecture we will discuss the algorithm that cemented the importance of quantum walk as
a tool for quantum query algorithms: Ambainis’s algorithm for the element distinctness problem.
The key new conceptual idea of this algorithm is to consider walks that store information obtained
from many queries at each vertex, but that do not require many queries to update this information
for an adjacent vertex.

Element distinctness

In the element distinctness problem, we are given a black-box function f : {1, . . . , n} → S, where S
is some finite set. The goal is to determine whether there are two distinct inputs x, y ∈ {1, . . . , n}
such that f(x) = f(y).

It is clear that a classical algorithm must make Ω(n) queries to solve the problem, since deciding
whether there is such a pair is at least as hard as unstructured search (suppose we give the additional
promise that if there is a pair, it will be with x = 1 for which f(1) = 1; then we must search for
a y ∈ {2, . . . , n} for which f(y) = 1). By the same argument, there is a quantum lower bound for
element distinctness of Ω(

√
n).

There is a simple quantum algorithm that uses Grover’s algorithm recursively to improve upon
the trivial running time of O(n). To see how this algorithm works, first consider the following
subroutine. Query f in ` randomly chosen places, and check whether one of these ` places belongs
to a pair of inputs that map to the same value by performing a Grover search on the remaining
n − ` inputs. The initial setup takes ` queries, and the Grover search takes O(

√
n − `) = O(

√
n)

queries, for a total of `+O(
√
n). This subroutine fails most of the time, since it is likely that the

random choice of ` inputs will be unlucky, but it succeeds with probability at least `/n. To boost
the success probability, we can use amplitude amplification, which takes O(

√
n/`) steps to boost

the success probability to a constant. Overall, we can obtain success probability Ω(1) using

(`+
√
n)
√
n/` =

√
n`+ n/

√
` (1)

queries. To optimize the query complexity, we set the two terms to be equal, giving ` =
√
n

and hence a query complexity of O(n3/4). (Note that an analysis of the running time of this
algorithm would include extra logarithmic factors, since the inner use of Grover’s algorithm must
check whether an element against ` queried function values, which can be done in time O(log `)
provided S is ordered and we initially sort the queried values.)

So far, we have a quantum upper bound of O(n3/4), and a quantum lower bound of Ω(n1/2).
It turns out that both of these can be improved. On the lower bound side, Aaronson and Shi
proved an Ω(n1/3) lower bound for the closely-related collision problem, in which the goal is to
distinguish one-to-one from two-to-one functions. This implies an Ω(n2/3) lower bound for element
distinctness by the following reduction. Suppose we randomly choose

√
n inputs of the collision

problem function and run the element distinctness algorithm on them. If the function is two-to-one,
then there is some pair of elements in this set mapping to the same value with high probability
(by the birthday problem), which the element distinctness algorithm will detect. Hence a k-query
element distinctness algorithm implies an O(

√
k)-query collision algorithm; or equivalently, a k-

query collision lower bound implies an Ω(k2) element distinctness lower bound.

1



Now the question remains, can we close the gap between the O(n3/4) upper bound and this
Ω(n2/3) lower bound? Ambainis’s quantum walk algorithm does exactly this.

Quantum walk algorithm

The idea of Ambainis’s algorithm is to quantize a walk on the Johnson graph J(n,m), where m is
chosen appropriately. This graph has

(
n
m

)
vertices corresponding to subsets of {1, 2, . . . , n} of size

m, and two vertices are connected by an edge if the subsets differ in exactly one element.

To simplify the analysis slightly, we will use a different graph, the Hamming graph H(n,m).
The vertices of this graph are the m-tuples of values from {1, 2, . . . , n} (so there are nm vertices).
Two vertices are connected by an edge if they differ in exactly one coordinate. There are two main
differences between the Johnson and Hamming graphs: the Hamming graph allows for repeated
elements, and the order of elements is significant. Neither of these differences significantly affects
the performance of the algorithm.

At each vertex, we store the values of the function at the corresponding inputs. In other words,
the vertex (x1, x2, . . . , xm) ∈ {1, 2, . . . , n}m is represented by the state

|x1, x2, . . . , xm, f(x1), f(x2), . . . , f(xm)〉. (2)

To prepare such states, we must query the black-box function. In particular, to prepare an initial
superposition over vertices of this graph takes m queries. However, we can move from one vertex
to an adjacent vertex using only two queries: to replace x by y in any particular coordinate, we
use one query to erase f(x) and another to compute f(y).

In this search problem, the marked vertices are those containing some x 6= y with f(x) = f(y).
Notice that, given the stored function values, we can check whether we are at a marked vertex with
no additional queries. The total number of marked vertices (in the case where the elements are not
all distinct) is at least m(m− 1)(n− 2)m−2, so the fraction of marked vertices is

ε ≥ m(m− 1)(n− 2)m−2

nm
. (3)

To analyze the walk, we also need the eigenvalues of the relevant Markov chain. The adjacency
matrix of the Hamming graphH(n,m) isA =

∑m
i=1(J−I)(i), where J denotes the n×n all 1s matrix,

and the superscript indicates that this matrix acts on the ith coordinate. The eigenvalues of J are n
and 0, so the eigenvalues of J−I are n−1 and −1. Hence the largest eigenvalue of A is m(n−1) (the
degree of any vertex ofH(n,m)) and the second largest eigenvalue is (m−1)(n−1)−1 = m(n−1)−n.
Normalizing by the degree, we see that the second largest eigenvalue of the stochastic matrix
A/m(n− 1) is (m(n− 1)− n)/m(n− 1) = 1− n/m(n− 1). In other words, the spectral gap is

δ =
n

m(n− 1)
. (4)

Finally, how many queries does this algorithm use? Taking into account the initial m queries
used to prepare the starting state and the 2 queries per step of the walk, we have a total number
of queries

m+ 2 ·O
(

1√
δε

)
= m+O

(√
m(n− 1)

n

√
nm

m(m− 1)(n− 2)m−2

)
(5)

= m+O

(
n√
m

)
. (6)

2



Again we can set the two terms equal to optimize the performance. We have m3/2 = O(n), so we
should take m = Θ(n2/3). Then the total number of queries is O(n2/3), which matches the lower
bound, and hence is optimal.

Note that for the classical random walk search algorithm that we have quantized, the correspond-
ing query complexity is m + O(n2/m), which is optimized by m = n. This gives no improvement
over querying every input, as we knew must be the case.

Quantum walk search algorithms with auxiliary data

Algorithms based on similar ideas turn out to be useful for a wide variety of problems, including
deciding whether a graph contains a triangle (or various other related graph properties), checking
matrix multiplication, and testing whether a group is abelian. In general, as in the element dis-
tinctness case, we may need to store some data at each vertex, and we need to take into account
the operations on this data when analyzing the walk.

Suppose we have a setup cost S, a cost U to update the state after one step of the walk, and
a cost C to check whether a vertex is marked. For example, in Ambainis’s algorithm for element
distinctness, we had

S = m to query m positions (7)

U = 2 to remove one of the items and add another (8)

C = 0 since the function values for the subset are stored. (9)

In general, there is an algorithm to solve such a problem with total cost

S +
1√
δε

(U + C). (10)

It turns out that for some problems, when the checking cost C is much larger than the update
cost U , it is advantageous to take many steps of the walk on the unmarked graph before performing
a phase flip on the marked sites. This is how Ambainis’s algorithm originally worked, though for
element distinctness it is not actually necessary. Using this idea, one can give a general quantum
walk search algorithm with total cost

S +
1√
ε

(
1√
δ
U + C

)
. (11)

In fact, it is also possible to modify the general algorithm so that it finds a marked item when one
exists.

3


