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LECTURE 17: Quantum walk algorithm for formula evaluation

Grover’s algorithm for unstructured search can be viewed as evaluating the logical or of n bits
in O(

√
n) quantum queries. It is natural to ask about the quantum query complexity of other

Boolean functions. In this lecture we will describe a quantum walk algorithm that evaluates a
balanced binary and-or tree with n leaves in O(

√
n) quantum queries. In fact, a similar approach

shows that the quantum query complexity of evaluating any Boolean formula expressed in terms
of and, or, and not gates is

√
n1+o(1).

Games and formulas

Consider a two-player game between Andrea and Orlando that works as follows. The players
alternate turns, with Andrea going first and Orlando going second. On each turn there are d possible
moves, and there are a total of k turns. Suppose that the winner is determined by some black box
function f : {1, 2, . . . , d}k → {0, 1} indicating who wins the game (0 = Andrea, 1 = Orlando) after
a particular sequence of k moves. The goal is to determine who wins the game, assuming Andrea
and Orlando both play optimally.

This problem is equivalent to evaluating an and-or formula. Consider the tree of moves (a
balanced d-ary tree of height k) and let internal vertices evaluate to 0 or 1 depending on who wins
the game if the players start from the corresponding (partial) sequence of moves. Orlando wins if
he can make any move that leads to the outcome 1, so vertices representing his moves correspond
to or gates. Andrea wins if she can make any move that gives 0—i.e., she only loses if all her
moves give 1—so her vertices correspond to and gates.

What is the query complexity of evaluating this balanced d-ary and-or tree? Let us first
consider randomized classical algorithms. Notice that it is sometimes possible to avoid evaluating
all the leaves: for example, if we learn that one input to an and gate is 0, then we do not need to
evaluate the other inputs to know that the gate evaluates to 0. In the case where all inputs are 1,
we must evaluate all of them; but the inputs to an and gate are given by the outputs of or gates,
and an or gate evaluating to 1 is exactly the case where it is possible to learn the value of the
gate without knowing all of its inputs. Similarly, the hardest input to the or gate is precisely the
output of an and gate for which it is possible to learn the output without evaluating all inputs.

With these observations in mind, a sensible classical algorithm is as follows. Suppose that to
evaluate any given vertex of the tree, we guess a random child and evaluate it (recursively), only
evaluating other children when necessary. By analyzing a simple recurrence, one can show that
this algorithm uses

O

(d− 1 +
√
d2 + 14d+ 1

4

)k
 = O

(
nlogd

d−1+
√

d2+14d+1
4

)
(1)

queries, where n = dk is the input size (e.g., for d = 2, O(n0.753)). In fact, it is possible to show that
this algorithm is asymptotically optimal. Notice, in particular, that the classical query complexity
becomes larger as d is increased with n fixed. In the extreme case where k = 1, so that n = d, we
are simply evaluating the and gate, which is equivalent (by de Morgan’s laws) to evaluating an or
gate, and which we know takes Ω(n) queries.
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A quantum computer can evaluate such games faster if k is sufficiently small. Of course, the
k = 1 case is solved in O(

√
n) queries by Grover’s algorithm. By applying Grover’s algorithm

recursively, suitably amplifying the success probability, it is possible to evaluate the formula in√
nO(log n)k−1 queries, which is nearly optimal for constant k. This can be improved slightly to

O(
√
nck) queries for some constant c using a variant of Grover’s algorithm that allows noisy inputs.

But both of these algorithms are only close to tight when k is constant. Indeed, for very low degree
(such as d = 2, so that k = log2 n), nothing better than the classical algorithm was known until
2007. Here we will describe how to solve that problem in only O(

√
n) quantum queries.

NAND formulas

We will find it helpful to re-write the and-or tree in terms of nand gates. Note that x̄ = nand(x),
and

and(x1, x2, . . . , xn) = nand(nand(x1, x2, . . . , xn)) (2)

or(x1, x2, . . . , xn) = nand(nand(x1),nand(x2), . . . ,nand(xn)) (3)

(where the latter follows by de Morgan’s laws). Hence we can rewrite any formula using and, or,
and not gates solely in terms of nand gates. Then the formula can be specified simply by giving
a tree in which internal vertices correspond to nand gates on their children. Furthermore, we can
assume that all leaves of the tree correspond to 0 inputs, since a 1 input could be encoded using a
not gate (a nand gate on one input).

Notice that when we rewrite an and-or tree in terms of nand gates, negated outputs occur
together with negated inputs, and these pairs of successive not gates can be eliminated. In other
words, the and-or tree is equivalent to a balanced d-ary tree of nand gates, up to complementation
of the output and possibly the inputs (where latter depends on whether we have odd or even number
of levels k). Thus we can focus solely on evaluating this nand tree. Letting nand(v) denote the
value of the nand subformula under v, we are ultimately trying to compute nand(root).

Here we will focus on the case d = 2 (the balanced binary tree). Let H be the adjacency matrix
of the corresponding tree, with not gates added for inputs evaluating to 1. Note that this H
can be simulated with queries = (time)1+o(1) using sparse Hamiltonian techniques (it is a graph
of maximum degree 3 with the internal edges fixed, and the edges at the leaves specified by the
black box). Also, the corresponding discrete-time quantum walk can be simulated using a constant
number of queries per step. For either case, our goal is to show that the value of the formula affects
the spectrum of H in a way that can be detected using phase estimation.

Spectral analysis (qualitative version)

We would like to understand the spectrum of H. Since this is the adjacency matrix of a tree,
its spectrum can be understood recursively. In particular, considering the eigenvalue equation
H|E〉 = E|E〉 at the vertex v, we have

〈v|H|E〉 =
∑

w∈∂(v)

〈w|E〉 (4)

= 〈p|E〉+
∑
c

〈c|E〉 = E〈v|E〉 (5)
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where p is the parent of v, and the sum runs over children c of v (so there are 0, 1, or 2 terms in
the sum). In other words,

〈p|E〉 = E〈v|E〉 −
∑
c

〈c|E〉. (6)

We will see that eigenstates with small values of E play a special role, so let us first consider
the eigenstate of H with eigenvalue precisely E = 0. Denoting such a state as |ψ〉, we have

〈p|ψ〉 = −
∑
c

〈c|ψ〉. (7)

We claim that these states evaluate the nand tree in a certain sense. To understand this, let’s
analyze the case of a single nand gate.

First consider the case where both inputs are 0. Then nand(root) = 1, and the adjacency
matrix of the graph is

H =

0 1 1
1 0 0
1 0 0

 . (8)

This matrix has eigenvalues±
√

2 (with eigenvectors (± 1√
2
, 12 ,

1
2)) and 0 (with eigenvector (0, 1√

2
,− 1√

2
).

Notice that the 0 eigenvector has zero overlap on the root. In fact, we could see this without ex-
plicitly computing the eigenvectors because, applying (7) at either leaf,

〈root|ψ〉 = −
∑

children c of a leaf

〈c|ψ〉 = 0 (9)

as a leaf has no children.

Now suppose one (but only one) input is 1. Then we still have nand(root) = 1. In this case,
a direct calculation shows that there is no zero-energy eigenstate. But even without doing that
calculation, we can see that there is no zero-energy eigenstate with overlap on the root by applying
(7) as above at the leaf connected to the root.

Finally, suppose that both inputs are 1. Then we can see by inspection that there is a zero-
energy eigenstate with amplitude 1/

√
3 at the root and −1/

√
3 at the leaves, and 0 at the vertices

in between.

In general, the idea is to show that zero-energy eigenstates with support on the root exist
precisely when the formula evaluates to zero. In particular, let’s show

Theorem. If nand(root) = 0, then |〈root|ψ〉| > 0 for some |ψ〉 with H|ψ〉 = 0. If nand(root) = 1,
then 〈root|ψ〉 = 0 for any |ψ〉 with H|ψ〉 = 0.

Proof. First consider the case where the nand is 1. Here we can actually prove the statement where
the root is replaced by an arbitrary vertex p with nand(p) = 1. This is helpful both because it gives
us a stronger induction hypothesis, and because it will be useful for the case where nand(root) = 0.
Let’s use induction on the distance of p from a leaf.

The base case is where some child of p is a leaf. Then by (7) where v is that leaf, we have
〈p|ψ〉 = 0 as in (9).

For the induction step, we know that some child v of p has nand(v) = 0. Then both its children
c must have nand(c) = 1. Now by (7), 〈p|ψ〉 = −

∑
c〈c|ψ〉 = 0, since 〈c|ψ〉 = 0 by the induction

hypothesis.
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Now consider the case where nand(root) = 0. Here we use induction on the height of the tree.

In the base case, the tree is a single vertex. Then the only possible state is |ψ〉 = |root〉, which
is indeed a zero-energy eigenstate.

For the induction step, let’s construct the state |ψ〉. Consider each child v of the root in turn.
Let c be a fixed child of v with nand(c) = 0 (note that nand(root) = 0 implies nand(v) = 1 for
both children v of the root, so v cannot be a leaf, and must have some child c with nand(c) = 0).
By the induction hypothesis, we know there is some eigenstate of the subtree rooted at c with
nonzero overlap on c. Indeed this is also an eigenstate of the subtree rooted at v (assigning zero
amplitude to v and to everything under v that is not under c), since by the nand = 1 case the
eigenstates of the subtree rooted at v have zero overlap on v, which does not affect the eigenvalue
condition at c. Finally, construct an eigenstate of the entire tree from the eigenstates of the two
subtrees, with the amplitude at the root to be determined. Applying the eigenvalue condition (7),
we have 〈root|ψ〉 = −〈c|ψ〉 6= 0 (which can be rescaled if necessary to be the same for both subtrees)
as desired.

The algorithm

Having understood the qualitative features of the eigenstates of H, we are in a position to define the
formula evaluation algorithm. The basic idea is to perform phase estimation on the quantum walk
(either continuous- or discrete-time, although the continuous-time case is simpler) starting from
|root〉. If nand(root) = 0 then we measure a phase of 0 with probability at least |〈root|ψ〉|2, where
H|ψ〉 = 0. But if nand(root) = 1, then we are guaranteed to see a phase different from 0, provided
we estimate the phase to high enough precision. To understand the running time, we must make
the previous theorem quantitative: how large is |〈root|ψ〉|2 in the case where nand(root) = 0, and
how big is the gap from 0 in the case where nand(root) = 1?

In fact, we will need to modify the walk slightly: we attach a path of length two to the root
with a weight of α = n−1/4 on the edge to the new root. Notice that because the path has even
length, the value of nand(root) is unchanged. (There are other ways to obtain the same effect,
such as adding an unweighted path of even length of order

√
n, or adding a balanced binary tree,

but the weighted path of length 2 is perhaps the simplest choice.)

Notice that while this algorithm shares many features in common with the quantum walk search
algorithms we have seen so far, it does not exactly fall into Szegedy’s framework of quantum walk
search—for example there is no notion of “marked vertices.” Indeed, it is not possible to check
locally whether the formula evaluates to 0 or 1; one can show that that Ω(

√
n) leaves must be

evaluated to prove that the formula takes a certain value (this is called the certificate size or
nondeterministic complexity of the formula).

Spectral analysis (quantitative version)

To show that this algorithm works, one must give a quantitative analysis of the spectrum of H
showing that phase estimation with precision O(1/

√
n) suffices to distinguish nand(root) = 0 from

nand(root) = 1.

Theorem. If nand(root) = 0, then |〈root|ψ〉| ≥ 1√
2

for some |ψ〉 with H|ψ〉 = 0. If nand(root) =

1, then any |ψ〉 with H|ψ〉 = E|ψ〉, where E < 1
16
√
n

, has 〈root|ψ〉 = 0.
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Proof. First consider the case where nand(root) = 0. We already showed how to recursively
construct an eigenstate of the tree with nonzero overlap on the root (before adding a weighted path
of length 2 to the root). In the un-normalized eigenstate we constructed, every nonzero amplitude
was ±1, and there was only nonzero amplitude on every other level of the tree, with support on
twice as many vertices each time we move down two levels. Thus the total amplitude squared is at
most

(k/2)−1∑
i=0

2i = 2k/2 − 1 (10)

and, normalizing, we have amplitude at least 2−k/4 = n−1/4 on the root. For the tree with the
weighted path of length 2 added to the root, this gives an un-normalized eigenstate with |〈root|ψ〉| =
|〈c|ψ〉|/α ≥ 1 (where c is the grandchild of root, namely the root of the original tree). After
normalizing the final state, we find an overlap at least 1/

√
2 on the root.

Now consider the case where nand(root) = 1. Then one can show the following.

Lemma. Let c be the root of the original tree, and v its parent (the child of the root). Suppose
nand(c) = 1. Then for any eigenstate |E〉 with E < 1

16
√
n

(assuming E > 0 without loss of

generality, since the graph is bipartite), we have 0 > 〈c|E〉
〈v|E〉 ≥ −4

√
nE.

Given this lemma, we claim there is a contradiction if E < 1
16
√
n

and 〈root|E〉 6= 0. We are

assuming nand(root) = 1, so nand(v) = 0 and nand(c) = 1. Now consider the form of |E〉 as
determined by the eigenvalue condition. Since we are considering E 6= 0, we need to use the general
eigenvalue condition (6). Applying H at the root gives α〈v|E〉 = E〈root|E〉, and applying H at v
gives

α〈root|E〉+ 〈c|E〉 = E〈v|E〉 (11)

so

〈c|E〉
〈v|E〉

= E − α〈root|E〉
〈v|E〉

(12)

= E − α2

E
. (13)

Now by the Lemma, we have

E − α2

E
≥ −4

√
nE (14)

and since α2 = 1√
n

and
√
nE < 1

16 , we have

E ≥ 1√
nE
− 4
√
nE (15)

≥ 16− 1
4 (16)

which is a contradiction, since E < 1
16
√
n

.

It remains to establish the lemma. The analysis of the recursion is somewhat intricate, so we
omit the details here, and only describe the main idea. The strategy is to compute amplitude ratios
recursively from the leaves toward the root. Dividing the eigenvalue condition (6) by 〈v|E〉, we
have

〈p|E〉
〈v|E〉

= E −
∑
c

〈c|E〉
〈v|E〉

. (17)
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We claim that for small enough eigenvalues (E < 1
16
√
n

), the ratio 〈p|E〉〈v|E〉 is small and positive if

nand(v) = 0, and negative with large absolute value if nand(v) = 1.

A leaf v has nand(v) = 0. Since it has no children, (17) gives 〈p|E〉〈v|E〉 = E, which is indeed small.

For a non-leaf vertex with nand(v) = 0, both children c of v have nand(c) = 1, so we have

〈p|E〉
〈v|E〉

= E − 2

(
− 1

big

)
(18)

= E + 2× small (19)

which is small.

If nand(v) = 1, then at least one child c of v has nand(c) = 0. This could be an only child,
or the other child c′ could have nand(c′) = 0 or nand(c′) = 1; the weakest bound comes from the
latter case. Here equation (17) gives

〈p|E〉
〈v|E〉

= E − 1

small
−
(
− 1

big

)
(20)

≤ E − big + small (21)

which is negative, with large absolute value.

There are at least two ways of making this rigorous. The original paper [FGG] shows that an

appropriate amplitude ratio ( 〈p|E〉〈v|E〉 for nand(v) = 0 and 〈v|E〉
〈p|E〉 for nand(v) = 1) can only slightly

more than double in magnitude when moving two levels from the leaves toward the root; hence
the ratio can grow from E to at most of order

√
nE. The subsequent paper [ACRSZ] (which also

considers more general formulas) states explicit bounds on the amplitude ratios at arbitrary vertices
of the tree and establishes these bounds by induction, moving one level at a time.
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