ASSIGNMENT 4 CO 481/CS 467/PHYS 467 (Winter 2012)
Due in class on Thursday, March 8.

1. A fast approximate QFT.

(a) [2 points] In class, we saw a circuit implementing the n-qubit QFT using Hadamard and
controlled-Ry, gates, where Ry|z) = €2™%/2"|2) for # € {0,1}. How many gates in total

does that circuit use? Express your answer both exactly and using © notation.

(b) [3 points] Let CRj denote the controlled-Ry gate, CRi|x,y) = emey/zk\:n,w for x,y €
{0,1}. Show that E(CRy,I) < 2r/2%, where I denotes the 4 x 4 identity matrix, and where
E(U,V) = maxyy, [|[U[y) — V]i)|. You may use the fact that sinz < x for any x > 0.

(c) [5 points] Let F' denote the exact QFT on n qubits. Suppose that for some constant ¢, we
delete all the controlled- Ry, gates with k > logy(n)+c from the QFT circuit, giving a circuit
for another unitary operation, F. Show that E(F,F) < e for some e that is independent
of n, where € can be made arbitrarily small by choosing ¢ arbitrarily large. (Hint: Use
equation 4.3.3 of KLM.)

(d) [1 point] For a fixed ¢, how many gates are used by the circuit implementing F? It is
sufficient to give your answer using © notation.

2. Implementing the square root of a unitary.

(a) [1 point] Let U be a unitary operation with eigenvalues +1. Let Py be the projection onto
the 41 eigenspace of U and let P; be the projection onto the —1 eigenspace of U. Let
V = Py +iP;. Show that V2 = U.

(b) [2 points] Give a circuit of 1- and 2-qubit gates and controlled-U gates with the following
behavior (where the first register is a single qubit):

0)|) i Uly) = [¢)
(D) it Uly) = =[¢).

(c) [3 points] Give a circuit of 1- and 2-qubit gates and controlled-U gates that implements V.
Your circuit may use ancilla qubits that begin and end in the |0) state.

|0}|¢) = {

3. Finding a hidden slope. Let p be a prime number. Suppose you are given a black-box function
f:{0,1,...,p—1} x{0,1,....,p — 1} — {0,1,...,p — 1} such that f(z,y) = f(«',7/) if and
only if ¥’ —y = m(2’ — ) mod p for some unknown integer m. In other words, the function is
constant on lines of slope m, and distinct on different parallel lines of that slope. Your goal is to
determine m mod p using as few queries as possible to f, which is given by a unitary operation
Uy satisfying Uy|x)|y)|2) = |z)|y)|2 + f(z,y) mod p) for all z,y,z € {0,1,...,p—1}. (Note that
each of the three registers stores an integer modulo p, which we do not explicitly represent using
qubits.)

(a) [2 points] Suppose we begin with three registers in the state |0)|0)|0). If we apply F,®F,®1I,
where F), is the Fourier transform modulo p defined in question 1, what is the resulting
state?

(b) [3 points| Now suppose we apply Uy and measure the state of the third register in the
computational basis (i.e., the basis {|0),|1),...,|p—1)}). What are the probabilities of the
different possible measurement outcomes, and what are the resulting post-measurement
states of the first two registers?



(c) [5 points] Show that by applying Fp_1 ® Fp_1 to the post-measurement state of the first
two registers and then measuring in the computational basis, one can learn m mod p with
probability 1 —1/p.

4. Continuous-time quantum search.

In this problem we will see how Grover’s algorithm can be formulated as a continuous-time
process. In quantum mechanics, time evolution is determined by the Schrodinger equation,
id|p(t)) = H|p(t)), where H is a Hermitian operator (i.e., H = HY) called the Hamiltonian
of the quantum system. When H is time-independent, the solution of this equation is |¢(t)) =
e~ Ht(0)), where |¢(0)) is the state at time ¢ = 0.

(a) [3 points] Let |w) be the computational basis state corresponding to the marked item

w e {1,2,...,N}, and let |[¢)) = LN SV | |) denote the uniform superposition. Find an

orthonormal basis {|w), |w*)} for the two-dimensional subspace of CV spanned by |w) and
|1), and express [¢) in this basis.

(b) [3 points] Let the Hamiltonian of the quantum system be H = |w)(w| + |¢)(¢p|. Write H
in terms of the basis {|w), |w)}.

(¢) [3 points] Suppose the system is prepared in the state |¢) at time ¢ = 0 and evolved under
the Hamiltonian H for a total time T". What is the resulting state at time ¢t = T7

(d) [2 points] Suppose the state is measured in the computational basis at time 7. What is the
probability of observing the marked item, w? How should you choose T" in order to make
this probability high?

5. The collision problem.

Recall that the quantum search algorithm can find a marked item in a search space of size N
using O(y/N/M) queries, where M is the total number of marked items.

In the collision problem, you are given a black-box function f: {1,2,..., N} — S (for some set
S) with the promise that f is two-to-one. In other words, for any = € {1,2,..., N}, there is a
unique 2’ € {1,2,..., N} such that x # 2’ and f(z) = f(2’). The goal of the problem is to find
such a pair (z, ') (called a collision).

(a) [3 points] For any K € {1,2,..., N}, consider a quantum algorithm for the collision problem
that works as follows:

e Query f(1), f(2),..., f(K).
e If a collision is found, output it.
e Otherwise, search for a value z € {K + 1, K + 2,..., N} such that f(z) = f(a/) for
some 2’ € {1,2,...,K}.
How many quantum queries does this algorithm need to make in order to find a collision?
Your answer should depend on N and K, and can be expressed using big-O notation.

(b) [3 points] How should you choose K in part (a) to minimize the number of queries used?

(c) [2 points] It turns out that the algorithm you found in part (b) is essentially optimal
(although proving this is nontrivial). Discuss the relationship between the collision problem
and Simon’s problem in light of this fact.



