
Quantum algorithms (CO 781/CS 867/QIC 823) Winter 2013

ASSIGNMENT 3 due Tuesday 2 April (in class)

Problem 1 (A limitation on quantum speedup for total functions).

In this problem, you will show that quantum computers can obtain at most a polynomial speedup
for the query complexity of total functions.

a. Given a Boolean function f : {0, 1}n → {0, 1}, a certificate for f on input x ∈ {0, 1}n is a
subset of the bits of x such that the value of f(x) is determined by those bits alone. Let Cx(f)
denote the size of the smallest certificate for f on input x, and let C(f) := maxx∈{0,1}n Cx(f)
(this is called the certificate complexity of f). What is C(or)?

b. Consider the following algorithm for computing f(x):

Let c← ∅
While c does not certify that f(x) = 0

Choose x′ ∈ {0, 1}n such that f(x′) = 1 and xi = x′i for all i ∈ c
Let c′ be a minimal certificate for x′

Query xi for i ∈ c′

Let c← c ∪ c′

If c certifies that f(x) = 1 then return “1”
End while
Return “0”

Show that this algorithm uses at most C(f)2 queries.

c. For x ∈ {0, 1}n and S ⊆ {1, . . . , n}, let x(S) denote x with xi replaced by x̄i for all i ∈ S.
Call S a sensitive block of x if f(x) 6= f(x(S)). Prove that if S1, . . . , Sk is a maximal set of
disjoint sensitive blocks of x (i.e., there is no other sensitive block that is disjoint from all of
S1, . . . , Sk), then S1 ∪ · · · ∪ Sk is a certificate for f(x).

d. Let bsx(f) denote the largest possible number of disjoint sensitive blocks of x, and let bs(f) :=
maxx∈{0,1}n bsx(f) (this is called the block sensitivity of f). Call a sensitive block S minimal
if no subset of S is sensitive. Show that if S is a minimal sensitive block of some input, then
|S| ≤ bs(f).

e. Prove that C(f) ≤ bs(f)2.

f. Let x ∈ {0, 1}n have disjoint sensitive blocks S1, . . . , Sbs(f). For any y ∈ {0, 1}bs(f), let x[y]

denote x with xi replaced by x̄i if i ∈ Sj and yj = 1 for some j ∈ {1, . . . ,bs(f)}. Given
a polynomial p : {0, 1}n → R, define a polynomial p′ : {0, 1}bs(f) → R by p′(y) := p(x[y]).
Explain why deg(p′) ≤ deg(p).

g. Prove that d̃eg(f) = Ω(
√

bs(f)). (Hint: Generalize the proof that d̃eg(or) = Ω(
√
n), using

p′ in place of the original approximating polynomial p.)

h. Conclude that Q(f) = Ω(D(f)1/8), where D(f) denotes the deterministic classical query
complexity of f .
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Problem 2 (Combinatorial formulation of the adversary method).

For a Boolean function f : {0, 1}n → S, the adversary method says that Qε(f) ≥ 1−2
√
ε(1−ε)
2 Adv(f),

where Adv(f) := maxΓ
‖Γ‖
‖Γi‖ , with the maximization is over all adversary matrices Γ for f .

Ambainis originally formulated the adversary method differently, as follows. Let X,Y ⊂ {0, 1}n
such that f(x) 6= f(y) for all x ∈ X, y ∈ Y . For any relation R ⊂ X × Y , define

m := min
x∈X
|{y ∈ Y : (x, y) ∈ R}| ` := max

x∈X
i∈{1,...,n}

|{y ∈ Y : (x, y) ∈ R and xi 6= yi}|

m′ := min
y∈Y
|{x ∈ X : (x, y) ∈ R}| `′ := max

y∈Y
i∈{1,...,n}

|{x ∈ X : (x, y) ∈ R and xi 6= yi}|.

Then define Amb(f) := maxX,Y,R

√
mm′

``′ .

Prove that Adv(f) ≥ Amb(f), and hence that Qε(f) ≥ 1−2
√
ε(1−ε)
2 Amb(f).

Problem 3 (Applying the adversary method).

Use the adversary method to prove the following lower bounds. (You should apply the adversary
method directly to the given function rather than giving a reduction from some other problem.)

a. (Parity) Define parity : {0, 1}n → {0, 1} by parity(x) = x1⊕· · ·⊕xn. Show that Q(parity) =
Ω(n).

b. (Graph connectivity) With x ∈ {0, 1}(
n
2) specifying an n-vertex graph as in problem 5 from

assignment 2, define con : {0, 1}(
n
2) → {0, 1} by

con(x) =

{
1 if the graph described by x is connected

0 otherwise.

Show that Q(con) = Ω(n3/2).

Problem 4 (Quantum query complexity of formula evaluation).

An and-or formula is a Boolean formula specified by a rooted tree in which every leaf represents
an input bit, the root represents the output bit, and each internal vertex represents an and or or
gate acting on its children. In this problem, you will use the adversary method and its dual to
characterize the quantum query complexity of evaluating a Boolean formula on a black-box input.

a. Consider functions gi : {0, 1}mi → {0, 1} for each i ∈ {1, . . . , `}. Let n :=
∑`

i=1 mi. Define
f : {0, 1}n → {0, 1} by f(x1, . . . , xm) := or(g1(x1, . . . , xm1), . . . , g`(xn−m`+1, . . . , xn)). Show

that Adv±(f) ≥
√∑`

i=1 Adv±(gi)2. (Hint: Use optimal adversary matrices for g1, . . . , g` to

construct an adversary matrix for f .)

b. Let the functions gi and f be as in the previous part. Show that Adv±(f) ≤
√∑`

i=1 Adv±(gi)2.

(Hint: Use optimal dual adversary solutions for g1, . . . , g` to construct a dual adversary so-
lution for f .)

c. Show that part a also holds if or is replaced by and in the definition of f .

d. Show that part b also holds if or is replaced by and in the definition of f .

e. Prove that any n-input and-or formula has bounded-error quantum query complexity Θ(
√
n).
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Problem 5 (Algorithms for st-connectivity and path detection).

In the undirected st-connectivity problem, we are given a black box for the edges of an undirected
graph G with vertex set [n] := {1, . . . , n}. There are two distinguished vertices s, t ∈ [n], and
the goal is to determine whether there is a path joining s and t (i.e., whether t ∈ Cs(G), where
Cs(G) ⊆ [n] denotes the component of G containing s). We consider this problem with the promise
that if t ∈ Cs(G), there is a path between s and t of length at most d.

a. A dual adversary solution consists of vectors |vG,{u,w}〉 for each n-vertex graph G and each
potential edge {u,w} with u,w ∈ [n]. Suppose that for t /∈ Cs(G), we let

|vG,{u,w}〉 =

{
|u〉 − |w〉 if u ∈ Cs(G) and w /∈ Cs(G)

0 if u,w ∈ Cs(G) or u,w /∈ Cs(G).

Give a dual adversary solution by choosing vectors |vG,{u,w}〉 for the case where t ∈ Cs(G).
Prove that your choice indeed gives a dual adversary solution. (You can use the relaxed form
of the dual adversary in which

∑
i : xi 6=x′i

〈vx,i|vx′,i〉 is unconstrained for f(x) = f(x′).)

b. Compute the complexity of the solution as a function of n and d, and thereby give an upper
bound on the quantum query complexity of st-connectivity.

c. Suppose each vertex from [n] has a label from [k + 1] assigned to it. (These labels are fixed
in advance and do not require any queries to learn.) We say that a graph with this labeled
vertex set has a sequential k-path if it has a k-path in which the jth vertex has label j. Using
the result of the previous part, show that for any fixed k, there is an algorithm for deciding
whether a black-box graph has a sequential k-path using O(n) quantum queries to the edges.

d. Consider the problem of deciding whether a graph contains a path of length k. Show that
this problem also has quantum query complexity O(n) for any fixed k.

e. Research problem: Consider the problem of finding (rather than simply detecting) a path of
length k in a black-box graph. For what values of k is there an algorithm for finding a path
of length k using O(n) queries?
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