
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013)

Andrew Childs, University of Waterloo

LECTURE 1: Quantum circuits

This is a course on quantum algorithms. It is intended for graduate students who have already
taken an introductory course on quantum information. Such a course typically covers only the
early breakthroughs in quantum algorithms, namely Shor’s factoring algorithm (1994) and Grover’s
searching algorithm (1996). The purpose of this course is to show that there is more to quantum
computing than Shor and Grover by exploring some of the many quantum algorithms that have
been developed since then.

The course will cover several major topics in quantum algorithms, as follows:

• We will discuss algorithms that generalize the main idea of Shor’s algorithm. These algorithms
make use of the quantum Fourier transform, and typically achieve an exponential (or at least
superpolynomial) speedup over classical computers. In particular, we will explore a group-
theoretic problem called the hidden subgroup problem. We will see how a solution of this
problem for abelian groups leads to several applications, and we will also discuss what is
known about the nonabelian case.

• We will explore the concept of quantum walk, a quantum generalization of random walk.
This concept leads to a powerful framework for solving search problems, generalizing Grover’s
search algorithm.

• We will discuss lower bounds on quantum query complexity, demonstrating limitations on the
power of quantum algorithms. We will cover the two main quantum lower bound techniques,
the adversary method and the polynomial method.

• We will see how, through the concept of span programs, the quantum adversary method can
in fact be turned into an upper bound on quantum query complexity. We will also see how
these ideas lead to optimal quantum algorithms for evaluating Boolean formulas.

• Time permitting, we will cover other recent topics in quantum algorithms, such as adiabatic
optimization and the approximation of the Jones polynomial.

In this lecture, we will briefly review some background material on quantum computation. If
you plan to take this course, most of this material should be familiar to you (except for the details
of the Solovay-Kitaev theorem).

Quantum data

A quantum computer is a device that uses a quantum mechanical representation of information to
perform calculations. Information is stored in quantum bits, the states of which can be represented
as `2-normalized vectors in a complex vector space. For example, we can write the state of n qubits
as

|ψ〉 =
∑

x∈{0,1}n
ax|x〉 (1)

where the ax ∈ C satisfy
∑

x |ax|2 = 1. We refer to the basis of states |x〉 as the computational
basis.

It will often be useful to think of quantum states as storing data in a more abstract form. For
example, given a group G, we could write |g〉 for a basis state corresponding to the group element

1

g ∈ G, and

|φ〉 =
∑
g∈G

bg|g〉 (2)

for an arbitrary superposition over the group. We assume that there is some canonical way of
efficiently representing group elements using bit strings; it is usually unnecessary to make this
representation explicit.

If a quantum computer stores the state |ψ〉 and the state |φ〉, its overall state is given by the
tensor product of those two states. This may be denoted |ψ〉 ⊗ |φ〉 = |ψ〉|φ〉 = |ψ, φ〉.

Quantum circuits

The allowed operations on (pure) quantum states are those that map normalized states to normal-
ized states, namely unitary operators U , satisfying UU † = U †U = I. (You probably know that
there are more general quantum operations, but for the most part we will not need to use them in
this course.)

To have a sensible notion of efficient computation, we require that the unitary operators ap-
pearing in a quantum computation are realized by quantum circuits. We are given a set of gates,
each of which acts on one or two qubits at a time (meaning that it is a tensor product of a one- or
two-qubit operator with the identity operator on the remaining qubits). A quantum computation
begins in the |0〉 state, applies a sequence of one- and two-qubit gates chosen from the set of allowed
gates, and finally reports an outcome obtained by measuring in the computational basis.

Universal gate sets

In principle, any unitary operator on n qubits can be implemented using only 1- and 2-qubit gates.
Thus we say that the set of all 1- and 2-qubit gates is (exactly) universal. Of course, some unitary
operators may take many more 1- and 2-qubit gates to realize than others, and indeed, a counting
argument shows that most unitary operators on n qubits can only be realized using an exponentially
large circuit of 1- and 2-qubit gates.

In general, we are content to give circuits that give good approximations of our desired unitary
transformations. We say that a circuit with gates U1, U2, . . . , Ut approximates U with precision ε if

‖U − Ut . . . U2U1‖ ≤ ε. (3)

Here ‖·‖ denotes some appropriate matrix norm, which should have the property that if ‖U − V ‖
is small, then U should be hard to distinguish from V no matter what quantum state they act on.
A natural choice (which will be suitable for our purposes) is the spectral norm

‖A‖ := max
|ψ〉

‖A|ψ〉‖
‖|ψ〉‖

, (4)

(where ‖|ψ〉‖ =
√
〈ψ|ψ〉 denotes the vector 2-norm of |ψ〉), i.e., the largest singular value of A.

Then we call a set of elementary gates universal if any unitary operator on a fixed number of
qubits can be approximated to any desired precision ε using elementary gates.

It turns out that there are finite sets of gates that are universal: for example, the set {H,T,C}

2

with

H :=
1√
2

(
1 1
1 −1

)
T :=

(
eiπ/8 0

0 e−iπ/8

)
C :=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (5)

There are situations in which we say a set of gates is effectively universal, even though it cannot
actually approximate any unitary operator on n qubits. For example, the set {H,T 2,Tof}, where

Tof :=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

(6)

is universal, but only if we allow the use of ancilla qubits (qubits that start and end in the |0〉
state). Similarly, the basis {H,Tof} is universal in the sense that, with ancillas, it can approximate
any orthogonal matrix. It clearly cannot approximate complex unitary matrices, since the entries
of H and Tof are real; but the effect of arbitrary unitary transformations can be simulated using
orthogonal ones by simulating the real and imaginary parts separately.

Equivalence between different universal gate sets

Are some universal gate sets better than others? Classically, this is not an issue: the set of possible
operations is discrete, so any gate acting on a constant number of bits can be simulated exactly
using a constant number of gates from any given universal gate set. But we might imagine that
some quantum gates are much more powerful than others. For example, given two rotations about
strange axes by strange angles, it may not be obvious how to implement a Hadamard gate, and
we might worry that implementing such a gate to high precision could take a very large number of
elementary operations, scaling badly with the required precision.

Fortunately, it turns out that this is not the case: a unitary operator that can be realized
efficiently with one set of 1- and 2-qubit gates can also be realized efficiently with another such set.
In particular, we have the following.

Theorem (Solovay-Kitaev). Fix two universal gate sets that are closed under inverses. Then any t-
gate circuit using one gate set can be implemented to precision ε using a circuit of t·poly(log t

ε) gates
from other set (indeed, there is a classical algorithm for finding this circuit in time t · poly(log t

ε)).

Thus, not only are the two gate sets equivalent under polynomial-time reduction, but the
running time of an algorithm using one gate set is the same as that using the other gate set up to
logarithmic factors. This means that even polynomial quantum speedups are robust with respect
to the choice of gate set.

To establish this, we first note the basic fact that errors in the approximation of one quantum
circuit by another accumulate linearly.

Lemma. Let Ui, Vi be unitary matrices satisfying ‖Ui − Vi‖ ≤ ε for all i ∈ {1, 2, . . . , t}. Then
‖Ut . . . U2U1 − Vt . . . V2V1‖ ≤ tε.

3

Proof. We use induction on t. For t = 1 the lemma is trivial. Now suppose the lemma holds for
a particular value of t. Then by the triangle inequality and the fact that the norm is unitarily
invariant (‖UAV ‖ = ‖A‖ for any unitary matrices U, V),

‖Ut+1Ut . . . U1 − Vt+1Vt . . . V1‖
= ‖Ut+1Ut . . . U1 − Ut+1Vt . . . V1 + Ut+1Vt . . . V1 − Vt+1Vt . . . V1‖ (7)

≤ ‖Ut+1Ut . . . U1 − Ut+1Vt . . . V1‖+ ‖Ut+1Vt . . . V1 − Vt+1Vt . . . V1‖ (8)

= ‖Ut+1(Ut . . . U1 − Vt . . . V1)‖+ ‖(Ut+1 − Vt+1)Vt . . . V1‖ (9)

= ‖Ut . . . U1 − Vt . . . V1‖+ ‖Ut+1 − Vt+1‖ (10)

≤ (t+ 1)ε, (11)

so the lemma follows by induction.

Thus, in order to simulate a t-gate quantum circuit with total error at most ε, it suffices to
simulate each individual gate with error at most ε/t.

To simulate an arbitrary individual gate, the strategy is to first construct a very fine net covering
a very small ball around the identity using the group commutator,

JU, V K := UV U−1V −1. (12)

To approximate general unitaries, we will effectively translate them close to the identity.

Note that it suffices to consider unitary gates with determinant 1 (i.e., elements of SU(2)) since
a global phase is irrelevant. Let

Sε := {U ∈ SU(2) : ‖I − U‖ ≤ ε} (13)

denote the ε-ball around the identity. Given sets Γ, S ⊆ SU(2), we say that Γ is an ε-net for S if
for any A ∈ S, there is a U ∈ Γ such that ‖A− U‖ ≤ ε. The following result (to be proved later
on) indicates how the group commutator helps us to make a fine net around the identity.

Lemma. If Γ is an ε2-net for Sε, then JΓ,ΓK := {JU, V K : U, V ∈ Γ} is an O(ε3)-net for Sε2.

To make an arbitrarily fine net, we apply this idea recursively. But first it is helpful to derive
a consequence of the lemma that is more suitable for recursion. We would like to maintain the
quadratic relationship between the size of the ball and the quality of the net. If we aim for a k2ε3-net
(for some constant k), we would like it to apply to arbitrary points in Skε3/2 , whereas the lemma only
lets us approximate points in Sε2 . To handle an arbitrary A ∈ Skε3/2 , we first let W be the closest
gate in Γ to A. For sufficiently small ε we have kε3/2 < ε, so Skε3/2 ⊂ Sε, and therefore A ∈ Sε.
Since Γ is an ε2-net for Sε, we have ‖A−W‖ ≤ ε2, i.e., ‖AW † − I‖ ≤ ε2, so AW † ∈ Sε2 . Then
we can apply the lemma to find U, V ∈ Γ such that ‖AW † − JU, V K‖ = ‖A− JU, V KW‖ ≤ k2ε3.
In other words, if Γ is an ε2-net for Sε, then JΓ,ΓKΓ := {JU, V KW : U, V,W ∈ Γ} is a k2ε3-net for
Skε3/2 .

Now suppose that Γ0 is an ε20-net for Sε0 , and let Γi := JΓi−1,Γi−1KΓi−1 for all positive integers

i. Then Γi is an ε2i -net for Sεi , where εi = kε
3/2
i−1. Solving this recursion gives εi = (k2ε0)

(3/2)i/k2.

With these tools in hand, we are prepared to establish the main result.

Proof of the Solovay-Kitaev Theorem. It suffices to consider how to approximate an arbitrary U ∈
SU(2) to precision ε by a sequence of gates from a given universal gate set Γ.

4

First we take products of elements of Γ to form a new universal gate set Γ0 that is an ε20-net
for SU(2), for some sufficiently small constant ε0. We know this can be done since Γ is universal.
Since ε0 is a constant, the overhead in constructing Γ0 is constant.

Now we can find V0 ∈ Γ0 such that ‖U − V0‖ ≤ ε20. Since ‖U − V0‖ = ‖UV †0 − I‖, we have

UV †0 ∈ Sε20 . If ε0 is sufficiently small, then ε20 < kε
3/2
0 = ε1, so UV †0 ∈ Sε1 .

Since Γ0 is an ε20-net for SU(2), in particular it is an ε20-net for Sε0 . Thus by the above argument,

Γ1 is an ε21-net for Sε1 , so we can find V1 ∈ Γ1 such that ‖UV †0 − V1‖ ≤ ε21 < kε
3/2
1 = ε2, i.e.,

UV †0 V
†
1 − I ∈ Sε2 .

In general, suppose we are given V0, V1, . . . , Vi−1 such that UV †0 V
†
1 . . . V

†
i−1 ∈ Sεi . Since Γi is an

ε2i -net for Sεi , we can find Vi ∈ Γi such that ‖UV †0 V
†
1 . . . V

†
i−1 − Vi‖ ≤ ε2i . In turn, this implies that

UV †0 V
†
1 . . . V

†
i ∈ Sεi+1 .

Repeating this process t times gives a very good approximation of U by Vt . . . V1V0: we have
‖U − Vt . . . V1V0‖ ≤ ε2t . Suppose we consider a gate from Γ0 to be elementary. (These gates can be
implemented using only a constant number of gates from Γ, so there is a constant factor overhead if
only count gates in Γ as elementary.) The number of elementary gates needed to implement a gate
from Γi is 5i, so the total number of gates in the approximation is

∑t
i=0 5i = (5t+1− 1)/4 = O(5t).

To achieve an overall error at most ε, we need ε2t = ((k2ε0)
(3/2)t/k2)2 ≤ ε, i.e.,(

3

2

)t
>

1
2 log(k2ε)

log(k2ε0)
. (14)

Thus the number of gates used is O(logν 1
ε) where ν = log 5/ log 3

2 .

At this point, it may not be clear that the approximation can be found quickly, since Γi contains
a large number of points, so we need to be careful about how we find a good approximation Vi ∈ Γi
of UV †0 V

†
1 . . . V

†
i−1. However, by constructing the approximation recursively, it can be shown that

the running time of this procedure is poly(log 1
ε). It will be clearer how to do this after we prove

the lemma, but we leave the details as an exercise.

It remains to prove the lemma. A key idea is to move between the Lie group SU(2) and its
Lie algebra, i.e., the Hamiltonians generating these unitaries. In particular, we can represent any
A ∈ SU(2) as A = ei~a·~σ, where ~a ∈ R3 and ~σ = (σx, σy, σz) is a vector of Pauli matrices. Note that
we can choose ‖~a‖ ≤ π without loss of generality.

In the proof, the following basic facts about SU(2) will be useful.

(i) ‖I − ei~a·~σ‖ = 2 sin ‖~a‖2 = ‖~a‖+O(‖~a‖3)

(ii) ‖ei~b·~σ − ei~c·~σ‖ ≤ ‖~b− ~c‖
(iii) [~b · ~σ,~c · ~σ] = 2i(~b× ~c) · ~σ

(iv) ‖Jei~b·~σ, ei~c·~σK− e−[~b·~σ,~c·~σ]‖ = O(‖~b‖‖~c‖(‖~b‖+ ‖~c‖))
Here the big-O notation is with respect to ‖~a‖ → 0 in (i) and with respect to ‖~b‖, ‖~c‖ → 0 in (iv).

Proof of Lemma. Let A ∈ Sε2 . Our goal is to find U, V ∈ Γ such that ‖A− JU, V K‖ = O(ε3).

Choose ~a ∈ R3 such that A = ei~a·~σ. Since A ∈ Sε2 , by (i) we can choose ~a so that ‖~a‖ = O(ε2).

Then choose ~b,~c ∈ R3 such that 2~b × ~c = ~a. We can choose these vectors to be orthogonal

and of equal length, so that ‖~b‖ = ‖~c‖ =
√
‖~a‖/2 = O(ε). Let B = ei

~b·~σ and C = ei~c·~σ. Then

5

the only difference between A and JB,CK is the difference between the commutator and the group
commutator, which is O(ε3) by (iv).

However, we need to choose points from the net Γ. So let U = ei~u·~σ be the closest element of
Γ to B, and let V = ei~v·~σ be the closest element of Γ to C. Since Γ is an ε2-net for Sε, we have
‖U −B‖ ≤ ε2 and ‖V − C‖ ≤ ε2, so in particular ‖~u−~b‖ = O(ε2) and ‖~v − ~c‖ = O(ε2).

Now by the triangle inequality, we have

‖A− JU, V K‖ ≤ ‖A− e2i(~u×~v)·~σ‖+ ‖e2i(~u×~v)·~σ − JU, V K‖. (15)

For the first term, using (ii), we have

‖A− e2i(~u×~v)·~σ‖ = ‖e2i(~b×~c)·~σ − e2i(~u×~v)·~σ‖ (16)

≤ 2‖~b× ~c− ~u× ~v‖ (17)

= 2‖(~b− ~u+ ~u)× (~c− ~v + ~v)− ~u× ~v‖ (18)

= 2‖(~b− ~u)× (~c− ~v) + (~b− ~u)× ~v + ~u× (~c− ~v)‖ (19)

= O(ε3). (20)

For the second term, using (iii) and (iv) gives

‖e2i(~u×~v)·~σ − JU, V K‖ = ‖e−[~u·~σ,~v·~σ] − JU, V K‖ = O(ε3) (21)

The lemma follows.

Note that it is possible to improve the construction somewhat over the version described above.
Furthermore, it can be generalized to SU(N) for arbitrary N . In general, the cost is exponential
in N2, but for any fixed N this is just a constant.

Reversible computation

Unitary matrices are invertible: in particular, U−1 = U †. Thus any unitary transformation is
a reversible operation. This may seem at odds with how we often define classical circuits, using
irreversible gates such as and and or. But in fact, any classical computation can be made reversible
by replacing any irreversible gate x 7→ g(x) by the reversible gate (x, y) 7→ (x, y⊕g(x)), and running
it on the input (x, 0), producing (x, g(x)). In other words, by storing all intermediate steps of the
computation, we make it reversible.

On a quantum computer, storing all intermediate computational steps could present a problem,
since two identical results obtained in different ways would not be able to interfere. However, there
is an easy way to remove the accumulated information. After performing the classical computation
with reversible gates, we simply xor the answer into an ancilla register, and then perform the
computation in reverse. Thus we can implement the map (x, y) 7→ (x, y ⊕ f(x)) even when f is a
complicated circuit consisting of many gates.

Using this trick, any computation that can be performed efficiently on a classical computer can
be performed efficiently on a quantum computer: if we can efficiently implement the map x 7→ f(x)
on a classical computer, we can efficiently perform the transformation |x, y〉 7→ |x, y ⊕ f(x)〉 on
a quantum computer. This transformation can be applied to any superposition of computational

6

basis states, so for example, we can perform the transformation

1√
2n

∑
x∈{0,1}n

|x, 0〉 7→ 1√
2n

∑
x∈{0,1}n

|x, f(x)〉. (22)

Note that this does not necessarily mean we can efficiently implement the map |x〉 7→ |f(x)〉,
even when f is a bijection (so that this is indeed a unitary transformation). However, if we can
efficiently invert f , then we can indeed do this efficiently.

Uniformity

When we give an algorithm for a computational problem, we consider inputs of varying sizes.
Typically, the circuits for instances of different sizes with be related to one another in a simple way.
But this need not be the case; and indeed, given the ability to choose an arbitrary circuit for each
input size, we could have circuits computing uncomputable languages. Thus we require that our
circuits be uniformly generated : say, that there exists a fixed (classical) Turing machine that, given
a tape containing the symbol ‘1’ n times, outputs a description of the nth circuit in time poly(n).

Quantum complexity

We say that an algorithm for a problem is efficient if the circuit describing it contains a number
of gates that is polynomial in the number of bits needed to write down the input. For example, if
the input is a number modulo N , the input size is dlog2Ne.

With a quantum computer, as with a randomized (or noisy) classical computer, the final result
of a computation may not be correct with certainty. Instead, we are typically content with an
algorithm that can produce the correct answer with high enough probability (for a decision problem,
bounded above 1/2; for a non-decision problem for which we can check a correct solution, Ω(1)).
By repeating the computation many times, we can make the probability of outputting an incorrect
answer arbitrarily small.

In addition to considering explicit computational problems, in which the input is a string, we
will also consider the concept of query complexity. Here the input is a black box transformation, and
our goal is to discover some property of the transformation by making as few queries as possible. For
example, in Simon’s problem, we are given a transformation f : Zn2 → S satisfying f(x) = f(y) iff
y = x⊕ t for some unknown t ∈ Zn2 , and the goal is to learn t. The main advantage of considering
query complexity is that it allows us to prove lower bounds on the number of queries required
to solve a given problem. Furthermore, if we find an efficient algorithm for a problem in query
complexity, then if we are given an explicit circuit realizing the black-box transformation, we will
have an efficient algorithm for an explicit computational problem.

Sometimes, we care not just about the size of a circuit for implementing a particular unitary
operation, but also about its depth, the maximum number of gates on any path from an input to
an output. The depth of a circuit tells us how long it takes to implement if we can perform gates in
parallel. In the problem set, you will get a chance to think about parallel circuits for implementing
the quantum Fourier transform.

7

Fault tolerance

In any real computer, operations cannot be performed perfectly. Quantum gates and measure-
ments may be performed imprecisely, and errors may happen even to stored data that is not being
manipulated. Fortunately, there are protocols for dealing with faults that may occur during the
execution of a quantum computation. Specifically, the threshold theorem states that as long as the
noise level is below some threshold (depending on the noise model, but typically in the range of
10−3 to 10−4, an arbitrarily long computation can be performed with an arbitrarily small amount
of error.

In this course, we will always assume implicitly that fault-tolerant protocols have been applied,
such that we can effectively assume a perfectly functioning quantum computer.

8

