
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013)
Andrew Childs, University of Waterloo
LECTURE 2: The abelian QFT, phase estimation, and discrete log

Quantum Fourier transform

Perhaps the most important unitary transformation in quantum computing is the quantum Fourier
transform (QFT). Later, we will discuss the QFT over arbitrary finite groups, but for now we will
focus on the case of an abelian group G. Here the transformation is

FG :=
1√
|G|

∑
x∈G

∑
y∈Ĝ

χy(x)|y〉〈x| (1)

where Ĝ is a complete set of characters of G, and χy(x) denotes the yth character of G evaluated
at x. (You can verify that this is a unitary operator using the orthogonality of characters.) Since
G and Ĝ are isomorphic, we can label the elements of Ĝ using elements of G, and it is often useful
to do so.

The simplest QFT over a family of groups is the QFT over G = Zn2 . The characters of this
group are χy(x) = (−1)x·y, so the QFT is simply

FZn
2

=
1√
2n

∑
x,y∈Zn

2

(−1)x·y|y〉〈x| = H⊗n. (2)

You have presumably seen how this transformation is used in the solution of Simon’s problem.

QFT over Z2n

A more complex quantum Fourier transform is the QFT over G = Z2n :

FZ2n
=

1√
2n

∑
x,y∈Z2n

ωxy2n |y〉〈x| (3)

where ωm := exp(2πi/m) is a primitive mth root of unity. To see how to realize this transformation
by a quantum circuit, it is helpful to represent the input x as a string of bits, x = xn−1 . . . x1x0,
and to consider how an input basis vector is transformed:

|x〉 7→ 1√
2n

∑
y∈Z2n

ωxy2n |y〉 (4)

=
1√
2n

∑
y∈Z2n

ω
x(

∑n−1
k=0 yk2

k)
2n |yn−1 . . . y1y0〉 (5)

=
1√
2n

∑
y∈Z2n

n−1∏
k=0

ωxyk2
k

2n |yn−1 . . . y1y0〉 (6)

=
1√
2n

n−1⊗
k=0

∑
yk∈Z2

ωxyk2
k

2n |yk〉 (7)

=
n−1⊗
k=0

|zk〉 (8)

1

where

|zk〉 :=
1√
2

∑
yk∈Z2

ωxyk2
k

2n |yk〉 (9)

=
1√
2

(|0〉+ ωx2
k

2n |1〉) (10)

=
1√
2

(|0〉+ ω
∑n−1

j=0 xj2
j+k

2n |1〉) (11)

=
1√
2

(|0〉+ e2πi(x02
k−n+x12k+1−n+···+xn−1−k2

−1)|1〉). (12)

(A more succinct way to write this is |zk〉 = 1√
2
(|0〉 + ωx

2n−k |1〉), but the above expression is more

helpful for understanding the circuit.) In other words, F |x〉 is a tensor product of single-qubit
states, where the kth qubit only depends on the k least significant bits of x.

This decomposition immediately gives a circuit for the QFT over Z2n . Let Rk denote the
single-qubit unitary operator

Rk :=

(
1 0
0 ω2k

)
. (13)

Then the circuit can be written as follows:

|x0〉 · · · • · · · • · · · • H |zn−1〉

|x1〉 · · · • · · · • · · · H R2 |zn−2〉

...
... . .

.
. .
. ...

...

|xn−3〉 • · · · • · · · · · · |z2〉
|xn−2〉 • · · · H R2 · · · Rn−2 Rn−1 · · · |z1〉

|xn−1〉 H R2 R3 · · · Rn−1 Rn · · · · · · |z0〉

This circuit uses O(n2) gates. However, there are many rotations by small angles that do not
affect the final result very much. If we simply omit the gates Rk with k = Ω(log n), then we obtain
a circuit with O(n log n) gates that implements the QFT with precision 1/ poly(n).

Phase estimation

Aside from being directly useful in quantum algorithms, such as Shor’s algorithm, The QFT over
Z2n provides a useful quantum computing primitive called phase estimation. In the phase estimation
problem, we are given a unitary operator U (either as an explicit circuit, or as a black box that
lets us apply a controlled-U j operation for integer values of j). We are also given a state |φ〉 that
is promised to be an eigenvector of U , namely U |φ〉 = eiφ|φ〉 for some φ ∈ R. The goal is to output
an estimate of φ to some desired precision.

The procedure for phase estimation is straightforward. To get an n-bit estimate of φ, prepare
the quantum computer in the state

1√
2n

∑
x∈Z2n

|x, φ〉, (14)

2

apply the operator ∑
x∈Z2n

|x〉〈x| ⊗ Ux (15)

to give the state
1√
2n

∑
x∈Z2n

eiφx|x, φ〉, (16)

apply an inverse Fourier transform on the first register, and measure. If the binary expansion of
φ/2π terminates after at most n bits (i.e., if φ = 2πy/2n for some y ∈ Z2n), then the state (16) is
F2n |y〉 ⊗ |φ〉, so the result is guaranteed to be the binary expansion of φ/2π. In general, we obtain
a good approximation with high probability. In particular, the probability of obtaining the result
y (corresponding to the estimate 2πy/2n for the phase) is

Pr(y) =
1

22n
· sin2(2n−1φ)

sin2(φ2 −
πy
2n)

, (17)

which is strongly peaked around the best n-bit approximation (in particular, it gives the best n-bit
approximation with probability at least 4/π2). We will see the details of a similar calculation when
we discuss period finding.

QFT over ZN and over a general finite abelian group

One useful application of phase estimation is to implement the QFT over an arbitrary cyclic group
ZN :

FZN
=

1√
N

∑
x,y∈ZN

ωxyN |y〉〈x|. (18)

The circuit we derived using the binary representation of the input and output only works when N
is a power of two (or, with a slight generalization, some other small integer). But there is a simple
way to realize FZN

(approximately) using phase estimation.

We would like to perform the transformation that maps |x〉 7→ |x̃〉, where |x̃〉 := FZN
|x〉 denotes

a Fourier basis state. (By linearity, if the transformation acts correctly on a basis, it acts correctly
on all states.) It is straightforward to perform the transformation |x, 0〉 7→ |x, x̃〉; then it remains
to erase the register |x〉 from such a state.

Consider the unitary operator that adds 1 modulo N :

U :=
∑
x∈ZN

|x+ 1〉〈x|. (19)

The eigenstates of this operator are precisely the Fourier basis states |x̃〉 := FZN
|x〉, since (as a

simple calculation shows)

F †ZN
UFZN

=
∑
x∈ZN

ωxN |x〉〈x|. (20)

Thus, using phase estimation on U (with n bits of precision where n = O(logN)), we can perform
the transformation

|x̃, 0〉 7→ |x̃, x〉 (21)

(actually, phase estimation only gives an approximation of x, so we implement this transformation
only approximately). By running this operation in reverse, we can erase |x〉, and thereby produce
the desired QFT.

3

Given the Fourier transform over ZN , it is straightforward to implement the QFT over an
arbitrary finite abelian group: any finite abelian group can be written as a direct product of cyclic
factors, and the QFT over a direct product of groups is simply the tensor product of QFTs over
the individual groups.

Discrete log

One of the applications of the QFT over a cyclic group is to the solution of the discrete log
problem. This problem is defined as follows. Let G = 〈g〉 be a cyclic group generated by g, written
multiplicatively. Given an element x ∈ G, the discrete logarithm of x in G with respect to g, denoted
logg x, is the smallest non-negative integer α such that gα = x. The discrete logarithm problem is
the problem of calculating logg x.

Here are some simple examples of discrete logarithms:

• For any G = 〈g〉, logg 1 = 0

• For G = Z×7 , log3 2 = 2

• For G = Z×541, log126 282 = 101

The discrete logarithm seems like a good candidate for a one-way function. We can efficiently
compute gα, even if α is exponentially large (in log |G|), using repeated squaring. But given x,
it is not immediately clear how to compute logg x, other than by checking exponentially many
possibilities. (There are better algorithms than brute force search, but none is known that works
in polynomial time.) This is the basis of the well-known Diffie-Hellman key exchange protocol.

Shor’s algorithm

Now we will see how Shor’s algorithm can be used to calculate discrete logarithms. This is a nice
example because it’s simpler than the factoring algorithm, but the problem it solves is actually at
least as hard: factoring N can be reduced to calculating discrete log in Z×N . (Unfortunately, this
does not by itself give a quantum algorithm for factoring, because Shor’s algorithm for discrete log
in G requires us to know the order of G—but computing |Z×N | = φ(N) is as hard as factoring N .)

Given some element x of a cyclic group G = 〈g〉, we would like to calculate logg x, the smallest
integer α such that gα = x. For simplicity, let us assume that the order of G, N := |G|, is known.
(For example, if G = Z×p for prime p, then we know N = p−1. In general, if we do not know N , we
can learn it using Shor’s period-finding algorithm, which we’ll review later.) We can also assume
that x 6= g (i.e., logg x 6= 1), since it is easy to check whether this is the case.

To approach this problem, consider the function f : ZN × ZN → G as follows:

f(α, β) = xαgβ. (22)

Since f(α, β) = gα logg x+β, f is constant on the lines

Lγ := {(α, β) ∈ Z2
N : α logg x+ β = γ}. (23)

Shor’s algorithm for finding logg x proceeds as follows. We start from the uniform superposition
over ZN × ZN and compute the hiding function in another register:

|ZN × ZN 〉 :=
1

N

∑
α,β∈ZN

|α, β〉 7→ 1

N

∑
α,β∈ZN

|α, β, f(α, β)〉. (24)

4

Then we discard the third register. To see what this does, it may be conceptually helpful to imagine
that we actually measure the third register. Then the post-measurement state is a superposition
over group elements consistent with the observed function value (say, gδ), which is simply the set
of points on some line Lδ. In other words, we get the state

|Lδ〉 =
1√
N

∑
α∈ZN

|α, δ − α logg x〉 (25)

However, note that the measurement outcome is unhelpful: each possible value occurs with
equal probability, and we cannot obtain δ from gδ unless we know how to take discrete logarithms.
Thus we may as well simply discard the third register, leaving the system in the mixed state
described by the ensemble of pure states (25) where δ is uniformly random and unknown.

Now we can exploit the symmetry of the quantum state by performing a QFT over ZN × ZN ;
then the state becomes

1

N3/2

∑
α,µ,ν∈ZN

ω
µα+ν(δ−α logg x)

N |µ, ν〉 =
1

N3/2

∑
µ,ν∈ZN

ωνδN
∑
α∈ZN

ω
α(µ−ν logg x)
N |µ, ν〉, (26)

and using the identity
∑

α∈ZN
ωαβN = Nδβ,0, we have

1√
N

∑
ν∈ZN

ωνδN |ν logg x, ν〉. (27)

Now suppose we measure this state in the computational basis. Then we obtain some pair
(ν logg x, ν) for uniformly random ν ∈ ZN . If ν has a multiplicative inverse modulo N , we can
divide the first register by ν to get the desired answer. If ν does not have a multiplicative inverse,
we simply repeat the entire procedure again. The probability of success for each independent at-
tempt is φ(N)/N = Ω(1/ log logN) (where φ(N) denotes the number of positive integers less than
and relatively prime to n), so we don’t have to repeat the procedure many times before we find an
invertible ν.

This algorithm can be carried out for any cyclic group G so long as we have a unique repre-
sentation of the group elements, and we are able to efficiently compute products in G. (We need
to be able to compute high powers of a group element, but recall that this can be done quickly by
repeated squaring.) In particular, it can also be used to solve the discrete log problem for elliptic
curves, thus compromising most elliptic curve cryptography.

5

