
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013)

Andrew Childs, University of Waterloo

LECTURE 3: The abelian hidden subgroup problem

In this lecture, we will introduce the general hidden subgroup problem (HSP). We’ll see how Shor’s
discrete log algorithm solves a particular instance of the HSP in an Abelian group. Finally, we’ll
see how to solve the HSP in any finite abelian group of known structure.

The hidden subgroup problem

In the general HSP, we are given a black-box function f : G → S, where G is a known group and
S is a finite set. The function is promised to satisfy

f(x) = f(y) if and only if x−1y ∈ H
i.e., y = xh for some h ∈ H

(1)

for some unknown subgroup H ≤ G. We say that such a function hides H. The goal of the HSP
is to learn H (say, specified in terms of a generating set) using queries to f .

It’s clear that H can in principle be reconstructed if we are given the entire truth table of f .
Notice in particular that f(1) = f(x) if and only if x ∈ H: the hiding function is constant on the
hidden subgroup, and does not take that value anywhere else.

But the hiding function has a lot more structure than this. If we fix some element g ∈ G
with g /∈ H, we see that f(g) = f(x) if and only if x ∈ gH, a left coset of H in G with coset
representative g. So f is constant on the left cosets of H in G, and distinct on different left cosets.

In the above definition of the HSP, we have made an arbitrary choice to multiply by elements
of H on the right, which is why the hiding function is constant on left cosets. We could just as well
have chosen to multiply by elements of H on the left, in which case the hiding function would be
constant on right cosets; the resulting problem would be equivalent. Of course, in the case where
G is abelian, we don’t need to make such a choice. For reasons that we will see later, this case
turns out to be considerably simpler than the general case; indeed, there is an efficient quantum
algorithm for the HSP in any abelian group, whereas there are only a few nonabelian groups for
which efficient algorithms are known.

You should be familiar with Simon’s problem, which is simply the HSP with G = Zn2 and
H = {0, s} for some s ∈ Zn2 . There is a straightforward quantum algorithm for this problem, yet
one can prove that any classical algorithm for finding s must query the hiding function exponentially
many times (in n). The gist of the argument is that, since the set S is unstructured, we can do
no better than querying random group elements so long as we do not know two elements x, y for
which f(x) = f(y). But by the birthday problem, we are unlikely to see such a collision until we
make Ω(

√
|G|/|H|) random queries.

A similar argument applies to any HSP with a large number of trivially intersecting subgroups.
More precisely, we have

Theorem. Suppose that G has a set H of N subgroups whose only common element is the identity.
Then a classical computer must make Ω(

√
N) queries to solve the HSP.

Proof. Suppose the oracle does not a priori hide a particular subgroup, but instead behaves adver-
sarially, as follows. On the `th query, the algorithm queries g`, which we assume to be different

1

from g1, . . . , g`−1 without loss of generality. If there is any subgroup H ∈ H for which gk /∈ gjH for
all 1 ≤ j < k ≤ ` (i.e., there is some consistent way the oracle could assign g` to an as-yet-unqueried
coset of a hidden subgroup from H), then the oracle simply outputs `; otherwise the oracle conceeds
defeat and outputs a generating set for some H ∈ H consistent with its answers so far (which must
exist, by construction).

The goal of the algorithm is to force the oracle to conceed, and we want to lower bound the
number of queries required. (Given an algorithm for the HSP in G, there is clearly an algorithm
that forces this oracle to conceed using only one more query.) Now consider an algorithm that
queries the oracle t times before forcing the oracle to conceed. This algorithm simply sees a fixed
sequence of responses 1, 2, . . . , t, so for the first t queries, the algorithm cannot be adaptive. But
observe that, regardless of which t group elements are queried, there are at most

(
t
2

)
values of

gkg
−1
j , whereas there are N possible subgroups in H. Thus, to satisfy the N conditions that for all

H ∈ H, there is some pair j, k such that gkg
−1
j ∈ H, we must have

(
t
2

)
≥ N , i.e., t = Ω(

√
N).

Note that there are cases where a classical algorithm can find the hidden subgroup with a
polynomial number of queries. In particular, since a classical computer can easily test whether a
certain subgroup is indeed the hidden one, the HSP is easy for a group with only polynomially
many subgroups. For example, a classical computer can easily solve the HSP in Zp for p prime
(since it has only 2 subgroups) and in Z2n (since it has only n+ 1 subgroups).

Discrete log as a hidden subgroup problem

The discrete log problem is easily recognized as an HSP. Recall that Shor’s algorithm for computing
logg x involves the function f : ZN×ZN → 〈g〉 defined by f(α, β) = xαgβ. This function is constant
on the lines Lγ = {(α, β) ∈ Z2

N : α logg x + β = γ}. Observe that H = L0 is a subgroup of
G = ZN × ZN , and the sets Lγ = L0 + (0, γ) are its cosets. Shor’s algorithm for discrete log works
by making the coset state |Lγ〉 for a uniformly random γ and measuring in the Fourier basis.

The abelian HSP

We now consider the HSP for a general abelian group. When the group elements commute, it often
makes more sense to use additive notation for the group operation. We use this convention here,
writing the condition that f hides H as f(x) = f(x) iff x− y ∈ H.

The strategy for the general abelian HSP closely follows the algorithm for the discrete log
problem. We begin by creating a uniform superposition over the group,

|G〉 :=
1√
|G|

∑
x∈G
|x〉. (2)

Then we compute the function value in another register, giving

1√
|G|

∑
x∈G
|x, f(x)〉. (3)

Discarding the second register then gives a uniform superposition over the elements of some ran-
domly chosen coset x+H := {x+ h : h ∈ H} of H in G,

|x+H〉 =
1√
|H|

∑
h∈H
|x+ h〉. (4)

2

Such a state is commonly called a coset state. Equivalently, since the coset is unknown and uniformly
random, the state can be described by the density matrix

ρH :=
1

|G|
∑
x∈G
|x+H〉〈x+H|. (5)

Next we apply the QFT over G. Then we obtain the state

|x̂+H〉 := FG|x+H〉 (6)

=
1√

|H| · |G|

∑
y∈Ĝ

∑
h∈H

χy(x+ h)|y〉 (7)

=

√
|H|
|G|

∑
y∈Ĝ

χy(x)χy(H)|y〉 (8)

where

χy(H) :=
1

|H|
∑
h∈H

χy(h). (9)

Note that applying the QFT was the right thing to do because the state ρH is G-invariant. In
other words, it commutes with the regular representation of G, the unitary matrices U(x) satisfying
U(x)|y〉 = |x+ y〉 for all x, y ∈ G: we have

U(x)ρH =
1

|G|
∑
y∈G
|x+ y +H〉〈y +H| (10)

=
1

|G|
∑
z∈G
|z +H〉〈z − x+H| (11)

= ρHU(−x)† (12)

= ρHU(x). (13)

It follows that ρ̂H := FGρHF
†
G is diagonal (indeed, we verify this explicitly below), so we can

measure without losing any information. We will talk about this phenomenon more when we
discuss nonabelian Fourier sampling.

Note that χy is a character of H if we restrict our attention to that subgroup. If χy(h) = 1 for
all h ∈ H, then clearly χy(H) = 1. On the other hand, if there is any h ∈ H with χy(h) 6= 1 (i.e.,
if the restriction of χy to H is not the trivial character of H), then by the orthogonality of distinct
characters,

1

|H|
∑
x∈H

χy(x)χy′(x)∗ = δy,y′ (14)

(equivalent to unitarity of the QFT), we have χy(H) = 0. Thus we have

|x̂+H〉 =

√
|H|
|G|

∑
y : χy(H)=1

χy(x)|y〉 (15)

3

or, equivalently, the mixed quantum state

ρ̂H =
|H|
|G|2

∑
x∈G

∑
y,y′ : χy(H)=χy′ (H)=1

χy(x)χy′(x)|y〉〈y′| = |H|
|G|

∑
y : χy(H)=1

|y〉〈y|. (16)

Next we measure in the computational basis. Then we obtain some character χy that is trivial
on the hidden subgroup H. This information narrows down the possible elements of the hidden
subgroup: we can restrict our attention to those elements g ∈ G satisfying χy(g) = 1. The set of
such elements is called the kernel of χy,

kerχy := {g ∈ G : χy(g) = 1}; (17)

it is a subgroup of G. Now our strategy is to repeat the entire sampling procedure many times and
compute the intersection of the kernels of the resulting characters. After only polynomially many
steps, we claim that the resulting subgroup is H with high probability. It clearly cannot be smaller
than H (since the kernel of every sampled character contains H), so it suffices to show that each
sample is likely to reduce the size of H by a substantial fraction until H is reached.

Suppose that at some point in this process, the intersection of the kernels is K ≤ G with K 6= H.
Since K is a subgroup of G with H < K, we have |K| ≥ 2|H| (by Lagrange’s theorem). Because
each character χy of G satisfying χy(H) has probability |H|/|G| of appearing, the probability that
we see some χy for which K ≤ kerχy is

|H|
|G|
|{y ∈ Ĝ : K ≤ kerχy}|. (18)

But the number of such ys is precisely |G|/|K|, since we know that if the subgroup K were hidden,
we would sample such ys uniformly, with probability |K|/|G|. Therefore the probability that we see
a y for which K ≤ kerχy is precisely |H|/|K| ≤ 1/2. Now if we observe a y such that K 6≤ kerχy,
then |K ∩ kerχy| ≤ |K|/2; furthermore, this happens with probability at least 1/2. Thus, if we
repeat the process O(log |G|) times, it is extremely likely that the resulting subgroup is in fact H.

Decomposing abelian groups

To apply the above algorithm, we must understand the structure of the group G; in particular, we
must be able to apply the Fourier transform FG. For some applications, we might not know the
structure of G a priori. But if we assume only that we have a unique encoding of each element
of G, the ability to perform group operations on these elements, and a generating set for G, then
there is an efficient quantum algorithm (due to Mosca) that decomposes the group as

G = 〈γ1〉 ⊕ 〈γ2〉 ⊕ · · · ⊕ 〈γt〉 (19)

in terms of generators γ1, γ2, . . . , γt. Here ⊕ denotes an internal direct sum, meaning that the
groups 〈γi〉 intersect only in the identity element; in other words, we have

G ∼= Z|〈γ1〉| × Z|〈γ2〉| × · · · × Z|〈γt〉|. (20)

Given such a decomposition, it is straightforward to implement FG and thereby solve HSPs in G.
We might also use this tool to decompose the structure of the hidden subgroup H output by the
HSP algorithm, e.g., to compute |H|.

This algorithm is based on Shor’s algorithm for order finding, together with standard tools from
group theory. We will not have time to cover the algorithm in detail; for more, see the lecture notes
from 2011.

4

