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LECTURE 5: Quantum query complexity of the HSP

So far, we have considered the hidden subgroup problem in abelian groups. We now turn to the
case where the group might be nonabelian. We will look at some of the potential applications of
the HSP, and then show that the general problem has polynomial quantum query complexity.

The nonabelian HSP and its applications

Recall that in the hidden subgroup problem for a group G, we are given a black box function
f : G→ S, where S is a finite set. We say that f hides a subgroup H ≤ G provided

f(x) = f(y) if and only if x−1y ∈ H. (1)

In other words, f is constant on left cosets H, g1H, g2H, . . . of H in G, and distinct on different left
cosets. When G is a nonabelian group, we refer to this problem as the nonabelian HSP.

The nonabelian HSP is of interest not only because it generalizes the abelian case in a natural
way, but because a solution of certain nonabelian hidden subgroup problems would have particularly
useful applications. The most well-known (and also the most straightforward) applications are
to the graph automorphism problem and the graph isomorphism problem, problems for which no
efficient classical algorithm is currently known.

In the graph automorphism problem, we are given a graph Γ on n vertices, and the goal is to
determine whether it has some nontrivial automorphism. In other words, we would like to know
whether there is any nontrival permutation π ∈ Sn such that π(Γ) = Γ. The automorphisms of
Γ form a subgroup Aut Γ ≤ Sn; if Aut Γ is trivial then we say Γ is rigid. We may cast the graph
automorphism problem as an HSP over Sn by considering the function f(π) := π(Γ), which hides
Aut Γ. If we could solve the HSP in Sn, then by checking whether or not the automorphism group
is trivial, we could decide graph automorphism.

In the graph isomorphism problem, we are given two graphs Γ,Γ′, each on n vertices, and our
goal is to determine whether there is any permutation π ∈ Sn such that π(Γ) = Γ′, in which case we
say that Γ and Γ′ are isomorphic. We can cast graph isomorphism as an HSP in the wreath product
Sn o S2 ≤ S2n, the subgroup of S2n generated by permutations of the first n points, permutations
of the second n points, and swapping the two sets of points. Writing elements of Sn o S2 in the
form (σ, τ, b) where σ, τ ∈ Sn represent permutations of Γ,Γ′, respectively, and b ∈ {0, 1} denotes
whether to swap the two graphs, we can define a function

f(σ, τ, b) :=

{
(σ(Γ), τ(Γ′)) b = 0

(σ(Γ′), τ(Γ)) b = 1.
(2)

This function hides the automorphism group of the disjoint union of Γ and Γ′, which contains an
element that swaps the two graphs if and only if they are isomorphic. In particular, if Γ and Γ′ are
rigid (which seems to be the hardest case for the HSP approach to graph isomorphism), the hidden
subgroup is trivial when Γ,Γ′ are non-isomorphic; and has order two, with its nontrival element
the involution (π, π−1, 1), when Γ = π(Γ′).

The second major potential application of the hidden subgroup problem is to lattice problems.
An n-dimensional lattice is the set of all integer linear combinations of n linearly independent
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vectors in Rn (a basis for the lattice). In the shortest vector problem, we are asked to find a
shortest nonzero vector in the lattice. In particular, in the g(n)-unique shortest vector problem, we
are promised that the shortest nonzero vector is unique (up to its sign), and is shorter than any
other non-parallel vector by a factor g(n). This problem can be solved in polynomial time on a
classical computer if g(n) is sufficiently large (say, if it is exponentially large), and is NP-hard if
g(n) = O(1). Less is known about intermediate cases, but the problem is suspected to be classically
hard even for g(n) = poly(n), to the extent that cryptosystems have been designed based on this
assumption.

Regev showed that an efficient quantum algorithm for the dihedral hidden subgroup problem
based on the so-called standard method (described below) could be used to solve the poly(n)-
unique shortest vector problem. Such an algorithm would be significant since it would break lattice
cryptosystems, which are some of the few proposed cryptosystems that are not compromised by
Shor’s algorithm.

So far, only the symmetric and dihedral hidden subgroup problems are known to have significant
applications. Nevertheless, there has been considerable interest in understanding the complexity
of the HSP for general groups. There are at least three reasons for this. First, the problem
is simply of fundamental interest: it appears to be a natural setting for exploring the extent of
the advantage of quantum computers over classical ones. Second, techniques developed for other
HSPs may eventually find application to the symmetric or dihedral groups. Finally, exploring the
limitations of quantum computers for HSPs may suggest cryptosystems that could be robust even
to quantum attacks.

The standard method

Nearly all known algorithms for the nonabelian hidden subgroup problem use the black box for f
in essentially the same way as in the abelian HSP. This approach has therefore come to be known
as the standard method.

In the standard method, we begin by preparing a uniform superposition over group elements:

|G〉 :=
1√
|G|

∑
g∈G
|g〉. (3)

We then compute the value f(g) in an ancilla register, giving the state

1√
|G|

∑
g∈G
|g, f(g)〉. (4)

Finally, we measure the second register and discard the result (or equivalently, simply discard the
second register). If we obtain the outcome s ∈ S, then the state is projected onto the uniform
superposition of those g ∈ G such that f(g) = s, which by the definition of f is simply some left
coset of H. Since every coset contains the same number of elements, each left coset occurs with
equal probability. Thus this procedure produces the coset state

|gH〉 :=
1√
|H|

∑
h∈H
|gh〉 with g ∈ G uniformly random (5)

(or, equivalently, we can view g as being chosen uniformly at random from some left transversal of
H in G).
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Depending on context, it may be more convenient to view the outcome either as a random pure
state, or equivalently, as the mixed quantum state

ρH :=
1

|G|
∑
g∈G
|gH〉〈gH| (6)

which we refer to as a hidden subgroup state. In the standard approach to the hidden subgroup
problem, we attempt to determine H using samples of this hidden subgroup state. In other words,
given ρ⊗kH for some k = poly(log |G|), we try to find a generating set for H.

Query complexity of the HSP

As a first step toward understanding the quantum complexity of the HSP, we can ask how many
queries of the hiding function are required to solve the problem. If we could show that an expo-
nential number of quantum queries were required, then we would know that there was no efficient
quantum algorithm. But it turns out that this is not the case: as shown by Ettiner, Høyer, and
Knill, poly(log |G|) queries to f suffice to determine H. In particular, they showed this within

the framework of the standard method: ρ
⊗ poly(log |G|)
H contains enough information to recover H.

Of course, this does not necessarily mean that the quantum computational complexity of the HSP
is polynomial, since it is not clear in general how to perform the quantum post-processing of the
hidden subgroup states efficiently. Nevertheless, this is an important observation since it already
shows a difference between quantum and classical computation, and offers some clues as to how we
might design efficient quantum algorithms.

To show that the query complexity of the HSP is polynomial, it is sufficient to show that the
(single-copy) hidden subgroup states are pairwise statistically distinguishable, as measured by the
quantum fidelity

F (ρ, ρ′) := tr |√ρ
√
ρ′|. (7)

This follows from a result of Barnum and Knill, who showed the following.

Theorem. Suppose ρ is drawn from an ensemble {ρ1, . . . , ρN}, where each ρi occurs with some
fixed prior probability pi. Then there exists a quantum measurement (namely, the so-called pretty
good measurement) that identifies ρ with probability at least

1−N
√

max
i 6=j

F (ρi, ρj). (8)

In fact, by the minimax theorem, this holds even without assuming a prior distribution for the
ensemble.

Given only one copy of the hidden subgroup state, (8) will typically give only a trivial bound.
However, by taking multiple copies of the hidden subgroup states, we can ensure that the overall
states are nearly orthogonal, and hence distinguishable. In particular, using k copies of ρ, we see
that there is a measurement for identifying ρ with probability at least

1−N
√

max
i 6=j

F (ρ⊗ki , ρ⊗kj ) = 1−N
√

max
i 6=j

F (ρi, ρj)k (9)
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(since the fidelity is multiplicative under tensor products). Setting this expression equal to 1 − ε
and solving for k, we see that arbitrarily small error probability ε can be achieved provided we use

k ≥
⌈

2(logN − log ε)

log (1/maxi 6=j F (ρi, ρj))

⌉
(10)

copies of ρ.

Provided that G does not have too many subgroups, and that the fidelity between two distinct
hidden subgroup states is not too close to 1, this shows that polynomially many copies of ρH suffice
to solve the HSP. The total number of subgroups of G is 2O(log2 |G|), which can be seen as follows.
Any group K can be specified in terms of at most log2 |K| generators, since every additional (non-
redundant) generator increases the size of the group by at least a factor of 2. Since every subgroup
of G can be specified by a subset of at most log2 |G| elements of G, the number of subgroups of G
is upper bounded by |G|log2 |G| = 2(log2 |G|)

2
. This shows that we can take logN = poly(log |G|) in

(10). Thus k = poly(log |G|) copies of ρH suffice to identify H with constant probability provided
the maximum fidelity is bounded away from 1 by at least 1/ poly(log |G|).

To upper bound the fidelity between two states ρ, ρ′, consider the two-outcome measurement
that projects onto the support of ρ or its orthogonal complement. The classical fidelity of the
resulting distribution is an upper bound on the quantum fidelity, so

F (ρ, ρ′) ≤
√

tr Πρρ tr Πρρ′ +
√

tr((1−Πρ)ρ) tr((1−Πρ)ρ′) (11)

=
√

tr Πρρ′. (12)

where Πρ denotes the projector onto the support of ρ.

Now consider the fidelity between ρH and ρH′ for two distinct subgroups H,H ′ ≤ G. Let
|H| ≥ |H ′| without loss of generality. We can write (6) as

ρH =
1

|G|
∑
g∈G
|gH〉〈gH| = |H|

|G|
∑
g∈TH

|gH〉〈gH|. (13)

where TH denotes some left transversal of H in G. Since the right hand expression is a spectral
decomposition of ρH , we have

ΠρH =
∑
g∈TH

|gH〉〈gH| = 1

|H|
∑
g∈G
|gH〉〈gH|. (14)

Then we have

F (ρH , ρH′)2 ≤ tr ΠρHρH′ (15)

=
1

|H| · |G|
∑
g,g′∈G

|〈gH|g′H ′〉|2 (16)

=
1

|H| · |G|
∑
g,g′∈G

|gH ∩ g′H ′|2

|H| · |H ′|
(17)

=
1

|G| · |H|2 · |H|′
∑
g,g′∈G

|gH ∩ g′H ′|2. (18)
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Now

|gH ∩ g′H ′| = |{(h, h′) ∈ H ×H ′ : gh = g′h′}| (19)

= |{(h, h′) ∈ H ×H ′ : hh′ = g−1g′}| (20)

=

{
|H ∩H ′| if g−1g′ ∈ HH ′

0 if g−1g′ /∈ HH ′,
(21)

so ∑
g,g′∈G

|gH ∩ gH ′|2 = |G| · |HH ′| · |H ∩H ′|2 (22)

= |G| · |H| · |H ′| · |H ∩H ′|. (23)

Thus we have

F (ρH , ρH′)2 =
|G| · |H| · |H ′| · |H ∩H ′|

|G| · |H|2 · |H ′|
(24)

=
|H ∩H ′|
|H|

(25)

≤ 1

2
. (26)

This shows that F (ρH , ρH′) ≤ 1/
√

2, thereby establishing that the query complexity of the HSP is
poly(log |G|).
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