
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013)
Andrew Childs, University of Waterloo
LECTURE 8: Kuperberg’s algorithm for the dihedral HSP

In this lecture, we will discuss a quantum algorithm for the dihedral hidden subgroup problem.
No polynomial-time algorithm for this problem is known. However, Kuperberg gave a quantum
algorithm that runs in subexponential (though superpolynomial) time—specifically, it runs in time

2O(
√

log |G|).

The HSP in the dihedral group

The dihedral group of order 2N , denoted DN , is the group of symmetries of a regular N -gon. It
has the presentation

DN = 〈r, s : r2 = sN = 1, rsr = s−1〉. (1)

Here r can be thought of as a reflection about some fixed axis, and s can be thought of as a rotation
of the N -gon by an angle 2π/N .

Using the defining relations, we can write any group element in the form sxra where x ∈ ZN
and a ∈ Z2. Thus we can equivalently think of the group as consisting of elements (x, a) ∈ ZN×Z2.
Since

(sxra)(syrb) = sxrasyrara+b (2)

= sxs(−1)ayra+b (3)

= sx+(−1)ayra+b, (4)

the group operation ‘·’ on such elements can be expressed as

(x, a) · (y, b) = (x+ (−1)ay, a+ b). (5)

(In particular, this shows that the dihedral group is the semidirect product ZN oϕ Z2, where
ϕ : Z2 → Aut(ZN) is defined by ϕ(a)(y) = (−1)ay.) It is also easy to see that the group inverse is

(x, a)−1 = (−(−1)ax, a). (6)

The subgroups of DN are either cyclic or dihedral. The possible cyclic subgroups are of the
form 〈(x, 0)〉 where x ∈ ZN is either 0 or some divisor of N . The possible dihedral subgroups are
of the form 〈(y, 1)〉 where y ∈ ZN , and of the form 〈(x, 0), (y, 1)〉 where x ∈ ZN is some divisor
of N and y ∈ Zx. A result of Ettinger and Høyer reduces the general dihedral HSP, in which the
hidden subgroup could be any of these possibilities, to the dihedral HSP with the promise that the
hidden subgroup is of the form 〈(y, 1)〉 = {(0, 0), (y, 1)}, i.e., a subgroup of order 2 generated by
the reflection (y, 1).

The basic idea of the Ettinger-Høyer reduction is as follows. Suppose that f : DN → S hides
a subgroup H = 〈(x, 0), (y, 1)〉. Then we can consider the function f restricted to elements from
the abelian group ZN × {0} ≤ DN . This restricted function hides the subgroup 〈(x, 0)〉, and since
the restricted group is abelian, we can find x efficiently using Shor’s algorithm. Now 〈(x, 0)〉EDN

(since (z, a)(x, 0)(z, a)−1 = (z+(−1)ax, a)(−(−1)az, a) = ((−1)ax, 0) ∈ ZN×{0}), so we can define
the quotient group DN/〈(x, 0)〉. But this is simply a dihedral group (of order N/x), and if we now
define a function f ′ as f evaluated on some coset representative, it hides the subgroup 〈(y, 1)〉.
Thus, in the rest of this lecture, we will assume that the hidden subgroup is of the form 〈(y, 1)〉 for
some y ∈ ZN without loss of generality.

1

Fourier sampling in the dihedral group

When the hidden subgroup is H = 〈(y, 1)〉, one particular left transversal of H in G consists of the
left coset representatives (z, 0) for all z ∈ ZN . The coset state corresponding to the coset (z, 0)H is

|(z, 0){(0, 0), (y, 1)}〉 =
1√
2

(|z, 0〉+ |y + z, 1〉). (7)

We would like to determine y using samples of this state.

We have seen that to distinguish coset states in general, one should start by performing weak
Fourier sampling: apply a Fourier transform over G and then measure the irrep label. However,
in this case we will instead simply Fourier transform the first register over ZN , leaving the second
register alone. It is possible to show that measuring the first register of the resulting state is essen-
tially equivalent to performing weak Fourier sampling over DN (and discarding the row register),
but for simplicity we will just consider the abelian procedure.

Fourier transforming the first register over ZN , we obtain

(FZN
⊗ I2)|(z, 0)H〉 =

1√
2N

∑
k∈ZN

(ωkzN |k, 0〉+ ω
k(y+z)
N |k, 1〉 (8)

=
1√
N

∑
k∈ZN

ωkzN |k〉 ⊗
1√
2

(|0〉+ ωkyN |1〉). (9)

If we then measure the first register, we obtain one of the N values of k uniformly at random, and
we are left with the post-measurement state

|ψk〉 :=
1√
2

(|0〉+ ωykN |1〉). (10)

Thus we are left with the problem of determining y given the ability to produce single-qubit states
|ψk〉 of this form (where k is known).

Combining states

It would be very useful if we could prepare states |ψk〉 with particular values of k. For example, if
we could prepare the state |ψN/2〉 = 1√

2
(|0〉 + (−1)y|1〉), then we could learn the parity of y (i.e.,

its least significant bit) by measuring in the basis of states |±〉 := (|0〉 ± |1〉)/
√

2. The main idea
of Kuperberg’s algorithm is to combine states of the form (10) to produce new states of the same
form, but with more desirable values of k.

To combine states, we can use the following procedure. Given two states |ψp〉 and |ψq〉, perform
a controlled-not gate from the former to the latter, giving

|ψp, ψq〉 =
1

2
(|0, 0〉+ ωypN |1, 0〉+ ωyqN |0, 1〉+ ω

y(p+q)
N |1, 1〉) (11)

7→ 1

2
(|0, 0〉+ ωypN |1, 1〉+ ωyqN |0, 1〉+ ω

y(p+q)
N |1, 0〉) (12)

=
1√
2

(|ψp+q, 0〉+ ωyqN |ψp−q, 1〉). (13)

Then a measurement on the second qubit leaves the first qubit in the state |ψp±q〉 (up to an
irrelevant global phase), with the + sign occurring when the outcome is 0 and the − sign occurring
when the outcome is 1, each outcome occurring with probability 1/2.

2

This combination operation has a nice representation-theoretic interpretation: the state indices
p and q can be viewed as labels of irreducible representations of DN , and the extraction of |ψp±q〉
can be viewed as decomposing their tensor product (a reducible representation of DN) into one of
two irreducible components.

The Kuperberg sieve

Now we are ready to describe how the algorithm works. For simplicity, we will assume from now
on that N = 2n is a power of 2. For such a dihedral group, it is actually sufficient to be able
to determine the least significant bit of y, since such an algorithm could be used recursively to
determine all the bits of y. This can be seen as follows. The group DN contains two subgroups
isomorphic to DN/2, namely {(2x, 0), (2x, 1) : x ∈ ZN/2} and {(2x, 0), (2x + 1, 1) : x ∈ ZN/2}. The
hidden subgroup is a subgroup of the former if y has even parity, and of the latter if y has odd
parity. Thus, once we learn the parity of y, we can restrict our attention to the appropriate DN/2

subgroup. The elements of either DN/2 subgroup can be represented using only n − 1 bits, and
finding the least significant bit of the hidden reflection within this subgroup corresponds to finding
the second least significant bit of y in DN . Continuing in this way, we can learn all the bits of y
with only n iterations of an algorithm for finding the least significant bit of the hidden reflection.

The idea of Kuperberg’s algorithm is to start with a large number of states, and collect them
into pairs |ψp〉, |ψq〉 that share many of their least significant bits, such that |ψp−q〉 is likely to
have many of its least significant bits equal to zero. Trying to zero out all but the most significant
bit in one shot would require an exponential running time, so instead we will proceed in stages,
only trying to zero some of the least significant bits in each stage; this will turn out to give an
improvement.

Specifically, the algorithm proceeds as follows:

1. Prepare Θ(16
√
n) coset states of the form (10), where each copy has k ∈ Z2n chosen indepen-

dently and uniformly at random.

2. For each j = 0, 1, . . . ,m− 1 where m := d
√
n e, assume the current coset states are all of the

form |ψk〉 with at least mj of the least significant bits of k equal to 0. Collect them into pairs
|ψp〉, |ψq〉 that share at least m of the next least significant bits, discarding any qubits that
cannot be paired. Create a state |ψp±q〉 from each pair, and discard it if the + sign occurs.
Notice that the resulting states have at least m(j + 1) significant bits equal to 0.

3. The remaining states are of the form |ψ0〉 and |ψ2n−1〉. Measure one of the latter states in
the |±〉 basis to determine the least significant bit of y.

Since this algorithm requires 2O(
√
n) initial queries and proceeds through O(

√
n) stages, each of

which takes at most 2O(
√
n) steps, the overall running time is 2O(

√
n).

Analysis of the Kuperberg sieve

To show that this algorithm works, we need to prove that some qubits survive to the final stage of
the process with non-negligible probability. Let’s analyze a more general version of the algorithm
to see why we should try to zero out

√
n bits at a time, starting with 2O(

√
n) states.

Suppose we try to cancel m bits in each stage, so that there are n/m stages (not yet assuming
any relationship between m and n), starting with 2` states. Each combination operation succeeds
with probability 1/2, and turns 2 states into 1, so at each step we retain only about 1/4 of the

3

states that can be paired. Now when we pair states that allow us to cancel m bits, there can be at
most 2m unpaired states, since that is the number of values of the m bits to be canceled. Thus if we
ensure that there are at least 2 · 2m states at each stage, we expect to retain at least a 1/8 fraction
of the states for the next stage. Since we begin with 2` states,we expect to have at least 2`−3j states
left after the jth stage. Thus, to have 2 · 2m states remaining at the last stage of the algorithm, we
require 2`−3n/m > 2m+1, or ` > m+ 3n/m+ 1. This is minimized by choosing m ≈

√
n, so we see

that ` ≈ 4
√
n suffices.

This analysis is not quite correct because we do not obtain precisely a 1/8 fraction of the paired
states for use in the next stage. For most of the stages, we have many more than 2 · 2m states, so
nearly all of them can be paired, and the expected fraction remaining for the next stage is close
to 1/4. Of course, the precise fraction will experience statistical fluctuations. However, since we
are working with a large number of states, the deviations from the expected values are very small,
and a more careful analysis (using the Chernoff bound) shows that the procedure succeeds with
high probability. For a detailed argument, see section 3.1 of Kuperberg’s paper (SICOMP version).
That paper also gives an improved algorithm that runs faster and that works for general N .

Note that this algorithm uses not only superpolynomial time, but also superpolynomial space,
since all Θ(16

√
n) coset states are present at the start of the algorithm. However, by creating a

smaller number of coset states at a time and combining them according to the solution of a subset
sum problem, Regev showed how to make the space requirement polynomial with only a slight
increase in the running time.

Entangled measurements

Although this algorithm acts on pairs of coset states at a time, the overall algorithm effectively
implements a highly entangled measurement on all Θ(

√
16n) registers, since the combination op-

eration that produces |ψp±q〉 entangles the coset states |ψp〉 and |ψq〉. The same is true of Regev’s
polynomial-space variant.

It is natural to ask whether a similar sieve could be applied to other hidden subgroup problems,
such as in the symmetric group, for which highly entangled measurements are necessary. Alagic,
Moore, and Russell used a similar approach to give a subexponential-time algorithm for the hidden
subgroup problem in the group Gn, where G is a fixed non-Abelian group. (Note that the HSP in
Gn can be much harder than solving n instances of the HSP in G, since Gn has many subgroups
that are not direct products of subgroups of G.) But unfortunately, this kind of sieve does not seem
well-suited to the symmetric group. In particular, Moore, Russell, and Sniady gave the following
negative result for the HSP in Sn oZ2, where the hidden subgroup is promised to be either trivial or
an involution. Consider any algorithm that works by combining pairs of hidden subgroup states to
produce a new state in the decomposition of their tensor product into irreps (i.e., in their Clebsch-
Gordan decomposition), and uses the sequence of measurement results to guess whether the hidden
subgroup is trivial or nontrivial. Any such algorithm must use 2Ω(

√
n) queries. Thus it is not

possible to give a significantly better-than-classical algorithm for graph isomorphism in this way,

since there are classical algorithms for graph isomorphism that run in time 2O(
√
n/ logn).

Note that entangled measurements are not information-theoretically necessary for the dihedral
HSP: Ettinger and Høyer gave an explicit measurement (i.e., an explicit basis for strong Fourier
sampling) from which the measurement results give sufficient information to determine the hidden
subgroup. Suppose that, given the state (10), we simply measure in the |±〉 basis. Then we obtain

4

the result |+〉 with probability∣∣∣∣∣
(
〈0|+ 〈1|√

2

)(
|0〉+ ωykN |1〉√

2

)∣∣∣∣∣
2

=

∣∣∣∣∣1 + ωykN
2

∣∣∣∣∣
2

= cos2 πyk

N
. (14)

If we postselect on obtaining this outcome (which happens with probability 1/2 over the uniformly
random value of k, assuming y 6= 0), then we effectively obtain each value k ∈ ZN with probability
Pr(k|+) = 2

N cos2 πyk
N . It is not hard to show that these distributions are statistically far apart for

different values of k, so that they can in principle be distinguished with only polynomially many
samples. However, no efficient (or even subexponential time) classical (or even quantum) algorithm
for doing so is known.

5

