
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013)

Andrew Childs, University of Waterloo

LECTURE 16: Span programs

Having discussed lower bounds on quantum query complexity, we now turn our attention back to
upper bounds. The framework of span programs is a powerful tool for understanding quantum
query complexity. Span programs are closely related to the quantum adversary method, and can
be used to show that the (generalized) adversary method actually characterizes quantum query
complexity up to constant factors.

For simplicity, we restrict our attention to the case of a (possibly partial) Boolean function
f : S → {0, 1} where S ⊆ {0, 1}n. Many (but not all) of the considerations for this case generalize
to other kinds of functions.

The dual of the adversary method

Recall that the adversary method defines a quantity

Adv±(f) := max
Γ

‖Γ‖
maxi∈{1,...,n} ‖Γi‖

(1)

such thatQ(f) = O(Adv±(f)). Although not immediately obvious from the above expression, it can
be shown that Adv±(f) is the value of a semidefinite program (SDP), a kind of optimization problem
in which a linear objective function is optimized subjected to linear and positive semidefiniteness
constraints.

Unfortunately, the details of semidefinite programming are beyond the scope of this course.
For a good introduction in the context of quantum information, see Lecture 7 of Watrous’s lecture
notes on Theory of Quantum Information.

A useful feature of SDPs is that they can be solved efficiently. Thus, we can use a computer
program to find the optimal adversary lower bound for a fixed (finite-size) function. However, while
this may be useful for getting intuition about a problem, in general this does not give a strategy
for determining asymptotic quantum query complexity.

Another key feature of SDPs is the concept of semidefinite programming duality. To every
primal SDP, phrased as a maximization problem, there is a dual SDP, which is a minimization
problem. Whereas feasible solutions of the primal SDP give lower bounds, feasible solutions of the
dual SDP give upper bounds. The dual problem can be constructed from the primal problem by a
straightforward (but sometimes tedious) process. Semidefinite programs satisfy weak duality, which
says that the value of the primal problem is at most the value of the dual problem. Furthermore,
almost all SDPs actually satisfy strong duality, which says that the primal and dual values are
equal. (In particular, this holds under the Slater conditions, which essentially say that the primal
or dual constraints are strictly feasible.)

To understand any SDP, one should always construct its dual. Carrying this out for the ad-
versary method would require some experience with semidefinite programs, so we simply state the
result here. The variables of the dual problem can be viewed as a set of vectors |vx,i〉 ∈ Cd for
all inputs x ∈ S and all indices i ∈ [n] := {1, . . . , n}, for some dimension d. For b ∈ {0, 1}, we
define the b-complexity Cb := maxx∈f−1(b)

∑
i∈[n] ‖|vx,i〉‖2. Since strong duality holds, we have the

following.

1

https://cs.uwaterloo.ca/~watrous/CS766/LectureNotes/07.pdf

Theorem. For any function f : S → {0, 1} with S ⊆ {0, 1}n, we have

Adv±(f) = min
{|vx,i〉}

max{C0, C1} (2)

where the minimization is over all positive integers d and all sets of vectors {|vx,i〉 ∈ Cd : x ∈ S, i ∈
[n]} satisfying the constraint ∑

i : xi 6=yi

〈vx,i|vy,i〉 = 1− δf(x),f(y) ∀x 6= y. (3)

By constructing solutions of the adversary dual, we place upper bounds on the best possible
adversary lower bound. But more surprisingly, one can construct an algorithm from a solution of
the adversary dual, giving an upper bound on the quantum query complexity itself.

Observe that if we replace |vx,i〉 → α|vx,i〉 for all x ∈ f−1(0) and |vy,i〉 → |vy,i〉/α for all
y ∈ f−1(1), we don’t affect the constraints (3), but we map C0 → α2C0 and C1 → C1/α

2. Taking
α = (C1/C0)1/4, we make the two complexities equal. Thus we have

Adv±(f) = min
{|vx,i〉}

√
C0C1. (4)

Note that the constraint (3) for f(x) = f(y), where the right-hand side is zero, can be removed
without changing the value of the optimization problem. (For functions with non-Boolean output,
one loses a factor strictly between 1 and 2 in the analogous relaxation.) To see this, suppose we
have a set of vectors {|vx,i〉} satisfying the constraint (3) for f(x) 6= f(y) but not for f(x) = f(y).
Simply let |vx,i〉 = |v′x,i〉|xi⊕f(x)〉 for all x ∈ S and all i ∈ [n]. Then ‖|v′x,i〉‖ = ‖|vx,i〉‖, and for the
terms where xi 6= yi, we have 〈v′x,i|v′y,i〉 = 〈vx,i|vy,i〉 if f(x) 6= f(y) and 〈v′x,i|v′y,i〉 = 0 if f(x) = f(y).

Span programs

The dual of the adversary method is equivalent to a linear-algebraic model of computation known
as span programs. This model was first studied in the context of classical computational complexity.
It was connected to quantum algorithms for formula evaluation by Reichardt and Špalek, and was
subsequently related to the adversary method by Reichardt.

A span program for a function f : {0, 1}n → {0, 1} consists of a target vector |t〉 ∈ CD, sets of
input vectors Ii,b ⊂ CD for all i ∈ [n] and b ∈ {0, 1}, and a set of free input vectors Ifree ⊂ CD. The
set of available input vectors for input x is I(x) := Ifree ∪

⋃
i∈[n] Ii,xi . We say that a span program

computes f if |t〉 ∈ span I(x) if and only if f(x) = 1.

The complexity of a span program is measured by its witness size. If f(x) = 1, then there is a
linear combination of vectors from I(x) that gives |t〉; the witness size of x is the smallest squared
length of the coefficients for any such linear combination. If f(x) = 0, then there is a vector that
has inner product 1 with |t〉 that is orthogonal to all available input vectors; the witness size of x is
the smallest squared length of the vector of inner products of this vector with all input vectors (of
course, these inner products are zero for the available input vectors). The witness size of f is the
largest witness size of any x ∈ S, or equivalently, the geometric mean of the largest witness sizes
of 0- and 1-inputs.

The smallest witness size of any span program computing f is precisely Adv±(f), and there is
a close relationship between span programs and dual adversary solutions. Given a dual adversary

2

solution with vectors |vx,i〉, one can construct a matrix whose rows are the vectors
⊕

i∈[n]〈x̄i|〈vx,i|.
Take the columns of this matrix in block i and subblock b to be the vectors in Ii,b, let the target
vector be the all ones vector, and let there be no free input vectors. It can be shown that this gives
a span program for f whose witness size is exactly the complexity of the dual adversary solution.
Furthermore, every span program can be put into a canonical form for which this translation can be
reversed to produce a dual adversary solution: taking the vectors of a canonical span program to be
the columns of a matrix, the rows give dual adversary vectors for x ∈ f−1(0) and the witness vectors
for x ∈ f−1(1) give the remaining dual adversary vectors. For more detail on this translation, see
Lemma 6.5 of arXiv:0904.2759 (see the rest of that paper for more than you ever wanted to know
about span programs).

We focus on dual adversary solutions here, as these are simpler to work with for the applications
we consider. However, for other applications it may be useful to work directly with span programs
instead; in particular, (non-canonical) span programs offer more freedom when trying to devise
upper bounds.

Unstructured search

We now give a simple example of an optimal dual adversary solution, namely for unstructured
search. Let f : S → {0, 1} be defined by f(x) = or(x) with S = {x ∈ {0, 1}n : |x| ≤ 1} the set of
inputs with Hamming weight at most 1. Take dimension d = 1; let |v0,i〉 = 1 for all i ∈ [n] and
|vx,i〉 = xi. The constraint (3) gives∑

i : 0 6=(ej)i

〈v0,i|vej ,i〉 = 〈v0,j |vej ,j〉 = 1 (5)

for all j ∈ [n] (where ej ∈ Cn is the jth standard basis vector) and∑
i : (ej)i 6=(ek)i

〈vej ,i|vek,i〉 = 〈vej ,j |vek,j〉+ 〈vej ,k|vek,k〉 = 0 (6)

for j 6= k, so the constraint is satisfied.

The 0- and 1-complexities of this solution are

C0 =
∑
i∈[n]

1 = n (7)

C1 = max
j

∑
i∈[n]

δi,j = 1. (8)

Since
√
C0C1 =

√
n, we see that Adv±(f) ≤

√
n, demonstrating that the previously discussed

adversary lower bound is the best possible adversary lower bound.

It is easy to extend this dual adversary solution to one for the total or function. For any x 6= 0,
simply let |vx,i〉 = δi,j , where j is the index of any particular bit for which xj = 1 (e.g., the first
such bit). Then the constraints are still satisfied, and the complexity is the same. As an exercise,
you should work out an optimal dual adversary for and.

Function composition

A nice property of the adversary method (in both dual and primal formulations) is its behavior
under function composition. Given functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, we define

3

http://arxiv.org/abs/0904.2759

f ◦ g : {0, 1}nm → {0, 1} by (f ◦ g)(x) = f(g(x1, . . . , xm), . . . , g(xnm−m+1, . . . , xnm)). Here we focus
on upper bounds, for which we have the following.

Theorem. Adv±(f ◦ g) ≤ Adv±(f) Adv±(g).

Proof. Let {|vx,i〉 : x ∈ {0, 1}n, i ∈ [n]} be an optimal dual adversary solution for f , and let
{|uy,j〉 : y ∈ {0, 1}m, j ∈ [m]〉} be an optimal dual adversary solution for g. Let y = (y1, . . . , yn)
where each yi ∈ {0, 1}m. Then define

|wy,(i,j)〉 = |vg(y),i〉 ⊗ |uyi,j〉 (9)

where g(y) denotes the vector with g(y)i = g(yi).

We claim that this is a dual adversary solution for f ◦ g. To see this, we compute∑
(i,j) : yij 6=zij

〈wy,(i,j)|wz,(i,j)〉 =
∑
i∈[n]

〈vg(y),i|vg(z),i〉
∑

j : yij 6=zij

〈uyi,j |uzi,j〉 (10)

=
∑
i∈[n]

〈vg(y),i|vg(z),i〉(1− δg(yi),g(zi)) (11)

=
∑

i : g(yi)6=g(zi)

〈vg(y),i|vg(z),i〉 (12)

= 1− δ(f◦g)(y),(f◦g)(z). (13)

Finally, since ‖|wy,(i,j)〉‖ = ‖|vg(y),i〉‖ · ‖|uyi,j〉‖, using (2) gives

Adv±(f ◦ g) ≤ max
y

∑
i

‖|vg(y),i〉‖2
∑
j

‖|uyi,j〉‖2 (14)

≤ Adv±(f) Adv±(g) (15)

as claimed.

Note that here we needed the constraint (3) in the case where f(x) = f(y).

In particular, combining this with the dual adversary for or and a similar solution for and,
this shows that Adv±(f) ≤

√
n for the n-input balanced binary and-or tree.

An algorithm from a dual adversary solution

The dual adversary is significant not just because it gives upper bounds on Adv±(f), but because it
directly gives a quantum algorithm for evaluating f with quantum query complexity O(Adv±(f)).
(Note that the construction is not necessarily time-efficient—it may use many more elementary
gates than queries—but many known algorithms developed using span programs have subsequently
led to explicit, time-efficient algorithms.)

In particular, this shows that the quantum query complexity of the balanced binary and-or tree
is O(

√
n). This was originally shown, up to some small overhead, using a continuous-time quantum

walk algorithm based on scattering theory. The classical query complexity of this problem is

O(nlog2(1+
√
33

4
)) = O(n0.753), and no better quantum algorithm was known for many years. From the

perspective of span programs, the formula evaluation algorithm can be seen a method of recursive
evaluation with no need for error reduction.

4

Similarly to the quantum walk search algorithms we discussed previously, the algorithm for the
adversary dual uses a product of two reflections. Let A = Adv±(f), and let ∆ be the projector
onto span{|ψx〉 : f(x) = 1} where

|ψx〉 :=
1
√
νx

(
|0〉+ 1√

2A

∑
i∈[n]

|i〉|vx,i〉|xi〉
)

(16)

with {|vx,i〉} an optimal dual adversary solution. Here the normalization factor is

νx = 1 +
1

2A

∑
i∈[n]

‖|vx,i〉‖2 ≤
3

2
. (17)

The reflection 2∆− I requires no queries to implement. Let Πx = |0〉〈0|+
∑

i∈[n] |i〉〈i|⊗ I⊗|xi〉〈xi|
be the projector onto |0〉 and states where the query and output registers are consistent. Then the
reflection 2Πx − I can be implemented using only two queries to the oracle Ox.

The algorithm runs phase estimation with precision Θ(1/A) on the unitary U := (2Πx−I)(2∆−
I), with initial state |0〉. If the estimated phase is 1, then the algorithm reports that f(x) = 1;
otherwise it reports that f(x) = 0. This procedure uses O(A) queries. It remains to see why the
algorithm is correct with bounded error.

First, we claim that if f(x) = 1, then |0〉 is close to the 1-eigenspace of U . We have Πx|ψx〉 = |ψx〉
for all x and ∆|ψx〉 = |ψx〉 for f(x) = 1, so clearly U |ψx〉 = |ψx〉. Furthermore, |〈0|ψx〉|2 = 1/νx ≥
2/3 for all x, so surely ‖Πx|0〉‖2 ≥ 2/3. Thus the algorithm is correct with probability at least 2/3
when f(x) = 1.

On the other hand, we claim that if f(x) = 0, then |0〉 has small projection onto the subspace
of eigenvectors with eigenvalue eiθ for θ ≤ c/A, for some constant A. To prove this, we use the
following:

Lemma (Effective spectral gap lemma). Let |φ〉 be a unit vector with ∆|φ〉 = 0; let Pω be the
projector onto eigenvectors of U = (2Π − I)(2∆ − I) with eigenvalues eiθ with |θ| < ω for some
ω ≥ 0. Then ‖PωΠ|φ〉‖ ≤ ω/2.

Let

|φx〉 :=
1
√
µx

(
|0〉 −

√
2A
∑
i∈[n]

|i〉|vx,i〉|x̄i〉
)
, (18)

where the normalization factor is

µx = 1 + 2A
∑
i∈[n]

‖|vx,i〉‖2 ≤ 1 + 2A2. (19)

For any y with f(y) = 1, we have

〈ψy|φx〉 =
1

√
νyµx

(
1−

∑
i : yi 6=xi

〈vy,i|vx,i〉
)

= 0, (20)

so ∆|φx〉 = 0. Also, observe that Πx|φx〉 = |0〉/√µx. By the effective spectral gap lemma, ‖Pω|0〉‖ ≤
√
µxω ≤

√
1 + 2A2 ω ≈

√
2Aω. Thus, choosing ω =

√
2
3 ·

1
A gives a projection of at most 1/

√
3,

so the algorithm fails with probability at most 1/3 (plus the error of phase estimation, which can
be made negligible, and the small error from approximating 1 + 2A2 ≈ 2A2, which is negligible if
A� 1).

It remains to prove the lemma.

5

Proof. We apply Jordan’s lemma, which says that for any two projections acting on the same
finite-dimensional space, there is a decomposition of the space into a direct sum of one- and two-
dimensional subspaces that are invariant under both projections. (We something closely related on
the second assignment when computing the spectrum of a product of reflections.)

We can assume without loss of generality that |φ〉 only has support on 2×2 blocks of the Jordan
decomposition in which ∆ and Π both have rank one. If the block is 1× 1, or if either projection
has rank 0 or 2 within the block, then U acts as either ±I on the block; components with eigenvalue
−1 are annihilated by Pω, and components with eigenvalue +1 are annihilated by Π.

Now, by an appropriate choice of basis, restricting ∆ and Π to any particular 2× 2 block gives

∆̄ =

(
1 0
0 0

)
(21)

Π̄ =

(
cos θ2
sin θ

2

)(
cos θ2 sin θ

2

)
(22)

where θ
2 is the angle between the vectors projected onto within the two subspaces. A simple

calculation shows that (2Π̄ − I)(2∆̄ − I) is a rotation by an angle θ, so its eigenvalues are e±iθ.
Since ∆|φ〉 = 0, the component of |φ〉 in the relevant subspace is proportional to (0

1), and∥∥∥∥Π̄

(
0
1

)∥∥∥∥ =

∥∥∥∥sin θ
2

(
cos θ2
sin θ

2

)∥∥∥∥ = |sin θ
2 | ≤

θ
2 (23)

as claimed.

6

