
ASSIGNMENT 4 CO 481/CS 467/PHYS 467 (Winter 2014)

Due in class on Tuesday, March 11.

1. Finding a hidden slope. Let p be a prime number. Suppose you are given a black-box function
f : {0, 1, . . . , p − 1} × {0, 1, . . . , p − 1} → {0, 1, . . . , p − 1} such that f(x, y) = f(x′, y′) if and
only if y′ − y = m(x′ − x) mod p for some unknown integer m. In other words, the function is
constant on lines of slope m, and distinct on different parallel lines of that slope. Your goal is to
determine m mod p using as few queries as possible to f , which is given by a unitary operation
Uf satisfying Uf |x〉|y〉|z〉 = |x〉|y〉|z + f(x, y) mod p〉 for all x, y, z ∈ {0, 1, . . . , p − 1}. (Note
that each of the three registers stores an integer modulo p, which we do not need to explicitly
represent using qubits.)

(a) [2 points] Let Fp denote the Fourier transform modulo p, the unitary operator

Fp =
1
√
p

p−1∑
x,y=0

e2πixy/p|x〉〈y|.

Suppose we begin with three registers in the state |0〉|0〉|0〉. If we apply Fp ⊗ Fp ⊗ I, what
is the resulting state?

(b) [3 points] Now suppose we apply Uf and measure the state of the third register in the
computational basis (i.e., the basis {|0〉, |1〉, . . . , |p−1〉}). What are the probabilities of the
different possible measurement outcomes, and what are the resulting post-measurement
states of the first two registers?

(c) [5 points] Show that by applying F−1p ⊗ F−1p to the post-measurement state of the first
two registers and then measuring in the computational basis, one can learn m mod p with
probability 1− 1/p.

2. Factoring 21.

(a) [2 points] Suppose that, when running Shor’s algorithm to factor the number 21, you choose
the value a = 2. What is the order r of a mod 21?

(b) [3 points] Give an expression for the probabilities of the possible measurement outcomes
when performing phase estimation with n bits of precision in Shor’s algorithm.

(c) [2 points] In the execution of Shor’s algorithm considered in part (a), suppose you per-
form phase estimation with n = 7 bits of precision. Plot the probabilities of the possible
measurement outcomes obtained by the algorithm. You are encouraged to use software to
produce your plot.

(d) [2 points] Compute gcd(21, ar/2−1) and gcd(21, ar/2 + 1). How do they relate to the prime
factors of 21?

(e) [3 points] How would your above answers change if instead of taking a = 2, you had taken
a = 5?
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3. Searching for a quantum state.

Suppose you are given a black box Uφ that identifies an unknown quantum state |φ〉 (which may
not be a computational basis state). Specifically, Uφ|φ〉 = −|φ〉, and Uφ|ξ〉 = |ξ〉 for any state
|ξ〉 satisfying 〈φ|ξ〉 = 0.

Consider an algorithm for preparing |φ〉 that starts from some fixed state |ψ〉 and repeatedly
applies the unitary transformation V Uφ, where V = 2|ψ〉〈ψ| − I is a reflection about |ψ〉.

Let |φ⊥〉 = e−iλ|ψ〉−sin(θ)|φ〉
cos(θ) denote a state orthogonal to |φ〉 in span{|φ〉, |ψ〉}, where 〈φ|ψ〉 =

eiλ sin(θ) for some λ, θ ∈ R.

(a) [1 point] Write the initial state |ψ〉 in the basis {|φ〉, |φ⊥〉}.
(b) [3 points] Write Uφ and V as matrices in the basis {|φ〉, |φ⊥〉}.
(c) [3 points] Let k be a positive integer. Compute (V Uφ)k.

(d) [2 points] Compute 〈φ|(V Uφ)k|ψ〉.
(e) [2 points] Suppose that |〈φ|ψ〉| is small. Approximately what value of k should you choose

in order for the algorithm to prepare a state close to |φ〉, up to a global phase? Express
your answer in terms of |〈φ|ψ〉|.

4. The collision problem.

Recall that the quantum search algorithm can find a marked item in a search space of size N
using O(

√
N/M) queries, where M is the total number of marked items.

In the collision problem, you are given a black-box function f : {1, 2, . . . , N} → S (for some set
S) with the promise that f is two-to-one. In other words, for any x ∈ {1, 2, . . . , N}, there is a
unique x′ ∈ {1, 2, . . . , N} such that x 6= x′ and f(x) = f(x′). The goal of the problem is to find
such a pair (x, x′) (called a collision).

(a) [3 points] For any K ∈ {1, 2, . . . , N}, consider a quantum algorithm for the collision problem
that works as follows:

• Query f(1), f(2), . . . , f(K).

• If a collision is found, output it.

• Otherwise, search for a value x ∈ {K + 1,K + 2, . . . , N} such that f(x) = f(x′) for
some x′ ∈ {1, 2, . . . ,K}.

How many quantum queries does this algorithm need to make in order to find a collision?
Your answer should depend on N and K, and can be expressed using big-O notation.

(b) [3 points] How should you choose K in part (a) to minimize the number of queries used?

(c) [2 points] It turns out that the algorithm you found in part (b) is essentially optimal
(although proving this is nontrivial). Discuss the relationship between the collision problem
and Simon’s problem in light of this fact.
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