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Abstract
An authenticated data structure (ADS) is a data structure whose
operations can be carried out by an untrusted prover, the results of
which a verifier can efficiently check as authentic. This is done
by having the prover produce a compact proof that the verifier
can check along with each operation’s result. ADSs thus support
outsourcing data maintenance and processing tasks to untrusted
servers without loss of integrity. Past work on ADSs has focused
on particular data structures (or limited classes of data structures),
one at a time, often with support only for particular operations.

This paper presents a generic method, using a simple exten-
sion to a ML-like functional programming language we call λ•
(lambda-auth), with which one can program authenticated oper-
ations over any data structure defined by standard type construc-
tors, including recursive types, sums, and products. The program-
mer writes the data structure largely as usual and it is compiled to
code to be run by the prover and verifier. Using a formalization of
λ• we prove that all well-typed λ• programs result in code that is
secure under the standard cryptographic assumption of collision-
resistant hash functions. We have implemented λ• as an extension
to the OCaml compiler, and have used it to produce authenticated
versions of many interesting data structures including binary search
trees, red-black+ trees, skip lists, and more. Performance experi-
ments show that our approach is efficient, giving up little compared
to the hand-optimized data structures developed previously.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures

General Terms Security, Programming Languages, Cryptogra-
phy

1. Introduction
Suppose data provider would like to allow third parties to mirror its
data, providing a query interface over it to clients. The data provider
wants to assure clients that the mirrors will answer queries over the
data truthfully, even if they (or another party that compromises a
mirror) have an incentive to lie. As examples, the data provider
might be providing stock market data, a certificate revocation list,
the Tor relay list, or the state of the current Bitcoin ledger [22].
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Such a scenario can be supported using authenticated data
structures (ADS) [5, 24, 31]. ADS computations involve two roles,
the prover and the verifier. The mirror plays the role of the prover,
storing the data of interest and answering queries about it. The
client plays the role of the verifier, posing queries to the prover
and verifying that the returned results are authentic. At any point
in time, the verifier holds only a short digest that can be viewed as
summarizing the current contents of the data; an authentic copy of
the digest is provided by the data owner. When the verifier sends
the prover a query, the prover computes the result and returns it
along with a proof that the returned result is correct; both the proof
and the time to produce it are linear in the time to compute the
query result. The verifier can attempt to verify the proof (in time
linear in the size of the proof) using its current digest, and will
accept the returned result only if the proof verifies. If the verifier is
also the data provider, the verifier may also update its data stored
at the prover; in this case, the result is an updated digest and the
proof shows that this updated digest was computed correctly. ADS
computations have two properties. Correctness implies that when
both parties execute the protocol correctly, the proofs given by the
prover verify correctly and the verifier always receives the correct
result. Security1 implies that a computationally bounded, malicious
prover cannot fool the verifier into accepting an incorrect result.

Authenticated data structures can be traced back to Merkle [18];
the well-known Merkle hash tree can be viewed as providing an
authenticated version of a bounded-length array. More recently, au-
thenticated versions of data structures as diverse as sets [23, 27],
dictionaries [1, 12], range trees [16], graphs [13], skip lists [11, 12],
B-trees [21], hash trees [26], and more [15] have been proposed. In
each of these cases, the design of the data structure, the supporting
operations, and how they can be proved authentic have been recon-
sidered from scratch, involving a new, potentially tricky proof of
security. Arguably, this state of affairs has hindered the advance-
ment of new data-structure designs as previous ideas are not easily
reused or reapplied. We believe that ADSs will make their way into
systems more often if they become easier to build.

This paper presents λ• (pronounced “lambda auth”), a language
for programming authenticated data structures. λ• represents the
first generic, language-based approach to building dynamic authen-
ticated data structures with provable guarantees. The key observa-
tion underlying λ•’s design is that, whatever the data structure or
operation, the computations performed by the prover and verifier
can be made structurally the same: the prover constructs the proof
at key points when executing a query, and the verifier checks a proof
by using it to “replay” the query, checking at each key point that the
computation is self-consistent.
λ• implements this idea using what we call authenticated types,

written •τ , with coercions auth and unauth for introducing and
eliminating values of an authenticated type. Using standard func-

1 This property is sometimes called soundness but we eschew this term to
avoid confusion with its standard usage in programming languages.



tional programming features, the programmer writes her ADS’s
datatype definition and its corresponding operations (e.g., queries
and updates) to use authenticated types. For example, as we show
later in the paper, the programmer could write an efficient authen-
ticated binary search tree using the (OCaml-style) type definition
type bst = Tip | Bin of •bst × int × •bst along with es-
sentially standard routines for querying and insertion. Then, given
such a program, the λ• compiler produces code for both a prover
and a verifier that will produce or confirm, respectively, a proof of
the correct execution of the corresponding operation. Proofs con-
sist of a stream of what we call shallow projections of the data
the prover visits while running its routine: the prover’s code adds
to this stream at each unauth call, while the verifier’s code draws
from the stream at the corresponding call, checking for consistency.
We give a more detailed overview of how this approach works, and
how authenticated types are represented, in Section 2. Importantly,
as we show in Sections 3 and 4, any well-typed program written in
λ• compiles to a prover and verifier which are correct and secure,
where security holds under the standard cryptographic assumption
of collision-resistant hash functions.2

λ• provides two key benefits over prior work. First, it is ex-
tremely flexible. We can use λ• to implement any dynamic data
structure, both queries and updates, expressible using ML-style
data types (involving sums, products, and recursive types). Our
theoretical development, though not our implementation, also sup-
ports authenticated functions. Previous work by Martel et al. [17]
can also be used to build DAG-oriented ADSs, but it supports only
queries and not (incremental) updates, requires the data structure
have a single root, and does not support authenticated functions.
λ•’s flexibility does not compromise its performance. To the best
of our knowledge the asymptotic performance of every prior ADS
construction from the literature based on collision-resistant hash-
ing can be matched by λ•. We have implemented an optimizing
λ• compiler as an extension to the OCaml compiler (described in
Section 5), and using it we have implemented Merkle trees, au-
thenticated binary search trees, red-black+ trees, skip lists, and pla-
nar separator trees, as well as improvements to standard Bitcoin
data structures. Experiments described in Section 6 confirm the ex-
pected asymptotic performance of λ•ADSs, show the benefit of the
two compiler optimizations we implemented (which exploit space/-
time tradeoffs), and demonstrate that the performance of λ• ADSs
is competitive with hand-rolled versions.
λ•’s second main benefit is ease of use. We find that it is rela-

tively simple to construct an ADS using λ•: just write the standard
data structure in a purely functional style, and sprinkle in authenti-
cated types; we give a flavor for this in the next section. Pleasantly,
there is no need for the ADS designer to prove anything: Assuming
the resulting program type checks, the programmer is assured that
the produced prover and verifier code enjoy both correctness and
security. By contrast, Martel et al. [17] provide no such support;
programmers must write and check their implementations manu-
ally. λ• ADSs can be freely composed and customized just as one
might expect with normal data structures, a fact which we hope will
make them more readily deployable. All of this is in contrast to the
state of practice with ADSs today, summarized in Section 7, which
tends to favor hand-rolled versions that are hard to build, customize,
and compose.

In summary, this paper makes the following contributions:

1. We present λ•, a purely functional language in which one can
write a rich array of authenticated data structures using a novel
feature we call authenticated types.

2 Informally, hash is collision-resistant if it is computationally infeasible to
find distinct inputs x, x′ such that hash(x) = hash(x′). We treat this more
formally in Section 4.4.
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Figure 1. A Merkle tree and proof π for fetch(2) describing the
highlighted path (with bold edge and node outlines).

2. We formalize the semantics and type rules for λ• and prove
that all well-typed λ• programs produce ADS protocols that
are both correct and secure.

3. We have implemented λ• as an extension to the OCaml com-
piler3 and used it to program a variety of existing and new
ADSs, showing good asymptotic performance that is compet-
itive with hand-rolled implementations.

2. Overview
This section presents an overview of our approach. We begin by
describing Merkle trees, the canonical example of an authenticated
data structure. Then we give a flavor for λ• by showing how we can
use it to implement Merkle trees. We conclude with a discussion of
the flexibility and ease-of-use benefits of using λ• to write efficient
authenticated data structures.

2.1 Background: Merkle trees
The canonical example of an ADS is a Merkle tree [19], which is
the authenticated version of a full binary tree where data is stored
at the leaves but not the interior nodes. A Merkle tree of height h
can represent an array of n = 2h−1 elements, x0, ..., xn−1. Each
leaf node is coupled with a digest that consists of the hash of the
associated element, while each internal node contains a digest that
is the hash of the concatenation of the digests of its two children. A
depiction of a Merkle tree for h = 3 is given in Figure 1. Each leaf
is associated with a string str0, str1, etc. Each node is numbered
according to its position in the tree, with x, y indicating x as the
row and y as the column.

The canonical Merkle-tree query fetches the value xi at index
i ∈ [0, n− 1]. When thus queried, the prover (call it P ) returns the
value xi along with the set of digests π needed to compute the root
digest. The verifier (call it V ) keeps a copy of the root digest itself,
and checks the proof by recomputing this digest from the proof to
make sure the two match. Figure 1 shows the proof π for a fetch at
position i = 2 (i.e., the leaf at position N0, 2). It consists of three
elements in sequence, the string str2, the hash h7, and the hash h2;
these are labeled with the salient nodes of the tree that they relate
to. Verification proceeds bottom up: V computes the hash of str2,
which is h6, and concatenates that with the hash h7 provided in π.
It then concatenates these two and takes the hash to compute what
should be the digest for node N1, 1, i.e., h3. Then it concatenates
h2, the hash for N1, 0 provided in π, with its computed digest for
N1, 1 and hashes the result. It then confirms that this computed
digest equals h1, the digest it stores for the whole tree.

Performance analysis. Because the tree is perfectly balanced, the
size of the proof is always log2 n; additionally the computational
cost for each of P and V is log2 n. The overall size of the data
structure stored by P isO(n), whereas V at no point requires more
than a constant amount of storage or memory. In particular, V only
stores a constant-sized digest of the tree between fetch operations,

3 The full open-source code for our implementation is available at the
following URL: http://www.cs.umd.edu/~amiller/gpads/



type tree = Tip of string | Bin of •tree × •tree
type bit = L | R
let rec fetch (idx:bit list) (t:•tree) : string =

match idx, unauth t with
| [], Tip a → a
| L :: idx, Bin(l, ) → fetch idx l
| R :: idx, Bin( ,r) → fetch idx r

Figure 2. Merkle trees in λ•. The tree is assumed to be complete,
i.e., with a power-of-two number of leaves.

and because V processes each (constant-sized) hash in order, it can
discard it immediately after it is read. For this reason, we often refer
to π as a proof stream.

Security analysis. As described in the Introduction, we are inter-
ested in two properties of this scheme. Correctness says that when
P executes a query f over a tree t correctly, then V gets the same
result as it would have if it had just computed f(t) normally. The
second property, security, says that a computationally bounded,
cheating prover P ∗ cannot cause V to accept an incorrect answer.
The basis of this property is the use of collision-resistant hashes:
we can show that if P ∗ can cause V to accept an incorrect answer
then the proof returned by P ∗ will yield a collision. We state these
properties precisely, in the context of λ•, in Section 4.

2.2 Introducing λ•, a language for programming ADSs
The Merkle tree verification procedure was carefully designed with
the properties of the underlying data structure in mind. In particular,
there can be but one path from the root to a given leaf, and from
this path we can determine digests sufficient to recompute the root
digest. The question is: how might we generalize this approach to
arbitrary data structures t involving arbitrary computations f? We
designed λ• as a solution to this problem.
λ• is a completely standard, purely functional programming

language extended with authenticated types •τ , along with coer-
cions auth and unauth , which have type ∀α.α → •α (for intro-
ducing authenticated values) and type ∀α.•α → α (for eliminat-
ing authenticated values), respectively. A function f using authen-
ticated types is compiled to variations fP and fV for the prover
and verifier, respectively. Data of type •τ stored at the prover is
like a normal value of type τ but augmented with digests, while
data of type •τ stored at the verifier is simply a compact digest.
The auth/unauth coercions at the prover facilitate proof genera-
tion, while at the verifier they check a provided proof. In short,
λ•’s design exploits the observation that proof generation and proof
verification can be made structurally identical essentially by piggy-
backing them on top of the ideal computation of f(t).

Example. As an illustration, Figure 2 shows a version of Merkle
trees written in our OCaml-based λ• implementation. The type
tree is simply a binary tree with strings stored at the leaves. The
fetch function takes an index expressed as a list of bits, which
is interpreted as a path through the tree, with L bits directing the
traversal to the left, and R bits directing it right. The function
returns the string associated with the Tip that is eventually reached.
Notice that since the argument t has type •tree, the function must
call unauth t to coerce it to a tree to be matched against (we give
a use of auth in Section 2.3).

Interpretation of authenticated types. All standard constructs
have the usual semantics in both fP and fV , but authenticated types
are interpreted differently.

Prover For fP , values of type •τ consist of pairs 〈h, v〉 where v
has type τ and h is its digest, i.e., a hash of the shallow pro-

::π =

hash (                    ) = h6

hash ( ) = h3

hash ( ) = h1

where

⟨h1,  ⟩

Bin(⟨h2,  ⟩,⟨h3,  ⟩)
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Tip(str0) Tip(str1) Tip(str2) Tip(str3)

t = Bin(h2,h3) Tip(str2)Bin(h6,h7) ::

Tip(str2)

Bin(h2,h3)

Bin(h6,h7)

Figure 3. A λ• Merkle tree t at the prover (of type •tree from
Figure 2) and proof stream π for query fetch t [R; L]. Hashes of
relevant shallow projections are given in the lower right.

jection of v. The shallow projection of a value is just the value
itself for all values of type τ that do not consist of any authen-
ticated types •τ0, while the shallow projection of an authenti-
cated value 〈h, v〉 is just the digest h (the formal definition is
in Figure 9). Looking at the definition of type tree in the fig-
ure, we can see that recursive references to the tree in the Bin
case are authenticated. As such, the prover’s representation is
just as described in the previous subsection: each node of the
tree has the form Bin(〈h1, v1〉, 〈h2, v2〉), which consists of the
left subtree v1 and its digest h1, and the right subtree v2 and
its digest h2. Each digest consists of the hash of the shallow
projection of its respective tree. So, if v1 was a leaf Tip(s),
the shallow projection is just Tip(s) itself, and thus h1 is the
hash of Tip(s). On the other hand, suppose v1 was a node
Bin(〈h11, v11〉, 〈h12, v12〉). Then Bin(h11, h12) is this node’s
shallow projection, and h1 is its digest.

Verifier For fV , values of type •τ consist solely of the digest h
of some value of type τ . As such, for our example, while the
prover maintains the entire tree data structure, the verifier only
keeps the digest of the root. In general, values in fV are the
shallow projections of their corresponding values in fP ; we
define this notion formally in the next section.

Turning to the coercions, for both the prover and verifier the auth v
coercion computes the hash h of the shallow projection of v; for
the prover, this hash is paired with v while the verifier retains only
h itself. The interesting part is the semantics of unauth . For the
prover, unauth is called with 〈h, v〉 and it simply returns v. In
addition, it computes the shallow projection of v and adds it to the
proof π, which is just a list of such shallow projections. We often
refer to π as a proof stream to emphasize the list structure. For
the verifier, unauth takes a hash h and compares it to the hash of
the element s at the head of the proof stream, which should be a
shallow projection of type τ . If all is well, this element is the one
the Prover put there and so the hashes will match and the coercion
returns s. Otherwise there is a problem and verification fails.

Example Merkle-tree query. Figure 3 depicts the prover’s ver-
sion of an object of type •tree corresponding to the Merkle tree
from Figure 1. These trees are structurally similar but not identical;
in particular, notice that a node’s digest is stored with the pointer
to that node, rather than at the node itself. Suppose the prover ex-
ecutes the query (fetch [R; L] t), which corresponds to the query
from Section 2.1. The figure also depicts the proof stream π it pro-
duces, along with the hashes of shallow projections of relevant tree
elements. The first thing the prover will execute is unauth t, which
returns the pointer to the first node, and stores its shallow projec-
tion Bin(h2,h3) in the proof stream—notice that this is the same
as the pointed-to node but the sub-tree pointers have been dropped.
Execution continues to the third case of the match, which recur-
sively calls (fetch [L] r), where r is bound to the authenticated value
〈h3, v〉 such that v is the right subtree. The prover then invokes
unauth on this pair, returning v and adding Bin(h6,h7) to the proof



stream. This time we take the second case of the match, recursing
on 〈h6,Tip(str2 )〉, so the call to unauth returns Tip(str2 ) and
adds its shallow projection (Tip(str2 ) itself) to the proof stream.
Execution concludes with str2 as the final result while the final
proof stream π consists of three elements, representing the three
nodes visited.

The verifier begins with the proof stream π and just the digest of
t, which is h1. It then runs (fetch [R; L] t) using its version of the
code. It first executes unauth h1, which compares h1 to the hash
of the first element s0 of the proof stream, which is Bin(h2,h3).
The hashes match, as per the equations given in the lower right
of the figure, and thus execution continues using s0. Execution
proceeds to the third case of the match, recursively calling fetch
with [L] and h3. This time, calling unauth h3 results in comparing
h3 to the hash of the second element in the proof stream, which is
Bin(h6,h7), and once again the hashes match and the proof stream
element is returned. The second branch of the match fires, so the
recursive call passes [] and h6. Finally, unauth h6 compares h6 to
the hash of the final element of the proof stream, Tip(str2 ), which
is returned as the hashes match. Thus execution concludes with the
final result as str2 . As all hash checks succeeded, the verifier has
confirmed the prover’s execution is correct.

Analysis. λ• Merkle trees are asymptotically as efficient as the
originals, and as secure. As before, the verifier maintains only the
constant-sized digest between queries, and the size of the fetch
proof and the time to generate and verify it is O(log2 n): the proof
stream consists of one (constant-size) shallow projection for each
recursive call to fetch. The argument for security once again rests
on collision-resistant hashes, though λ• verification checks the root
digest top-down rather than bottom-up. Our proof stream has some
redundancy (it contains hashes h2, h3, h6, and h7, whereas in
Figure 1 the proof contains only h2 and h7) but this is only a
constant factor and can be optimized away (cf. Section 5.2).

2.3 Discussion: Benefits of λ•
The primary benefit of writing ADSs in λ• over prior approaches
is flexibility and ease of use. λ• can support essentially any com-
putation over a DAG-oriented data structure that is expressed as a
functional program. Moreover, as proved in Section 4, writing an
ADS in λ• ensures it is both correct and secure; there is no need
for a designer to make a new argument for each new data struc-
ture. As far as we are aware, λ• can be used to implement any
previously proposed ADS based on collision-resistant hashing. As
described in Section 6, so far we have successfully implemented
Merkle trees and authenticated versions of binary search trees, red-
black+ trees [24], skip lists [29], and variations of the Bitcoin block
chain [22], all of which enjoy asymptotically identical, or better,
performance than their specially-designed counterparts.

Support for updates. Martel et al. [17] also previously proposed
a general-purpose scheme that supports ADSs based on DAGs. In
principle, their scheme could also support the above-mentioned
data structures, but only for query computations, not updates. By
contrast, updates are completely natural in λ•. For example, the
function update in Figure 4 updates a Merkle tree. The verifier
could submit a request to the prover to run (update [R; L] t str4 ).
The prover will produce a proof stream π for the operation along
with a new authenticated tree t′ that contains the modification, and
which shares much of the structure of the original tree t, as per
standard functional programming style. The prover can then update
its root to now be t′ and then send the verifier the result of the
execution, which is the digest portion of t′ and the proof stream

let rec update (idx:bit list) (t:•tree) (newval:string) : •tree =
match idx, unauth t with
| [], Tip → auth(Tip newval)
| L::idx’, Bin(l,r) → auth(Bin(update idx’ l newval, r))
| R::idx’, Bin(l,r) → auth(Bin(l, update idx’ r newval))

let update cps (idx:bit list) (t:•tree) (newval:string) : •tree =
let rec update (k : •(•tree → •tree)) idx t x : •tree =

match idx, unauth t with
| [], Tip → (unauth k) (auth(Tip x))
| L :: idx’, Bin(l,r) →

update (auth(fun t → auth(Bin(t,r)))) idx’ l x
| R :: idx’, Bin(l,r) →

update (auth(fun t → auth(Bin(l,t)))) idx’ r x
in update (auth(fun t → t)) idx t newval

type stack = E | SL of •stack × •tree | SR of •stack × •tree
let update stk (idx:bit list) (t:•tree) (newval:string) : •tree =

let rec build idx t (s:stack) : •tree × stack =
match idx, unauth t with
| [], Tip → auth(Tip newval), s
| L::idx’, Bin(l,r) → build idx l (SL(auth s, r))
| R::idx’, Bin(l,r) → build idx r (SL(auth s, l)) in

let rec apply (child:•tree, s:stack) : •tree =
match s with
| E → child
| SL(s, r) → apply (auth(Bin(child, r)), unauth s)
| SR(s, l) → apply (auth(Bin(l, child)), unauth s) in

apply (build idx t E)

Figure 4. Functions for updating a Merkle tree in λ•.

π. The verifier can then use π in the usual way to verify that (the
digest of) t′ is indeed the right result and then update its local root.4

Controlling performance. The fact that λ• is a general-purpose
programming language means that it affords substantial flexibility
to the ADS designer in customizing an ADS design to her needs.

As one possible customization, the designer might refactor op-
erations to better control space usage. Consider the update func-
tion once again. While the proof stream contributes only a constant
space overhead, since the verifier can discard each element after
it is read, we observe that executing update will require O(logn)
stack space, since the function is not tail recursive. One way to
eliminate this overhead is to rewrite update in continuation-passing
style (CPS) such that the continuation itself is authenticated, as for
the function update cps given in the middle of Figure 4. As such,
recursive uses of nested continuations will be replaced with a hash,
effectively bounding the depth of the stack encoded in the continu-
ation. To the best of our knowledge, no prior work has considered
authenticated closures. Another way to achieve the same effect, but
perhaps less elegantly, is to use an explicit authenticated stack as is
done by update stk given at the bottom of the figure.

The designer could also tune performance by adjusting the
definition of the data structure itself. For example, we could have
defined Merkle trees instead as follows:

type tree = Tip of string | Bin of •(tree × tree)

In this case, we are only hashing nodes, and will never hash tips.
This definition makes more sense when the hash of the Tip is larger

4 In general, the prover will return the shallow projection of the result of
a computation back to the verifier; when the result is a normal value the
prover will thus return the value itself (as with the result in our (fetch [R;
L] t) example query).



Types τ ::= 1 | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | µα.τ | α | •τ
Values v ::= () | x | λx.e | rec x.λy.e

| inj1 v | inj2 v | (v1, v2) | roll v
Exprs e ::= v | let x = e1 in e2 | v1 v2 | case v v0 v1

| prj1 v | prj2 v | unroll v | auth v | unauth v

Figure 5. Syntax for types and terms

than the representation of Tip itself, e.g., if the tree stored integers
instead of strings. As another variation, we might imagine defining
a tree that only optionally authenticates its children:

type tree =
| Tip of string
| Bin of tree × tree
| AuthBin of •(tree × tree)

Then the tree might go several levels using Bin before using Au-
thBin. This design thus increases the constant factor on asymptotic
space usage, but may reduce proving/verification time.

All of these customizations are possible, and easy to experiment
with, thanks to the fact that λ• is a general-purpose programming
language. However, this flexibility cuts both ways: there is nothing
(at the moment) stopping the programmer from producing a subop-
timal design. As an extreme example, the programmer could write
type tree = Tip of string | Bin of tree × tree—i.e., without any
use of authenticated types! This design will be secure and correct,
as with every λ• program, but will effectively require the verifier
to maintain the entire tree, not simply a digest. Fortunately, there
is a simple rule of thumb that may have already become evident
to the reader by this point: the data-structure type definition should
authenticate recursive references, thus aiming for shallow projec-
tions to be constant-sized. We leave to interesting future work the
task of automating the transformation of a •-free type definition to
an efficient authenticated one.

3. λ•: A Language with Authenticated Types
This section formalizes λ•, our language for writing computations
over authenticated data structures. We present the syntax, typing
rules, and operational semantics for λ• programs. The next section
proves that λ• computations produce correct and secure results.

3.1 Syntax
Figure 5 presents the syntax for λ•. Other than authenticated types
•τ , the type language is entirely standard, consisting of the unit
type 1, function types τ1 → τ2, sum types τ1 + τ2, product types
τ1 × τ2, recursive types µα.τ , and variable types α arising from
these. In this syntax, our authenticated tree type defined in Figure 2
would be written µα.string + (•α × •α), where string would
itself be encoded, e.g., as a list of Peano-style integers. Our formal
language does not include parametric polymorphism for simplicity,
but adding it would present no difficulties. The language does
not support references because mutations would risk invalidating
hashes for •τ values. In particular, given an authenticated value
〈h, v〉 where v is a reference, a mutation via v may invalidate h.

Terms (values v and expressions e) are in administrative normal
form [7] to keep the semantics simple. In this form, the grammar
forces us to write let x = e1 in let y = e2 in x y instead of
the more familiar e1 e2, for example. In addition to variables x,
the term language includes functions λx.e and function application
v1 v2; sum-type values inj1 v and inj2 v which are eliminated
by case v v0 v1, where v0 and v1 are expected to be functions;

Γ ` v : τ1

Γ ` inj1 v : τ1 + τ2

Γ ` v : τ2

Γ ` inj2 v : τ1 + τ2

Γ ` v : τ1 → τ2 Γ ` v′ : τ1

Γ ` v v′ : τ2

Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

Γ ` v : τ1 + τ2 Γ ` v1 : τ1 → τ Γ ` v2 : τ2 → τ

Γ ` case v v1 v2 : τ

Γ ` v : τ

Γ ` auth v : •τ
Γ ` v : •τ

Γ ` unauth v : τ

Figure 6. Selected typing rules

products (v1, v2) eliminated by expressions prj1 v and prj2 v;
values of recursive type introduced via roll v and eliminated by
unroll v; and finally fixpoints rec x.λy.e for defining recursive
functions (where inside of λy.e references to x refer to the function
itself). Authenticated types •τ are introduced by coercion auth and
eliminated by unauth .

3.2 Typing
The typing judgment for λ• programs is the usual one, written
Γ ` e : τ . It states that expression e has type τ under environment
Γ, where Γ is a map from variables x to types τ . Typing rules for
most constructs are standard. Selected rules are given in Figure 6.

3.3 Operational semantics
In practice, our compiler takes a program like the one in Figure 2
and outputs versions to be run by the prover and the verifier. In our
formalization, we define distinct semantics for the same program,
as determined by an execution mode m, where m = P for the
prover’s execution, and m = V for the verifier’s. We also define a
mode I for the Ideal case, representing a computation that happens
in the normal way, ignoring authenticated types; this is needed for
stating the security and correctness properties.

We define a small-step operational semantics of the form �
π, e � →m � π′, e′ �, where m is the mode and π is the proof
stream, which is a list of shallow projections s. This can be read: An
expression e coupled with a proof stream π can evaluate one step in
mode m to produce an expression e′ and an updated proof stream
π′. We define � π, e � →i

m � π′, e′ � to be the transitive
multi-step application of the single-step relation; it states that e
evaluates, in i steps, to e′ in mode m, starting with proof stream π
and finishing with π′. The proof stream is produced in mode P , so
π is a prefix of π′ in this mode. The stream is consumed in mode V ,
and thus π′ is a suffix of π. The proof stream is ignored in mode I .
We use the operator @ to denote the concatenation of two proof
streams, treating @ as associative with the empty stream [] as the
identity. We write [s] as the singleton stream containing element s.

The rules for standard language features are identical in all three
modes, and are standard. They are defined in the top portion of Fig-
ure 7, and we discuss them briefly in order. The rule for function
application, (λx.e) v, substitutes v for x in e—this substitution is
written e[v\x]. Application of a recursive function is similar: when
the function (rec x.λy.e) is on the left-hand side of an application,
we substitute x in the function body e with the recursive function
itself. Let-binding is used to sequence computations, either evaluat-
ing the bound expression e1 one step or else, if this expression is a
value v1, substituting that value for x in the body e2. The semantics
of case depends on whether it is given inj1 v or inj2 v; in the former



� π, (λx.e) v � →m � π, e[v\x]�
� π, (rec x.λy.e) v � →m � π, (λy.e′) v �

where e′ = e[(rec x.λy.e)\x]

� π, let x = v1 in e2 � →m � π, e2[v1\x]�
� π, case (inj1 v)(λx.e1)(λx.e2)� →m � π, e1[v\x]�
� π, case (inj2 v)(λx.e1)(λx.e2)� →m � π, e2[v\x]�
� π, prj1 (v1, v2)� →m � π, v1 �
� π, prj2 (v1, v2)� →m � π, v2 �
� π, unroll (roll v)� →m � π, v �

� π, e1 �→m � π′, e′1 �
� π, let x = e1 in e2 �→m � π′, let x = e′1 in e2 �

� π, e�→i
m � π′, e′ �

� π′, e′ �→m � π′′, e′′ �
� π, e�→i+1

m � π′′, e′′ �
� π, e�→0

m � π, e�

Figure 7. Standard single-step and multi-step operational rules

� π, auth v � →I � π, v �
� π, unauth v � →I � π, v �
� π, auth v � →P � π, 〈hash ([v]), v〉 �
� π, unauth 〈h, v〉 � →P � π @ [ ([v]) ], v �
� π, auth v � →V � π, hash v �

hash s0 = h

� [s0] @ π, unauth h�→V � π, s0 �

where v ::= . . . | h | 〈h, v〉

Figure 8. Operational rules for authenticated values

([()]) = () ([x]) = x
([〈h, v〉]) = h ([λx.e]) = λx.([e])
([auth v]) = auth ([v]) ([unauth v]) = unauth ([v])
([(v1, v2)]) = (([v1]), ([v2])) ([prji v]) = prji ([v])
([roll v]) = roll ([v]) ([unroll v]) = unroll ([v])
([rec x.λy.e]) = rec x.([λy.e]) ([inji v]) = inji ([v])

([case v v0 v1]) = case ([v]) ([v0]) ([v1])
([let x = e1 in e2]) = let x = ([e1]) in ([e2])

Figure 9. Shallow projection of an expression e, written ([e])

case we substitute v in the first lambda term (the “true branch”),
else we substitute it in the second (“false”) one. Projection from
a pair (v1, v2) produces v1 for prj1 and v2 for prj2. Finally, the
recursive type coercions unroll and roll nullify each other.

The rules for the multi-step relation are given at the bottom of
Figure 7, and are also standard.

The operational rules for authenticated values are given in Fig-
ure 8. For mode I , authenticated values of type •τ are merely val-
ues of type τ and the auth/unauth operations are no-ops. For
mode P , values of type •τ are implemented as a pair 〈h, v〉 of a
hash h and a value v (of type τ ). As shown in the auth rule, the
hash is computed by applying a hash function hash over the shal-
low projection of v, written ([v]). We do not formalize the semantics
of hash explicitly; in practice it can be implemented by serializ-
ing the value it is given and hashing that using a collision-resistant

hash function.5 The shallow projection operation is defined in Fig-
ure 9. It is essentially a fold over the structure of the term, preserv-
ing that structure in every case but that of values 〈h, v〉: here we
simply drop the value v and retain the hash h. Another interesting
case is functions λx.e: we recursively descend into e to translate
any 〈h, v〉 values that appear there. Such values will not appear in
source programs, but they can arise via substitution under lambdas.
Returning to Figure 8, the mode-P semantics of unauth 〈h, v〉 is
to strip off the hash, returning v, while adding the shallow projec-
tion of v to the end of the proof stream. Finally, for mode V the
representation of •τ is the hash h of a value of type τ . The auth
rule constructs this representation, while the unauth rule checks
that the hash value matches the shallow projection at the head of
the proof stream.

4. Metatheory
We want to show that well-typed λ• programs will (a) produce
correct results—that is, results that all three modes agree on—or
else (b) a malicious prover has been able to find a hash collision,
which by assumption is computationally difficult. We call property
(a) correctness and property (b) security. In this section we state
and prove these two properties.

4.1 Type Soundness
To begin, we want to prove that λ•’s design is sensible in that the
ideal semantics is sound (and entirely ordinary). We can prove the
standard type soundness lemma about the ideal mode’s semantics.

Lemma 1 (Type Soundness). If Γ ` e : τ , then either e is a value,
or there exists e′ and i > 0 such that� [], e � →i

I � [], e′ �
and Γ ` e′ : τ .

Proof. The proof is completely standard, using progress and preser-
vation lemmas, and inducting on� [], e�→i

I � [], e′ �.

4.2 Agreement
Now we must define what we mean when we say that the different
execution modes “agree” on their results—it cannot be that these
results are syntactically equal because each mode interprets authen-
ticated values differently. For example, consider the update func-
tion from Figure 4. In the ideal setting, this function will return a
normal tree v—because •τ values are the same as those of type τ ,
the tree v will contain no digests. On the other hand, the prover will
return a value 〈h, vP 〉, where h is the digest of vP . For the same
insertion on the same tree, the results v and 〈h, vP 〉 in I and P
modes, respectively, should “agree” without being equal: v will just
be a normal tree, while vP will contain digests—but the elements
and sub-trees, excepting the digests, should be the same. And, run-
ning the insertion at the verifier will return a digest h, which should
match the digest in the prover’s returned value 〈h, vP 〉.

We formalize this connection as a three-way type-indexed rela-
tion Γ ` e eP eV : τ , given in Figure 10, which states: in envi-
ronment Γ, ideal expression e, prover expression eP , and verifier
expression eV all agree at type τ . In every case but that of authen-
ticated values (the last rule), agreement follows syntactic structure
of the terms, and the shape of each rule matches that of the standard
type rules. The rule for authenticated values formalizes the intuition
given above; it states that Γ ` v 〈h, vP 〉 h : •τ holds when (a) the
digest h of both the prover and verifier is the same; (b) this digest
is the hash of the shallow projection of the prover’s value vP ; (c)
the prover’s value vP agrees with the ideal value v.

Now we prove some useful facts about terms in agreement.

5 For functions λx.e, serialization involves pretty-printing the function’s
code such that alpha-equivalent functions will have the same hash value.
We discuss implementing authenticated functions more in Section 5.3.



Γ ` () () () : 1
Γ(x) = τ

Γ ` x x x : τ

Γ, x:τ1 ` e eP eV : τ2

Γ ` (λx.e) (λx.eP ) (λx.eV ) : τ1 → τ2

Γ ` v1 v1P v1V : τ1 → τ2 Γ ` v2 v2P v2V : τ1

Γ ` (v1 v2) (v1P v2P ) (v1V v2V ) : τ2

Γ ` e1 e1P e1V : τ1 Γ, x:τ1 ` e2 e2P e2V : τ2

Γ ` (let x = e1 in e2) (let x = e1P in e2P ) (let x = e1V in e2V ) : τ2

Γ, x:τ1 → τ2 ` (λy.e) (λy.eP ) (λy.eV ) : τ1 → τ2

Γ ` (rec x.λy.e) (rec x.λy.eP ) (rec x.λy.eV ) : τ1 → τ2

Γ ` v vP vV : τ1

Γ ` (inj1 v) (inj1 vP ) (inj1 vV ) : τ1 + τ2

Γ ` v vP vV : τ2

Γ ` (inj2 v) (inj2 vP ) (inj2 vV ) : τ1 + τ2

Γ ` v vP vV : τ1 + τ2
Γ ` vP v1P v1V : τ1 → τ
Γ ` vV v1V v2V : τ2 → τ

Γ ` (case v v1 v2) (case vP v1P v2P ) (case vV v1V v2V ) : τ

Γ ` v1 v1P v1V : τ1 Γ ` v2 v2P v2V : τ2

Γ ` (v1, v2) (v1P , v2P ) (v1V , v2V ) : τ1 × τ2

Γ ` v vP vV : τ1 × τ2
Γ ` (prj1v) (prj1 vP ) (prj1 vV ) : τ1

Γ ` v vP vV : τ1 × τ2
Γ ` (prj2 v) (prj2 vP ) (prj2 vV ) : τ2

Γ ` v vP vV : τ [µα.τ\α]

Γ ` (roll v) (roll vP ) (roll vV ) : µα.τ

Γ ` v vP vV : µα.τ

Γ ` (unroll v) (unroll vP ) (unroll vV ) : τ [µα.τ\α]

Γ ` v vP vV : τ

Γ ` (auth v) (auth vP ) (auth vV ) : •τ

Γ ` v vP vV : •τ
Γ ` (unauth v) (unauth vP ) (unauth vV ) : τ

` v vP ([vP ]) : τ hash ([vP ]) = h

Γ ` v 〈h, vP 〉 h : •τ

Figure 10. Agreement relation: defines those expressions that agree (i.e., that are morally, if not syntactically, the same) in the Ideal, Prover,
and Verifier modes. The most interesting rule is the last one, while the rest are three-way versions of the standard type rules.

Lemma 2 (Agreement). Suppose Γ ` e eP eV : τ . Then

1. ([eP ]) = eV .
2. Γ ` e e′P e′V : τ implies that e′P = eP and eV = e′V .
3. Γ ` e : τ
4. Either e, eP , and eV are all values, or none of them are.

Proof. By induction on Γ ` e eP eV : τ .
The first part shows the agreement relation is intimately con-

nected to the shallow projection operator—a prover’s term only
ever agrees with a verifier’s term when the latter is the shallow pro-
jection of the former. Moreover, we prove for any given ideal term
e, there is at most one pair of terms eP and eV that agree with it
under a given environment Γ and type τ , that agreement implies e
is well-typed, and that values only agree with other values.

Client and server agree. In a client/server application scenario,
a query/update sent by the client will reference the data structure
stored at the server using a free variable, e.g., the t in the query
fetch t 4. To run this query on the server, we substitute the prover’s
representation for t, while to verify the result at the client, we
substitute t’s digest. These representations should agree. The fol-
lowing lemma states that, given an expression e containing free
variables with authenticated types, substituting authenticated val-
ues that agree for the free variables of e produces versions eI , eP ,
and eV that also agree.

Lemma 3. Given the following:

1. Γ ` e : τ where e contains no values of type •τ
2. For all xi ∈ domain(Γ),

(a) Γ(xi) = •τi for some τi
(b) ` vi 〈hi, vPi〉 hi : •τi for some 〈hi, vi〉 and vPi

3. eP = e[〈h1, vP1〉\x1]...[〈hn, vPn〉\xn]
eV = e[h1\x1]...[hn\xn]
eI = e[v1\x1]...[vn\xn]

Then ` eI eP eV : τ .

The proof of this lemma follows from straightforward applica-
tion of the following substitution lemma:

Lemma 4 (Substitution). If Γ, x:τ ′ ` e eP eV : τ and
` v vP vV : τ ′, then Γ ` (e[v\x]) (eP [vP \x]) (eV [vV \x]) : τ .

Proof. The proof is by induction on Γ, x:τ ′ ` e eP eV : τ . The
only interesting case is when Γ, x:τ ′ ` v′ 〈h, v′P 〉 h : •τ . The
empty environment in the premise ` v′ v′P ([v′P ]) : τ ensures
that v′ and v′P contain no variables, so the substitution will be the
identity and the result follows by assumption.

4.3 Correctness and Security
Now we can state and prove our main theorem, Theorem 1, which
encapsulates the two properties of interest, correctness and secu-
rity. For both properties, we start with the assumption that terms
e, eP , and eV agree (which will be the case at the start of evalu-
ating a query/update as per Lemma 3). The ideal-mode evaluation
represents the specification of correctness: if e can evaluate to e′ in
ideal mode in i steps, then the verifier, when consuming the proof
stream π produced by the prover’s evaluation of eP , should evalu-
ate to some e′V which (along with the prover’s resulting term e′P )
agrees with e′. On the other hand, if the verifier does not consume
π but rather some other, adversarially chosen stream πA that does
not contain π as a prefix (e.g., because the server is behaving ma-
liciously or incorrectly), then the only way the verifier can accept
an incorrect result is if the adversary has found a hash collision.



That is, the consumed stream πA contains an element s† that corre-
sponds to an element s in π such that s 6= s† but hash s = hash s†.
As discussed further in Section 4.4, this implies the standard cryp-
tographic notion of security for this setting if hash is collision-
resistant. Here is the theorem, stated formally:

Theorem 1. Suppose that ` e eP eV : τ .
Correctness: If� [], e � →i

I � [], e′ � then there exist e′P ,
e′V , π such that
• � [], eP �→i

P � π, e′P �
• � π, eV �→i

V � [], e′V �
• ` e′ e′P e′V : τ

Security: If� πA, eV �→i
V � π′, e′V � then

1. there exist e′, e′P , π, such that
• � [], e�→i

I � [], e′ �
• � [], eP �→i

P � [] @ π, e′P �
• πA = π @ π′

• ` e′ e′P e′V : τ

2. or else there exist j ≤ i, e′P , π0, s and s† such that
• � [], eP �→j

P � [] @ π0 @ [s], e′P �
• πA = π0 @ [s†] @ π′

• s 6= s† but hash s = hash s†.

The proof is by induction on the length i of the multi-step
derivations, relying on two lemmas about the Correctness and Se-
curity of single-step evaluation, which we present next.

Lemma 5 (Correctness). If ` e eP eV : τ and� [], e�→I �
[], e′ � then there exist e′P , e′V , and π such that for all π′, πp

1. ` e′ e′P e′V : τ
2. � πp, eP �→P � πp @ π, e′P �
3. � π @ π′, eV �→V � π′, e′V �.

Proof. By induction on ` e eP eV : τ . Most cases are straight-
forward, and follow by application of the Substitution lemma. The
two interesting cases deal with authenticated computations:

• Suppose e, eP , and eV are auth v, auth vP and auth vV ,
respectively. Each can take a step in its respective mode, pro-
ducing v, 〈hash ([vP ]), vP 〉, and hash vV , respectively, leaving
the proof stream unchanged (i.e., π = []). Now we must prove
` v 〈hash ([vP ]), vP 〉 hash vV : •τ , which in turn requires
proving ` v vP ([vP ]) : τ and hash ([vP ]) = hash vV . Both
are the consequence of Lemma 2.1 and ` e eP eV : τ .

• Suppose e, eP , and eV are unauth v, unauth vP and
unauth vV , respectively. By inversion on ` e eP eV : τ
we know that ` v 〈h, vP 〉 h : •τ and by inversion on this
we know ` v vP ([vP ]) : τ and h = hash([vP ]). We can set
π = [([vP ])], and then each term can take a step in its respective
mode to v, vP , and ([vP ]), which agree by Lemma 2.1.

Finally, we demonstrate that a verifier term that begins in agree-
ment and takes a step remains in agreement unless an adversary has
managed to find a hash collision.

Lemma 6 (Security). Given the following:

• ` e eP eV : τ
• � πA, eV �→V � π′, e′V �

then there exist e′, e′P , and π such that for all πp,

• � [], e�→I � [], e′ �
• � πp, eP �→P � πp @ π, e′P �

and either

1. ` e′ e′P e′V : τ and πA = π @ π′, or else
2. there exists a pair s and s† such that π = [s] and πA =

[s†] @ π′ with s 6= s† but hash s = hash s†.

Proof. By induction on ` e eP eV : τ . Since eV is not a value,
we know from Lemma 2.4 that neither are e or eP , so we can
always introduce e′ and e′P . Most cases are straightforward because
evaluation yields π = [] and πA = π′, and ` e′ e′P e′V : τ
can be obtained directly from inversion on ` e eP eV : τ .
The remaining cases are for let binding and unauth . The former
follows by induction. For the latter we have e, eP , and eV are
unauth v, unauth vP and unauth vV , respectively. Since these
terms agree by assumption, we know that vP = 〈h, v′P 〉 and
vV = h = hash([v′P ]) for some v′P . From the stepping rule for
→P , we know π = [([v′P ])]. Then there are three possible outcomes
depending on πA:

1. πA = [], or πA = [s†] @ π′ and hash s† 6= h, in which case
� πA, eV � is stuck and we have a contradiction

2. πA = [([v′P ])] @ π′ and e′V = ([v′P ]), from which
` e′ e′P e′V : τ follows directly

3. πA = [s†] @ π′ and ([v′P ]) 6= s†, but hash ([v′P ]) = hash s†.

Although the Security property guarantees that the ideal com-
putation can always take as many steps as the verifier (in particular,
the verifier cannot run forever if the ideal computation terminates),
we would also like to show that ideal computation can take as many
steps as the prover.

Remark 1. Suppose ` e eP eV : τ and
� πp, eP � →i

P � πp @ π, e′P �. Then there exists e′, e′V
such that ` e′ e′P e′V : τ , � [], e � →i

I � [], e′ �, and
� π, eV �→i

V � [], e′V �.

Proof. This follows from straightforward induction on derivation
length i and ` e eP eV : τ , applying Lemmas 2 and 5.

4.4 Cryptographic Security
In the cryptographic security definition for a fixed ADS protocol,
(e.g., as per Papamanthou et al. [25]), somewhat informally, there
is an attacker who is assumed able to control the interaction be-
tween an honest prover and verifier. The attacker may specify a se-
quence of operations (“queries”) q1, . . . , qt that the verifier poses
to the prover. For each such query, the prover generates and sends
a proof to the verifier; both parties update their local state as ap-
propriate. Finally, the attacker specifies a query qt+1 along with
an adversarially generated proof string πA; the attacker succeeds
if πA causes the verifier to output an incorrect result for the given
query. The ADS is parameterized by a security parameter k which
we may identify with the output length of the hash function being
used. The ADS is secure if no attacker running in polynomial time
(in k) succeeds with non-negligible probability. Security is proven
by contradiction with the collision-resistance of an appropriately
chosen hash function.

To translate the standard cryptographic notion to our setting, we
must address three technicalities. First, we must provide a notion of
programs and inputs, such that the ADS is specified by an arbitrary
λ• program, and the adversary is allowed to choose the inputs.
Second, in order to show contradiction with collision-resistance,
we must define a specific procedure by which the hash function
is instantiated after the ADS program and the adversary are fixed.
Finally, we must relate the number of reduction steps taken by a λ•
program to a number of steps taken by a Turing machine. We then
claim that the reduction argument in Theorem 1 implies that this
security definition holds for every λ• program.



Inputs. We can treat the free variables in an open λ• expression
as program inputs. In our running example, for instance, the ex-
pression fetch idx t has idx and t as free variables. The adversary
chooses the inputs by computing well-typed and in-agreement val-
ues to substitute for each of the free variables.

Choosing the hash function. Our language is parameterized by
an arbitrary hash function, which we have assumed is collision-
resistant. However, to be precise, collision-resistance is only de-
fined formally for a family of hash functions rather than some
fixed hash function (see Katz and Lindell [14]). That is, collision-
resistance is defined according to the following game: First, take
an arbitrary adversary that runs in polynomial-time given a security
parameter k. Next, choose hash randomly from a family of func-
tions, and give the adversary a description of hash as input. The
family of hash functions is collision-resistant if the the adversary
outputs a collision in hash with negligible probability in k.

The following game captures this notion in the context of λ•:

1. Let e be an arbitrary well-typed λ• program specifying the data
structure being supported, and let A be an arbitrary adversary
that runs in polynomial-time (in k).

2. Choose hash at random from a collision-resistant family of k-
bit hash functions, and then compile eP and eV .

3. A succeeds if, given k and hash as input, it outputs in-
agreement values to substitute for the free variables of e, eP ,
and eV , and a proof stream πA, such that after some polyno-
mial of steps i, the verifier outputs an incorrect answer; i.e., a
value e′V such that� πA, eV � →i

V � π′A, e
′
V � for some

π′A, but there is no e′, e′P such that� [], e � →i
I � [], e′ �

and ` e′ e′P e′V : τ .

Note that the game begins with an arbitrary well-typed λ•
program e, before the hash function has been chosen. Although
λ• is parameterized by hash, the ideal terms are invariant to the
choice of hash function, so we can fix e and Γ ` e : τ before
choosing hash. However, the prover and verifier terms eP and eV
may actually contain digests, so we must instantiate hash before
compiling eP and eV .

If A succeeds, then by Theorem 1 we can evaluate eP and eV
(on πA) for j ≤ i steps, and extract the collision s and s†. Thus, it
only remains for us to show that evaluation of eV and eP also takes
polynomial time, and then we can obtain fromA a polynomial-time
collision-finding algorithm with the same success probability.

Polynomial-time execution. It is well known that standard
lambda-calculus evaluation and Turing-machine execution are
polynomially equivalent [4]; that is, a lambda-calculus interpreter
implemented as a Turing machine can simulate i lambda-calculus
evaluation steps in O(poly(i)) Turing-machine steps. The only
nonstandard terms in λ• are auth and unauth , and each involves
at most one hash computation during evaluation. The time to com-
pute a hash is proportional to the size of the serialized shallow
projection, which depends on the hash output length k. Therefore,
if an ideal program e takes i steps to reach a value, a Turing ma-
chine can simulate the execution of e in O(poly(i)) steps and the
corresponding eP and eV in O(poly(ik)) steps. Since we assume
i is bounded by O(poly(k)), the entire evaluation is O(poly(k)).

5. Implementation
This section describes our prototype extension to the OCaml com-
piler for supporting authenticated types. We discuss basic compila-
tion,6 two optimizations we implement, and current limitations.

6 Our technique for extending the OCaml compiler is based on a 2012
blog post by Jun Furuse: https://bitbucket.org/camlspotter/
compiler-libs-hack

5.1 Compilation
The compilation process works as follows. The programmer writes
an OCaml program p like that of Figure 2 that contains uses of
authenticated types. The code will link against the ADS module,
whose signature declares •α as abstract7 and declares the (poly-
morphic) types of the auth and unauth coercions. Program p
is then passed to our extended compiler which, depending on a
command-line mode flag, replaces each application of auth and
unauth it finds with a call to a prover- or verifier-specific imple-
mentation; the resulting code is linked with the ADS module.

This module, given in Figure 11, defines type •α as either a
digest (just the hash, represented as a string), or as a pair of the
hash and a value of type α. The next four functions define the
prover’s and verifier’s versions of auth and unauth , respectively;
the calls to auth and unauth will be replaced by calls to these
functions instead. We can see that their code largely matches the
operational rules given in Figure 8, where the proof stream from the
rules is implemented as OCaml channels, prf output and prf input.
The one departure is that auth prover and unauth prover addition-
ally take a function shallow that is invoked to perform the shal-
low projection operation. This operation is needed because OCaml
does not provide a generic method for folding/mapping over the
structure of a term. As such, our compiler generates type-specific
shallow projection functions where needed, and includes them in
the replaced calls to auth and unauth . The type of the shallow
projection operator is determined by the concrete type inferred at
each auth/unauth call. For example, the unauth in let x : int =
unauth y is inferred to have type •int → int. Therefore, we need
a shallow projection operation of type int → int (which is just
the identity). The generated code will refer to the ADS module’s
shallow • function, shown at the bottom of the figure, for handling
(nested) authenticated values.

Library functions are provided to enable the programmer to ma-
nipulate the proof and verification streams, for example by writ-
ing/reading to a file or a socket, or performing multiple authenti-
cated operations with separate proofs in a single execution.

Figure 12 shows the result of compiling a variant of authenti-
cated binary search trees. The top of the figure is the code provided
by the programmer. Compilation will replace the call to auth with a
call to auth bst1 and the call to unauth with a call to unauth bst.
These functions are defined at the bottom of the figure, and employ
the needed, type-specific shallow projection operations.

The hash function referenced in Figure 11 is polymorphic,
having type ∀α.α → string. It is implemented by first serializing
the argument and then hashing it using SHA1 (which is widely used
as a collision-resistant hash function).

For serialization, we use OCaml’s default serializer imple-
mented in the Marshal module. This choice has an implication
for security: the worst-case cost to compute the hash of a mali-
cious string is bounded only by the representation of an integer in
OCaml, either 32 or 64 bits, depending on the OS. We used the
no-sharing option for the Marshal module to guarantee that any
two equal objects have equal serializations.8

7 Type •α is written in ASCII as α authtype, but we continue writing •α
for consistency.
8 It may be the case that two terms of different types have equal serializa-
tions using Marshal; however, since we only interpret serialized values ac-
cording to known static types (no polymorphism), it would take a collision
at the same type to harm security. In our formalism, which is essentially
dynamically typed, we assume serialization (encased in the abstract hash
function) is bijective.



type •α = | Digest of string (* the digest *)
| Prover of string × α

let auth prover (shallow: α → α) (v:α) : •α =
Prover(hash (shallow v), v)

let unauth prover (shallow: α → α) (v:•α) : α =
let Prover( ,x) = v in
to channel !prf output (shallow x);
x

let auth verifier (v:α) : •α = Digest(hash v)

let unauth verifier (v:•α) : α =
let Digest(h) = v in
let y = from channel !prf input in
assert h = hash y;
y

let shallow • (Prover(h, ): •α) : •α = Digest(h)

Figure 11. The implementation of type constructor • and the
Prover and Verifier’s unauth and auth coercions.

(* User-provided code *)
type bst = Tip
| Bin of •bst × int × •bst
| AuthBin of •(bst × int × bst)

let is empty (t:•bst) : bool = (unauth t = Tip)
let mk leaf (x:int) : •bst = AuthBin(auth(Tip, x, Tip))

(* Generated Prover code *)
let rec shallow bst : bst → bst = function
| Tip → Tip
| Bin (x, y, z) → Bin(shallow • x, y, shallow • z)
| AuthBin (x) → AuthBin (shallow bst1 x)

and shallow bst1 : bst × int × bst → bst × int × bst
= function (x, y, z) → (shallow bst x, y, shallow bst z)

let unauth bst = unauth prover shallow bst
let auth bst1 = auth prover shallow bst1

Figure 12. Example types and generated code (for prover)

5.2 Optimizations
Our compiler implements two optimizations that reduce the size of
the proof stream, reuse buffering, and suspended disbelief.

Reuse buffering. We can reduce the size of the proof stream, and
speed up proving/verification, when we anticipate that the same
elements may appear in the proof stream more than once. For
example, a client may submit a batch of operations to the server
that end up re-traversing many of the nodes of the ADS. The
client could cache the shallow projections of these elements locally
instead of reading them from the proof stream multiple times.

This optimization requires modifying the unauth and auth
functionality; the modification is simlar for both prover and veri-
fier. A counter is incremented each time auth or unauth is called.
Each party maintains two data structures: LRU-Map, a mapping
from auth/unauth counter values to shallow projections, indicat-
ing the least-recently-used ordering, and Digest-Map, a mapping
from digests to auth/unauth counter values; collectively Digest-
Map and LRU-Map are referred to as “the cache,” as they contain

corresponding elements. When unauth is called, if the digest ex-
ists in Digest-Map, the prover omits (resp., verifier fetches from
the cache) the corresponding shallow projection, then updates the
counter value associated with it in the cache; otherwise, the prover
appends it to (resp., verifier reads it from) the proof stream and adds
it to the cache. If the size of the cache exceeds the parameter, then
the least recently used element (the smallest key in LRU-Map) is
removed. The proof generation/checking/size benefits come at the
cost of having to store the cache.

Suspending disbelief. This optimization eliminates redundancy
in shallow projections that contain hashes computable from nested
shallow projections appearing subsequently in the proof stream.
This idea is implicit in the verification procedure for Merkle trees
(Section 2.1). We can approximate the optimization for arbitrary
data structures in λ• by modifying unauth (for both the prover
and verifier) to use a buffer to “suspend disbelief.”

For the prover, the goal is to decide which digests in a shallow
projection can safely be omitted, which are those that correspond
to nodes that will be visited during subsequent calls to unauth . To
achieve this, we extend the representation for •α values:

type •α = ... | Susp of string × α × bool ref
| Sentinel

Each time unauth is called, the shallow projection is com-
puted differently: each immediate child, Prover(d,a), would or-
dinarily be replaced with Digest(d) but is instead replaced with
Susp(d,a,flag), where flag is a fresh mutable flag (initially false)
that indicates whether the digest can be omitted. When one of
these children is accessed by unauth the corresponding flag is set.
Rather than writing the shallow projection immediately to the proof
stream, it is appended to a queue. The queue is flushed when execu-
tion reaches a programmer-inserted insist annotation. This is a hint
that belief need no longer be suspended; its placement has no ef-
fect on security but it is best used at the end of a distinct operation.
Before a queue element is added to the proof stream, occurrences
of Susp(d,a,flag) are (functionally) replaced with Sentinel when
!flag is true, and replaced with Digest(d) when !flag is false.

When the verifier encounters a shallow projection object in
the proof stream containing Sentinel values, its digest cannot be
computed immediately so the object is stored in a set referred to
as the suspended-disbelief buffer. If unauth is subsequently called
on an immediate child of a node in this buffer, even if the shallow
projection is available in the proof stream, the root hash is unknown
so it cannot be immediately validated either. Thus we extend the •α
representation again with a new tag, Suspension.

type •α = ... | Suspension of string ref × (unit → unit)

For every object placed in the buffer, each immediate Sentinel
is replaced with a Suspension containing a callback closure and
a mutable reference (initially empty) optionally containing a hash.
When a leaf node is accessed, the Suspension reference is updated
with the actual digest of the leaf, and the callback is invoked. The
callback encapsulates a pointer to the parent node, and checks if all
immediate Suspension children have been populated with digests.
If so, the callback removes the node from the buffer, computes the
node’s digest, and takes one of two actions: if the reference already
contains a digest, then the two are compared for equality; if not,
then the reference is updated with the computed digest, and the
callback closure is invoked. Thus validation propagates upwards
from the leaves to the root.

A caveat of this optimization is that it exposes the verifier
to potential resource exhaustion attacks, as (potentially infinite)
computation is performed on untrusted data before it is validated.
A solution would be to bound the number of steps the program



should take before the buffer is cleared. Another caveat is that this
optimization requires additional storage on the verifier in contrast
to the original Merkle tree optimization.

5.3 Supporting full OCaml
Our compiler prototype supports authenticating the OCaml equiv-
alent of the type language given in Figure 5 with the exception of
function types. This support has been sufficient to program a vari-
ety of interesting data structures, as described in the next section.

To implement authenticated functions requires that we be able
to perform the shallow projection of a lambda term. Our formal-
ism does this by folding over the syntax of the lambda term’s body
to find authenticated values 〈h, v〉 and replace them with values
h. In an implementation this operation is tantamount to transform-
ing a closure’s environment. We could do this quite naturally using
Siskind and Pearlmutter’s map-closure operator [30], but unfor-
tunately (as they point out) it is not clear how to implement this
operator in a statically typed language, since the compiler cannot,
in general, know the types of a given closure’s environment vari-
ables. We could imagine storing type information with the closure
(e.g., Crary et al’s [3] term representations for types) in support of
a generic, run-time shallow projection operation as per the formal-
ism. In the meantime, the most natural use of authenticated closures
we have found is to support shallow CPS transformations; we can
use an explicit stack to the same effect, as shown in Figure 4.

Among other OCaml features not yet supported, the most desir-
able is authenticated polymorphic types. Similarly to closure envi-
ronments, the compiler cannot know types needed to perform shal-
low projection—if a value given to auth and unauth is polymor-
phic, then its type is determined by how type variables are instan-
tiated at a particular call-site. Once again, a generic shallow pro-
jection operator as per our formalism (and easily implemented in
a dynamically typed language) would fit the bill. We could imag-
ine requiring that auth and unauth each take an additional type
parameter; in most cases it could be statically determined, but to
support polymorphism it could be passed as an argument, e.g., to
the polymorphic function containing the auth/unauth call.

6. Evaluation
To demonstrate the effectiveness and generality of our language
and compiler, we have implemented a variety of ADSs. We ana-
lyze their performance and confirm it empirically with benchmarks
for selected algorithms. Our benchmarks were conducted using an
Amazon EC2 “m1.xlarge” instance (an Intel E5645 2.4GHz proces-
sor, with 16GB of RAM). All data structures were stored in RAM.
Complete code is given in our extended technical report [20].

Merkle trees. Our version of Merkle trees was given in Figure 2.
As Merkle trees are the most common authenticated data structure,
and are readily implemented, we compared the running time of
our compiled verifier routine to hand-written implementations in
OCaml and in C (see Figure 13(c)). The benchmark consists of
10,000 random accesses to trees of height h for h ∈ [5, 19]. Each
array element is a 1024 byte string; thus the largest tree contains
approximately 250, 000 elements and stores approximately 250
MB of data in total. Compared to the hand-optimized version in
C, the program generated by our compiler is slower by only a
factor of two; the hand-written OCaml code is about 30% slower
than the C program. Profiling with gprof reveals that substantial
overhead is due to the Marshal serialization routine used by our
compiler; the hand-written OCaml code avoids this serialization by
concatenating the child digests directly.

Red-black+ Trees. A red-black+ tree is a self-balancing binary
tree—the + indicates that internal nodes only store keys, and the

values are stored only in the leaves. This data structure is appropri-
ate for a (updatable) dictionary. We consider authenticated search
trees to be the second oldest authenticated data structure, proposed
by Naor and Nissim [24] to implement certificate revocation lists.
Our results are asymptotically equivalent: the storage cost to the
prover for the entire data structure is O(n), while the computation
cost per operation for both prover and verifier is O(log n); the size
of the proof stream is also O(log n). Note that we also implement
an authenticated version of normal binary search trees, too, and
these also have the expected performance.

In Figure 13(a), we show the empirical runtime performance of
the authenticated red-black+ tree for both the prover (P ) and veri-
fier (V ) modes, as well the ideal mode with the • annotations and
unauth/auth commands erased, to show the overall computational
overhead of authentication. The benchmark consists of 100, 000
random insertions into a random tree containing 2k elements, for
each k ∈ [4, 21]. P runs approximately 25% faster than V ; this
is because V computes a hash during both unauth and auth in-
structions whereas P only computes a hash during auth . Accord-
ing to profiler analysis (using gprof), V spends 55% of its time
in the SHA1 hash routine and 30% in (de)serialization routines;
P spends 28% of its time computing SHA1, 30% performing se-
rialization and 22% in garbage collection. The overhead of P is
approximately a factor of 100 compared to the ordinary data struc-
ture. We omit similar benchmarks for our other algorithms as the
results are similar.

We measured the largest amount of memory allocated by
OCaml during this benchmark as shown in Figure 13(b). This illus-
trates the key advantage of an authenticated data structure scheme:
while P incurs space overhead by a factor of 3 vs the Ideal mode,
the space requirement of the V is effectively constant.

Finally, we used this benchmark to evaluate the effectiveness of
our two compiler optimizations on proof size (see Figure 13(d)).
For a binary tree, the suspended-disbelief buffer results in a proof-
size reduction of almost 50%, since only one of the left or right
child digests must be transmitted for each node. The reuse cache is
most effective when the tree is small and mostly fits in the cache;
thus since the cache-size parameter in our benchmark is 1000, the
proof is nearly empty up to trees of height 9. However, because the
benchmark consists of random queries, the leaves and nodes toward
the bottom are accessed almost uniformly at random, so only a
constant number of nodes near the root are read from the cache
each query. The cache would be more beneficial in applications
where some nodes were accessed much more frequently. We only
implemented the two optimizations separately; combining the two
is left as future work.

Skip Lists. Skip lists [29] are randomized data structures provid-
ing similar performance (in expectation) to binary search trees.9

Our results are asymptotically equivalent to previous work on au-
thenticated skip lists [12]: the storage cost to P for the entire data
structure is O(logn), where n is the number of elements inserted;
the expected computational cost to P and V as well as the size of
the proof stream is O(logn), but O(n) in the worst case.

Planar Separator Trees. Planar separator trees (PSTs) are data
structures that can be used to efficiently query the distance of the
shortest path between two vertices in a planar graph (e.g., many
road maps) [6]. A separator of a graph is a collection of vertices
inducing a binary partition on the graph, such that any path from a
vertex in one partition to a vertex in the other partition must pass
through a vertex in the separator. A consequence of the planar sepa-
rator theorem is that every planar graph has a separator that is small

9 Random algorithms can be used in λ• as long as P and V both use the
same pseudorandom function and seed.



(O(
√
n) where n is the number of vertices) yet induces a balanced

partition (both partitions have at least n
3

elements); a search struc-
ture can be built over the graph by recursively constructing separa-
tors for each partition. While the naı̈ve solution of storing the short-
est distance between every pair of vertices requires O(n2) storage,
the planar separator tree requires only O(n

3
2 ) space. The shortest

distance between any two points can be computed in O(
√
n log n)

time using this data structure. A potential application of an authen-
ticated planar separator tree is for a mobile device user to query a
service provider for travel directions, along with a proof that the
response is actually the shortest path (rather than, e.g., one that
routes the user out of their way past billboards for which the ser-
vice provider might receive a profit). Using our authenticated com-
piler, the proof size and computation cost for P and V is also
O(
√
n log n). We include this primarily as an example of a data

structure that has not been treated as an ADS in prior work, but is
straightforward to authenticate using our framework.

Bitcoin. Bitcoin [22] is a peer-to-peer network implementing a
virtual currency; it features an authenticated data structure called
the blockchain, which represents a history of transactions. A global
ledger can be computed from the blockchain, which, abstractly
speaking, contains a set of currently valid coins. A valid transaction
removes a past coin from the ledger and adds a new one (assigned
to the recipient of the coin).

The current Bitcoin data structure suffers from two drawbacks:
1) a miner (verifier) needs to maintain an entire copy of the global
ledger to efficiently perform validation of transactions, which may
become unscalable as the number of coins increases; and 2) at
install time, a new client needs to download the entire transaction
history and perform a linear computation (in the size of the block
chain) to construct the ledger even when it trusts the root digest.

These drawbacks can be resolved if we build the ledger (as
an authenticated set) into the block chain data structure. We have
done this in our language by composing the blockchain data struc-
ture with a ledger consisting of our authenticated red-black+ tree,
thereby reducing client storage toO(log M), whereM bounds the
number of coins in the ledger. Full details are given our supplemen-
tal technical report [20].

7. Related Work
As mentioned earlier, authenticated data structure research has had
a flurry of results [1, 12, 15, 16, 19, 23] from the cryptography com-
munity, proposing authenticated versions of set (non)-membership,
dictionaries, range queries, certain graph queries, B-trees, etc.

To the best of our knowledge, no one has offered a general
authenticated data structure implementation for generic programs.
The closest work is by Martel et. al. [16], which proposes a method
for designing authenticated data structures for a class of data struc-
tures referred to as “search DAGs.” Their model is limited to static
data structures, i.e., it does not support updates, which are sup-
ported by λ•. Our approach is also easier to use, since the program-
mer writes largely standard (purely functional) implementations of
data structures and their operations, and the compiler generates the
prover/verifier code; in their approach, the task of designing and
implementing ADS still must be done by hand.

Our programmatically generated ADS implementations have
performance competitive with known customized ADS construc-
tions based on collision-resistant hashes. We note, however, that
while most are, not all known ADS constructions are based on col-
lision resistant hash functions. For example, bilinear-group based
ADS constructions exist for set operations [27]. Using alternative
algebraic primitives other than collision resistant hashes can some-
times yield asymptotically better ADS constructions.

(a) Running time (b) Memory usage

(c) our λ• compiler vs hand-
optimized code

(d) proof size with optional opti-
mizations

Figure 13. Empirical performance evaluation results. For 100,000
insertions into a red-black+ tree, (a) running time for Prover, Veri-
fier, and Ideal; (b) memory usage (heap size). (c) Running time for
fetch operation in a balanced merkle tree, for the program gener-
ated by our compiler, hand-written OCaml code, and hand-written
C code; For 100,000 random insertions in a binary search tree, (d)
the effect of two optional optimizations on proof stream size, com-
pared with two optional optimizations: a reuse-cache (of size 1000)
and the belief-suspension buffer.

Beyond the optimizations we have implemented (see Section
5.2), there are other known optimizations that we have not an in-
cluded. An example is the technique of “commutative hashing” due
to Goodrich et al. [12] which reduces the proof size when it is irrel-
evant which (of possibly several) child nodes are traversed. We be-
lieve it is likely that optimizations for specific data structures could
be incorporated generally into our compiler. Other optimizations
lie further outside our model; an example is a line of work begin-
ning with Merkle’s original paper [2, 18] in which the stored data
is not arbitrary, but is instead generated algorithmically (e.g., us-
ing a pseudo-random number generator). In this case, the prover’s
storage costs can be significantly reduced by recomputing data on
the fly rather than storing it. In our performance evaluation we con-
sider memory usage and running time; however some work in au-
thenticated data structures [16, 21] considers I/O efficiency, another
practical characteristic.

Verified computation [9] and succinct non-interactive argu-
ments of knowledge (SNARKs) [10, 28] can also yield asymp-
totically better protocols for ensuring integrity of outsourced com-
putation (e.g., with O(1) amount of client computation other than
reading the input and output). However, while theoretically at-
tractive, known verified computation schemes and SNARKs are
orders of magnitude more expensive than constructions based on
collision-resistant hashes in practice [28]—partly due to the use of
heavyweight cryptographic primitives such as fully homomorphic
encryption.



ZQL [8] is a language for writing verified computations over
hidden inputs; this is achieved by compiling programs to custom
zero-knowledge protocols. Thus, unlike λ•, ZQL provides correct-
ness, security, and privacy. However, this comes at the price of a
more limited language, e.g., ZQL does not support branching or
higher-order functions generally. In addition, ZQL’s absolute per-
formance is much worse due to the use of more heavyweight cryp-
tography.

8. Conclusions
We have presented λ•, the first programming language for authen-
ticated data structures (ADS). We have formally proven that ev-
ery well-typed λ• program compiles to a secure protocol, and we
have implemented λ• as a simple compiler extension to OCaml so
that a programmer can easily derive an authenticated data structure
from any ordinary one. The protocols generated by our compiler
are competitive with the state-of-the-art in hand-rolled ADSs.

We believe this work is long past-due. ADS are a 30-year-old
technique in cryptography, and yet researchers have overlooked the
simple connection between ADSs encapsulated in our notion of
authenticated types. We plan to extend our language to be more
expressive, and to include more efficient techniques based on ad-
vanced cryptographic primitives. We hope our work encourages
ADS adoption in future secure computing infrastructure.
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