Batch-wise Logit-Similarity: Generalizing Logit-Squeezing and Label-Smoothing

Ali Shafahi, Amin Ghiasi, Mahyar Najibi, Furong Huang, John Dickerson, Tom Goldstein

Intro

- We introduce logit-similarity, a generalization of label-smoothing and logit-squeezing which shows how cheap regularization methods can increase adversarial robustness.
- Our version of logit-squeezing applies a batch-wise penalty and allows penalizing the logits aggressively.
- We experimentally show that, with the correct choice of hyperparameters (standard deviation of Gaussian augmentation, and Logit-Similarity coefficient), regularized models can be as robust as adversarially trained models. Unlike adversarial training, regularization methods are efficient and robust against ℓ_2 attacks in addition to ℓ_{∞} .

Logit-Squeezing

Logit-Squeezing (L-SQ on example) is penalizing the magnitude of logits while training

minimize
$$l(x,y,\theta) + \beta ||z(x)||_2$$

We propose Batch-wise Logit-Squeezing (L-SQ on batch):

minimize
$$\sum l_b(x_b, y_b, \theta) + \frac{\beta}{b_n} \|Z(x_b)\|_F$$
batch-size

CIFAR-10 Logit-Squeezing Results

		PGD attacks on the xent			PGD attacks on the CW		
defense	Test	20-xent	50-xent	200-xent	20-CW	50-CW	200-CW
$\beta = 5$	92.45%	43.26%	43.25%	38.86%	45.50%	37.82%	33.91%
$\beta = 10$	92.68%	52.55%	45.18%	40.83%	47.48%	41.39%	37.87%
$\beta = 11$	92.08%	58.51%	55.91%	53.87%	55.63%	53.56%	50.44%
7step-AdvT	87.25%	45.84%	45.39%	45.32%	46.90%	46.66%	46.48%

Robustness vs # of PGD Iterations

The following plot shows the accuracy # of PGD iterations for our batch $\beta = 11$ L-SQ CIFAR-10 WRN32-10 model.

43.25%	38.86%	45.50%	37.82%	33.91%	
45.18%	40.83%	47.48%	41.39%	37.87%	
55.91%	53.87%	55.63%	53.56%	50.44%	
45.39%	45.32%	46.90%	46.66%	46.48%	
				'	

Why Logit-Squeezing works

By aggressive logit-squeezing the loss landscape w.r.t. the input is flattened.

CIFAR-100 Logit-Squeezing Results

	PGD attacks on the xent and CW loss			
defense	20-xent	200-xent	20-cw	200-cw
$\beta = 1$	23.89%	18.99%	11.91%	9.00%
$\beta = 5$	30.91%	26.00%	19.80%	15.79%
$\beta = 7$	31.99%	30.05%	25.92%	23.87%
2step-AdvT	17.08%	16.49%	17.80%	17.52%
7step-AdvT	22.76%	22.42%	23.12%	22.95%

Logit-Similarity

If our hypothesis about why Logit-Squeezing works is correct, we should be able to get similar behavior by clustering the logits to be similar and close to any scalar γ .

minimize
$$\sum_{b} l_b(x_b, y_b, \theta) + \beta'/b_n ||Z(x_b) - \gamma||_F$$

CIFAR-10 Logit-Similarity ($\gamma = 1$)

		PGD attacks on the xent and CW loss			
	defense	20-xent	200-xent	20-cw	200-cw
	$\beta' = 5$	44.00%	30.59%	40.77%	28.65%
	$\beta' = 10$	47.28%	35.67%	45.52%	34.56%
	$\beta' = 11$	56.36%	49.79%	56.74%	50.33%
	7step-AdvT	45.84%	45.32%	46.90%	46.48%

Ablation Study on MNIST

This study shows the effect of number of training iterations (k), standard deviation of Gaussian augmentation (o) and Logit-Squeezing parameter (β). We use a batch-size of 128 for MNIST and CIFAR.

Robustness on Other Attacks

- 10 Random restarts 100-PGD results in 45.27% accuracy.
- While 7-PGD trained model on ℓ_{∞} adversaries achieves 15.36% robustness against ℓ_2 perturbations (ϵ =1.5×255), our model ($\beta'=11$) achieves 54.99%.
- The same model preserves 88.13% accuracy against grad-free attacks (SPSA, #iters=20, #instances=248).

Label-Smoothing

Label smoothing refers to making the "one-hot" label vectors into "one-warm" vectors to promote clustering of logits:

$$y_{warm} = y_{hot} - \lambda \times (y_{hot} - \frac{1}{N})$$

CIFAR-10 Label-Smoothing Results

	PGD attacks on the xent and CW loss			
defense	Test	20-xent	20-cw	
$\lambda = 0.9$	92.60%	43.30%	39.76%	
$\lambda = 0.95$	92.88%	43.00%	41.29%	
7step-AdvT	87.25%	45.84%	46.90%	