Batch-wise Logit-Similarity: Generalizing Logit-Squeezing and Label-Smoothing

CIFAR-10 Logit-Squeezing Results

PGD attacks on the xent and CW loss

PGD attacks on the xent PGD attacks on the CW

e We introduce logit-similarity, a generalization of label-smoothing

and logit-squeezing which shows how cheap regularization methods
can increase adversarial robustness.

Our version of logit-squeezing applies a batch-wise penalty and
allows penalizing the logits aggressively.
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Robustness vs # of PGD

_ Why Logit-Squeezing works
Iterations

We experimentally show that, with the correct choice of hyper-
parameters (standard deviation of Gaussian augmentation, and
Logit-Similarity coetficient), regularized models can be as robust as
adversarially trained models. Unlike adversarial training,
regularization methods are efficient and robust against £, attacks in

addition to Z ..

Logit-Similarity

By aggressive logit-squeezing the loss

The following plot shows the accuracy : ,
landscape w.r.t. the input 1s flattened.

wrt. # of PGD iterations for our
CIFAR-10 L-SQ batch f=11

WRN32-10 model.

Logit Squeezing (8 = 11)

If our hypothesis about why Logit-Squeezing works 1s
correct, we should be able to get similar behavior by
clustering the logits to be similar and close to any
scalar y.
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Logit-Squeezing (L-SQ on example) 1s penalizing the magnitude of
logits while training
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CIFAR-10 Logit-Similarity (y = 1)
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We propose Batch-wise Logit-Squeezing (L-SQ on batch):

This study shows the effect of number of training iterations (k), standard deviation of Gaussian augmentation (0)

minimize ¥ lp(xp,y5,0)+ B 1Z(xp)lIF
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Ablation Study on MNIST
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Accuracy on Adversarial Examples
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and Logit-Squeezing parameter ([3). We use a batch-size of 128 for MNIST and CIFAR.

The effect of o0 on min(acccy, acCxent)
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The effect of kK on min(acccy, aCCxent)
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Robustness on Other Attacks

® 10 Random restarts 100-PGD results in
45.2'7% accuracy.

While 7-PGD trained model on 7,
adversaries achieves 15.36% robustness

against ¢, perturbations (e=1.5%255),
our model (5'=11) achieves 54.99%.

88.13%
accuracy against grad-free attacks
(SPSA, #iters=20, #1nstances=248).

The same model preserves
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Label-Smoothing

46.48%

Label smoothing refers to making the “one-hot™
label vectors 1into “one-warm” vectors to promote
clustering of logits:

warm=Y hot—AX (Y hot— l
y Yhotr—AX(Yhot N)
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CIFAR-10 Label-Smoothing Results
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