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ABSTRACT
Graph querying and analytics are becoming an increasingly im-
portant component of the arsenal of tools for extracting di�erent
kinds of insights from data. Despite an immense amount of work
on those topics, graphs are largely still handled in an ad hoc man-
ner, in part because most data continues to reside in relational-like
data management systems, and because graph analytics/querying
typically forms a small portion of the overall analysis pipelines. In
this paper we describe an end-to-end graph analysis framework,
called GraphGen, that sits atop an RDBMS, and supports graph
querying/analytics through: (a) de�ning graphs as transformations
over underlying relational datasets (as Graph-Views) and (b) speci-
fying queries or analytics on those graphs using either a high-level
language or Java programs against a simple graph API. Although
conceptually simple, GraphGen acts as an abstraction/independence
layer that opens up many opportunities for adaptively optimizing
graph analysis work�ows, since the system can decide where to
execute tasks on a per-task basis (in database or outside), how
much of the graph to materialize in memory, and what types of in-
memory representations to use (especially critical when the graphs
are larger than the input datasets, as is often the case). At the same
time, by providing the ability to write arbitrary programs against
the graphs, GraphGen removes a major expressivity limitation of
many existing graph analysis systems, which only support limited
programming frameworks. We describe the GraphGen DSL, loosely
based on Datalog, that includes both graph speci�cation and in-line
analysis capabilities. We then discuss many optimization challenges
in building GraphGen, that we are currently working on addressing.
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1 INTRODUCTION
Analyzing the interconnection structure, i.e., graph structure, among
the underlying entities or objects in a dataset can provide signi�-
cant insights and value in many application domains such as social
media, �nance, health, and the sciences. This has led to an increas-
ing interest in executing a wide variety of graph analysis tasks and
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graph algorithms, e.g., community detection, in�uence propaga-
tion, network evolution, anomaly detection, centrality analysis, etc.
Many specialized graph databases (e.g., Neo4j, Titan, OrientDB),
and graph execution engines (e.g., Giraph, GraphLab, Ligra, Ga-
lois, GraphX) have been developed in recent years to address these
needs. Although such specialized graph data management systems
have made signi�cant advances in storing and analyzing graph-
structured data, a large fraction of the data of interest initially
resides in relational database systems (or similar structured storage
systems like key-value stores, with some sort of schema); this will
likely continue to be the case for a variety of reasons including
the maturity of RDBMSs, their support for transactions and SQL
queries, and to some degree, inertia. Relational databases typically
include many useful relationships between entities, and can contain
many hidden, interesting graphs, and thus it often makes sense to
extract and analyze those graphs. At the same time, given their
maturity, relational databases are also often used as a backend to
store graph data.

There has thus been much work at the boundary of graph and rela-
tional databases, which is often hard to reconcile since the underlying
environmental assumptions and the query workloads tend to be quite
di�erent.We also often see confusion about what we may call “data
independence issues” where implementation and abstraction are
not clearly separated. As one may surmise, di�erent design points
are better for di�erent types of data and di�erent types of query
workloads; unfortunately such conclusions are often missing from
much of the work on this topic.

In this paper, we propose an end-to-end graph analysis frame-
work, called GraphGen, that subsumes the di�erent design points
where relational or graph data models or engines are combined.
GraphGen is intended as a layer on top of an extant relational
database, and although it can simulate the di�erent design points,
it does not, as of now, o�er solutions to all of the optimization
challenges that arise in the process. GraphGen considers graph
analytics or querying as a combination of: (1) specifying graphs of
interest against the data in the underlying database as GraphViews,
and (2) specifying an analysis task or a query (possibly at a later
time) against those graphs. We describe a uni�ed language, loosely
based on Datalog, to both de�ne such VIEWs (GraphGenDL) and
to write queries or analytics against those VIEWs (GraphGenQL).
GraphGenDL supports de�ning a collection of graphs, which en-
ables rich functionality like temporal analytics, ego-centric analysis,
or analysis of induced graphs satisfying di�erent properties. Graph-
Gen also supports writing arbitrary graph algorithms against the
de�ned graphs as Java programs. GraphGen is “adaptive” in the
sense that it can automatically make di�erent choices regarding
the optimal way to both de�ne a Graph View and execute some
analysis/query over that graph, depending on a variety of factors
including the query itself and the properties of the de�ned graphs.
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2 PRIORWORK
Graph+Relational Design Points: Including the work on build-
ing XML and RDF databases, there has been much work at the
boundary of graph and relational-like databases which can roughly
be classi�ed into four categories.
1. Graph Frontend, Graph Backend: There has been much work
on building native XML and RDF databases, but somewhat less
so on Property Graph databases, with Neo4j and OrientDB being
the primary examples of the last. These systems typically start
from scratch to focus on graph queries and workloads, and use
specialized representations and indexes towards their optimization.
In addition to supporting query languages like SPARQL, Cypher or
PGQL that are similar to SQL, some of these systems also support
graph APIs to directly operate on the stored graphs, which is often
a necessity for complex graph analytics. Using such a database of
course requires a complete buy-in, which is often not an option
since most enterprises also need to support non-graph workloads.
These systems are also not as mature or scalable as RDBMSs/key-
value stores, and often perform poorly on queries common to both.
2. Graph Frontend, Relational Backend: A common design for
graph databases is to use a thin layer on top of an RDBMS that
“shreds” graph data into the underlying database (Figure 1(i)) , and
converts graph queries into queries against it (possibly with some
post-processing). Shanmugasundaram et al. [12] did the early work
exploring this option for XML databases, and there has been much
work on building RDF databases in this fashion. More recently, Sun
et al. proposed SQLGraph [15], which supports the Property Graph
model on top of an RDBMS. The Titan graph database is also similar
since it uses a key-value store at the backend to store the data. A
major challenge for these systems is designing good schemas (and
appropriate indexes) for storing the data in the underlying database,
since that dictates the performance to a large degree. Vertexica [5]
and Grail [2] use a similar design but focus primarily on supporting
batch analytics over very large graphs.
3. Graph+Relational Frontend, Relational Backend: The above
option can be seen as starting with the graph schema and �guring
out an appropriate relational schema to use for the underlying data-
base; and although it is technically possible to query the underlying
database system (using SQL), the schema of that database is usually
not meaningful. However, in most cases, enterprises typically have
existing relational databases (and schemas) and often the goal is to
analyze the graphs that are hidden within them. Analogous to the
above case, such functionality can be supported by a thin layer on
top, that again supports a graph data model on top of a relational
database; however, unlike the above option, the layer is largely
independent, does not have any freedom to rearrange the schema or
even the ability to build new indexes. The layer also has to contend
with updates happening to the underlying database through other
interfaces (Figure 1(ii)).

Another major challenge is that the mapping between the graph
nodes/edges and the relational tables may not be straightforward.
For example, consider the familiar TPC-H schema (see Appendix A).
We may be interested in analyzing the bi-partite graph between cus-
tomers and products, where a customer is connected to a product if
they bought it. Here, the nodes in the graph correspond directly to
the customers and the products (i.e., there is a direct mapping), but
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Figure 1: While similar in many ways, Approaches 2 (left) &
3 (right) make fundamentally di�erent assumptions
the edges in the graph require us to do a join between the LineItem
and Orders tables, followed by a DISTINCT to remove duplicate con-
nections. The more troublesome mappings are ones that require us
to do a self-join. For example, consider a DBLP-like database with
three tables: Authors, Publications, and AuthorPublication (see Ap-
pendix A). A natural graph to analyze here is the CoAuthors graph,
where two authors are connected if they have had a publication
together. Creating the edges here requires doing a self-join on the
AuthorPublication table followed by a DISTINCT. A key challenge
here is that the size of the self-join is often much larger than the
size of the original AuthorPublication table [16].

Although this approach (Approach 3) is likely to be the most
attractive in practice, there hasn’t been much systematic work on
understanding it; one of our goals here is to systematically ex-
plore it and discuss the key challenges that come up. Aster Graph
Analytics [14] and SAP HANA Graph Engine support specifying
graphs within an SQL query as transformations on underlying
relational tables, and applying graph algorithms on those graphs.
However, the interface for specifying which graphs to extract is not
very intuitive and limits the types of graphs that can be extracted,
while Aster only supports the vertex-centric API for writing graph
algorithms. Ringo [9] also provides operators for converting from an
in-memory relational table representation to a graph representation,
but is not intended as a layer on top of an RDBMS. Finally, in our
prior work on GraphGen, we focused on the problem of exploring
hidden graphs within relational databases [17] and dealing with
large intermediate results that get generated in the process [16].
4. Relational Backend, Relational Frontend, Graph Engine:
Here the data is resident in a relational database, and a layer is
built on top that utilizes a graph engine to process SQL queries
e�ciently [6, 7]. If the abstraction layer is still Relational/SQL, this
is more akin to developing better SQL query processing and opti-
mization algorithms, which are better suited for speci�c types of
workloads. We consider this line of work somewhat orthogonal and
discuss it here primarily for completeness, since those techniques
could be implemented in other (existing) query processing engines
and could be invoked as needed for speci�c types of queries.
Views: Our proposed approach is fundamentally based on looking
at graphs as VIEWs over the underlying relational tables, and thus
the work on incremental view maintenance and view materializa-
tion is closely related [1]. Similar to that work, we need to make
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Figure 2: High-level Overview of GraphGen
decisions about: (a) converting operations over VIEWs into oper-
ations over underlying tables, (b) choosing VIEWs to materialize
(the search space of possibilities is larger since we may want to
materialize VIEWs in memory and on persistent storage), and (c)
incrementally maintaining views. We plan to build upon the rich
history of work in this space, focusing primarily on VIEWs involv-
ing self-joins, DISTINCT clauses, and aggregates as we saw in the
examples above that are not as well-studied in the literature.

3 GRAPHGEN OVERVIEW
Figure 2 shows a high-level overview of our proposed GraphGen
framework. The cornerstone of the system is an abstraction layer
that sits atop an RDBMS, serving two main functions. First, it
accepts GraphView de�nitions from the users, speci�ed using a
Datalog-like DSL called GraphGenDL, where the user speci�es
how to construct the nodes and the edges of the graph (in essence,
as named VIEWs over the underlying tables). We chose to base our
DSL on Datalog, which has been increasingly used for expressing
data analytics work�ows and graph analysis tasks [3, 4, 11], due to
its elegance in naturally expressing recursive queries, but also in
its overall intuitive and simple syntax choices. However, due to a
natural need for features like de�ning a collection of graphs, our
DSL di�ers signi�cantly from standard Datalog beyond the basics.

Second, GraphGen accepts queries or analysis tasks against one
or more of those GraphViews and executes them by either push-
ing the computation into the database, or extracting the requisite
information from the database into memory, or a combination of
the two. The queries are speci�ed using a Datalog-like DSL, called
GraphGenQL, which is based on subgraph pattern matching and is
somewhat similar to SPARQL, Cypher, and PGQL. However, unlike
those languages, GraphGenQL can also be used to write a limited
set of analysis tasks. GraphGenQL supports the vertex-centric pro-
gramming framework through UDFs, which mitigates that to some
extent. We chose to design our own language primarily to maintain
uniformity with GraphGenDL. Finally, analysis tasks can also be
written using a Java API that allows direct access to the graph, thus
allowing a user to write complex graph algorithms (e.g., community
detection, bipartite matching, max-�ow, etc.). This requires loading
GraphGen as a library; we omit the details due to lack of space.

Regarding graph updates, we assume the data is typically updated
through direct access to the database (i.e., using SQL); although it

may be possible to update the underlying data through updates to
the Graph-Views, we postpone supporting that feature given the
semantic confusions it may introduce.

The abstractions supported by our system enable many di�erent
options regarding the implementation itself, which the system can
choose from by analyzing the query and update workloads. In many
cases, we may be able to push the entire graph query/analysis task
into the database, which may be appropriate if the GraphViews are
simple and the graph processing tasks are infrequent. However, for
complex VIEWs involving self-joins, it may be better to load the
data from the relations in memory and use optimized processing
techniques that avoid executing the joins. We also have the option
of materializing a graph (or portion of it) into memory if the rate of
queries is higher than the rate of updates, with the downside being
the need to do incremental view maintenance. For tasks written
using the Java API, the graphmust be loaded into memory, although
many optimizations are possible there as we discuss later on.

GraphGen is designed as a centralized system, and although it
can utilize multiple cores, we do not attempt to execute the tasks in a
distributed fashion, primarily because of its goal to support complex
graph analysis tasks that require random access to the graph [8].
We expect this to cover almost all the use cases for a system like
this, since the vast majority of graphs are expected to �t in large
multi-TB-memory machines that are easily available today. This is
also the approach taken by Ringo [9] and most high-performance
graph analysis systems (e.g., [13]). If required, GraphGen can output
the graph into a format ingestible by distributed graph frameworks.

The GraphGen DSL naturally generates directed graphs, and
undirected graphs are represented using bidirectional edges. The
typical work�ow for a user when writing an extraction query would
be to initially inspect the database schema, �gure out which rela-
tions are relevant to the graph(s) they are interested in exploring,
and then choose which attributes in those relations would connect
the de�ned entities in the desired way. We generally assume that
the user is knowledgeable about the di�erent entities and relation-
ships existent in the database, and is able to formulate such queries.
We have also built a visualization tool that allows users to discover
and extract potential graphs in an interactive manner [17].

4 LANGUAGE DEFINITION
4.1 GraphGenDL: Specifying Graph Views
At a high level, specifying a graph requires specifying what con-
stitutes the Nodes and the Edges of the graph. We begin with de-
scribing how a single graph de�nition is expressed in GraphGenDL,
which is largely similar to standard Datalog. We then discuss how
collections of graphs are speci�ed succinctly.
De�ning a Single Graph: The simplest graph to extract is a ho-
mogeneous graph, requiring at least one Nodes de�nition and one
Edges de�nition, both speci�ed as Datalog rules. The Nodes rule
must have at least one “ID” attribute, to be used to uniquely iden-
tify nodes, and may have an arbitrary number of properties. The
variable names in the goal of the rule are used as the labels of the
respective properties (the �rst variable in the goal must be “ID”).
CREATE GRAPHVIEW GV1 AS

Nodes(ID ,P1 ,P2 ,...) :- R(ID ,P1 ,P2 ,...).
Edges(ID1 ,ID2) :- E1(ID1 , A),E2(A,B) ,...,En(X, ID2).
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In the simplest case (“direct mapping”), the edges are already
materialized in the database (i.e., the edges rule refers to only one
database table); in general, however, we may have to do a sequence
of joins in order to construct the edges. Edge properties can also be
speci�ed similarly to the node properties; however for non-direct
mappings, those may require care since the computational cost of
computing and materializing them may be high.

More generally, a user may use multiple Nodes rules andmultiple
Edges rules, to de�ne more complex and heterogeneous graphs.
The example below shows a graph speci�cation over a University
dataset (see Appendix A), containing three di�erent types of nodes
and two di�erent types of edges. The second Edges rule de�nes
a direct mapping to a relation, but the �rst Edges rule requires a
non-key-foreign key join that may produce a large output.
CREATE GRAPHVIEW UnivGraph AS

Nodes(I_ID , Name) :- Instructor(I_ID , Name).
Nodes(S_ID , Name) :- Student(S_ID , Name).
Nodes(SC_ID , Name , Address) :- School(SC_ID , Name , Address).
Edges(I_ID , S_ID) :- TaughtCourse(I_ID , courseId), TookCourse(

S_ID , courseId).
Edges(I_ID ,SC_ID) :- TaughtCourse(I_ID ,_,SC_ID).

Properties may also be de�ned through aggregates over underlying
attributes in the base relations. Since there is no standard syntax for
aggregates in Datalog, we use the syntax advocated by Socialite [11].
The following annotates the edges of the CoAuthors graph with the
number of times two authors have collaborated.
CREATE GRAPHVIEW CoAuthorsWeighted AS

Nodes(ID, name) :- Author(ID, name).
Edges(ID1 , ID2 , wt=$COUNT(pub)) :- AuthorPub(ID1 , pub),

AuthorPub(ID2 , pub).

Specifying Multi-Graph Views: A key innovation of our DSL is
the ability to support the common use case where a collection of
di�erent graphs need to be de�ned, indexed (identi�ed) by some
data-speci�c values. As we discuss later, abstracting this function-
ality at the language level enables many optimizations. First, we
show how ego networks, corresponding to immediate connections
of di�erent entities in the database may be speci�ed. Speci�cally,
the example below creates a graph for each Author in a publications
database, capturing the connections between its collaborators.
CREATE GRAPHVIEW AuthorEgoNetworks(X) WHERE Author(X) AS

Nodes(X, name) :- Author(X, name).
Nodes(ID, name) :- AuthorPub(X,pub), AuthorPub(ID,pub),

Author(ID, name).
Edges(ID1 , ID2) :- AuthorPub(ID1 , pub), AuthorPub(ID2 , pub).

Intuitively, this statement speci�es a graph for every possible
X that matches the WHERE clause; for any speci�c X, the two
Nodes clauses construct nodes for X and all of its collaborators,
whereas the Edges clause only adds the appropriate edges required
to construct the ego network. Although all of these ego networks
are subgraphs of the overall CoAuthors graph de�ned above, if the
query workload requires analyzing or querying only one or a small
number of them, the ability to refer to them independently can
result in orders of magnitude savings.

We can similarly de�ne 2-hop neighborhoods around the Au-
thors, a di�erent CoAuthors graph for every “�eld” (assuming appro-
priate variables are present in the schema), or a di�erent CoAuthors
graph for each di�erent conference simultaneously.

Another major use case for this functionality is temporal ana-
lytics, where a user may want to analyze the evolution of a graph

over time, or perform queries over historical snapshots. The below
shows an example where we specify temporal snapshots of the
CoAuthors graph at the end of every year, assuming the Publication
table contains the year of publication as the third attribute.
CREATE GRAPHVIEW CoAuthorsSnapshot(X)
WHERE X IN RANGE (1950 , 2017, 1)

Nodes(ID ,name) :- Author(ID ,name).
Edges(ID1 ,ID2) :- AuthorPub(ID1 , pub), AuthorPub(ID2 , pub),

Publication(pub , _, Y), Y <= X.

4.2 GraphGenQL: Querying Graph Views
Once the graphs are speci�ed as VIEWs over the relational data-
base, a user may issue di�erent types of queries against one or
more of those graphs. We plan to primarily support a subgraph
pattern matching-based query language, similar to SPARQL etc.,
incorporating a Datalog syntax for naturally expressing graph tra-
versal through recursive computation over the “Edges” VIEW. As
an example, assuming the author table also has information about
each author’s �eld of study (as a third attribute), the query speci�ed
below �nds all triangles in the CoAuthors graph where the three
authors are in ML, Databases, and Algorithms respectively.
USING GRAPHVIEW CoAuthors
Triangle(X, Y, Z) :- Nodes(X, _, �ML�),Nodes(Y, _, �DB�),

Nodes(Z, _, �AL�),Edges(X, Y),Edges(Y, Z),Edges(X, Z).

4.3 Specifying Analysis Tasks
There has been an intense amount of work on programming frame-
works for specifying batch analysis tasks against large graphs. Al-
though the vertex-centric framework is the most popular, it has
fairly limited expressive power [8, 10] and cannot be used to easily
write complex graph algorithms. We envision supporting several
di�erent ways to write analysis tasks against the graphs.
Using Datalog-based DSL: We plan to extend GraphGenQL by
building upon the language proposed in Socialite [11], which also
uses a Datalog-based DSL to specify analysis tasks like PageRank,
Connected Components, and others. We omit further details for
brevity but instead refer the reader to those papers.
Using a Java Program:Towrite arbitrary graph algorithms, Graph-
Gen can be loaded as a library within a Java program. GraphGen
provides functions for the program to create GraphViews or load
existing GraphViews. The program then has access to the nodes and
the edges of their speci�ed graph through a GraphView object via
a simple API that allows iterating through the vertices or the edges
of a vertex. GraphGen also provides a vertex-centric programming
model on top of this API to simplify writing analysis tasks. We refer
the reader to [16] for further details.

Currently, GraphGen primarily supports the second option, and
we are working on adding support for GraphGenQL through de-
veloping translation programs to convert those programs into SQL.
We are also working on developing a new high-level programming
framework to make it easy to specify analytics over a collection of
graphs in a declarative fashion.

5 CHALLENGES AND OPPORTUNITIES
The framework we propose serves to unify di�erent ways RDBMSs
and graph querying/analytics have been combined together, but it
also raises many computational challenges and research opportu-
nities. In this section, we discuss some of these opportunities for
optimization after brie�y describing our experimental setup.
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Experimental Setup:We set up four di�erent relational databases,
PostgreSQL, MySQL, and two commercial relational database sys-
tems (DBS1, and DBS2), and loaded several di�erent datasets into
those. Here we report numbers primarily for the DBLP dataset and
the CoAuthors graph on that dataset; we show results for two sub-
sets of the dataset, a small dataset with 100,000 tuples where the
CoAuthors graph has 1,639 nodes and 55,436 edges, and a large one
with 500,000 tuples where the CoAuthors graph has 15,741 nodes
and 529,434 edges. We use these simple subsets of DBLP to show-
case the potential for optimization in adaptively handling graph
computation in our framework by trying various ways of re-writing
the queries when pushing them into the database, and contrasting
this with executing these queries in-memory. Graph processing
can be done orders of magnitude faster on a graph structure versus
using relational processing due to the fact that the neighbor-lists
are immediately available for every vertex. In contrast, traversing a
graph by continuously processing an “Edges” VIEW in the database
can also have bene�ts in some situations where we can avoid mate-
rializing the “Edges” VIEW; these bene�ts start to become apparent
even for small datasets like the ones we experiment with.
Where to Execute Queries/Tasks: The �rst major question is
where should the execution take place, in GraphGen or in the data-
base itself? As one may expect, this is entirely dependent on the
workload, both the rate of updates to the underlying tables and
the rate of queries themselves. Table 1 and Figure 3 show the re-
sults for two queries, triangle matching (i.e., �nding all occurrences
of a triangle where all three authors work in “ML”), and triangle
counting (i.e., counting the number of triangles in the graph) for
a variety of di�erent options. Contrasting Table 1 with Figure 3,
one can see the di�erences between execution over an in-memory
graph versus in-database. While GraphGen in-memory execution
is usually much faster, after accounting for the cost of extraction,
it may be better to simply let the database handle certain pattern
matching queries and avoid the extraction e�ort.

A key challenge, thus, is to develop accurate cost models, ef-
fective workload monitoring tools, and optimization techniques
to adaptively decide which part of the overall task to performwhere.
These decisions are closely tiedwith pre-computation/materialization
decisions. For graphs that are frequently queried, it may be appro-
priate to materialize them, fully or partially, at the GraphGen layer
to reduce query latencies. This, however, necessitates developing
incremental view maintenance techniques, which may itself prove
challenging for the more complex graph-views.

Another challenge here is optimizing execution over collections
of graphs. For instance, for a temporal analytics task that wants
to compare and analyze all or a subset of the CoAuthorsSnapshot
graphs, it may be ideal to load them in an overlapped fashion in
memory to reduce the memory footprint, and use incremental
computation techniques to reduce the execution times.

By hiding all of these implementation decisions under high-level
abstraction layers, GraphGen enables us to consider each of these
optimizations in an adaptive fashion, unlike prior work where most
such decisions are set in stone.
Query Rewriting: If the execution is to be pushed inside the data-
base, there are often di�erent ways to construct equivalent SQL
queries. Although it is tempting to leave these decisions to the

Dataset Triangle Counting Triangle Pattern ETL
small 0.169 0.001 2.049
large 6.723 0.015 17.52

Table 1: Times (sec) for running the two queries in memory.
“ETL” is the time required for Extraction and Loading of the
graph into memory from PostgreSQL

Triangle Counting (on small)
Query DBS1 DBS2 MySQL PostgreSQL
With (at edges) 1 1.62 NA 13.8
With (at the end) 53.028 2.99 NA 37.8
View (at edges) 1.054 2.07 3.01 15.6
View (at the end) 51.92 77.13 538.19 35.991
On Base Table 46.45 74.878 678.87 36.160
Triangle Pattern Matching where area = “ML” (on large)
Query DBS1 DBS2 MySQL PostgreSQL
With (at edges) 14.765 NA 0.749
With (at the end) 4.59 NA 0.704
View (at edges) 15.557 4.26 2.193
View (at the end) 4.25 20 11.063
On Base Table 8.612 22.69 3.089

Figure 3: Running times (sec) for two queries, rewritten to
either use the “WITH” clause or a VIEW. The parentheses next
to the method used specify at which computation the initial
�ltering of tuples was done with DISTINCT

query optimizer, the auto-generated SQL can be verbose and may
involve many blocks, making query optimization challenging. Fig-
ure 3 shows the results for the two example queries for �ve di�erent
ways of do so (MySQL does not support the WITH clause). First, we
may create explicit VIEWs in the database, and write the analysis
queries in terms of those. There are also two di�erent ways we
can �lter out unnecessary tuples here (corresponding to duplicate
generation of the same pair of authors); we can either insert a
DISTINCT clause in the Edges VIEW or WITH statement, or simply
remove the duplicates at the end of the computation (which may
be a better idea if the query is duplicate-insensitive). Second, we
may create temporary tables using the WITH construct (with both
ways of �ltering mentioned above). Such common table expressions
(CTEs) are implemented di�erently in di�erent systems, with some
materializing the CTE as a temporary table, and others seeing it
as a VIEW; further, some systems (e.g., PostgreSQL) do not opti-
mize across CTEs. Lastly, we can execute the query on the base
AuthorPub table directly, and compute all the appropriate joins as
needed. As we can see in Figure 3, performance shows signi�cant
variations for the di�erent rewrites, with no clear pattern. We also
see huge variability in performance depending on where we choose
to �lter out the duplicate edges; removing duplicates earlier (in the
statement where the edges are de�ned) is always better for these
queries, however, the costly duplicate removal may be unnecessary
if the query does not care about them.

For the triangle matching query, there are even more choices in
terms of pushing down the selection (on area), which we do not
consider here. We saw similar variability for several other queries,
but we omit a detailed discussion due to lack of space.

Overall, rewriting and optimizing the queries that are naturally
generated during graph analytics appears to expose gaps in today’s
query optimizers that need to be studied further.
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Figure 4: Tagging towards the e�cient speci�cation of ego-
graphs with a single query
Selectivity Estimation: We also observed that the estimated se-
lectivities for the more complex generated queries are often quite
inaccurate. Here we mainly experimented with PostgreSQL, where
we found that the selectivity estimates of the join result sizes were
on point for simple queries. As we generated more complex graphs
that required several self-joins, the estimates started diverging by
orders of magnitude. For instance, on the DBLP database, consider
a query that creates a graph where authors are connected to each
other if they’ve published in the same conference. This query re-
quires a join between AuthorPub and Publication, and then a
self-join of the result with itself. The number of rows estimated by
PostgreSQL in this case was 40x higher than the actual number.
Optimizing the Extraction of Multi-Graph Views: The naive
way to extract a collection of graphs is to generate a separate SQL
query for each distinct graph. However, by abstracting the function-
ality at the language level, GraphGen can employ several di�erent
optimizations that result in signi�cant performance improvements.

As an example, consider theAuthorEgoNetworksMultiGraphView
above where the user speci�es a collection of ego networks, one for
each Author. Instead of issuing a separate query for each Author
to generate its ego network, we can instead use a technique we
call result-tagging, where we extract information about which ego
networks each edge is part of, all at once. A depiction of this process
is demonstrated in Figure 4. We start with tagging each tuple of the
edge VIEW of the entire graph with its source id, � (these tuples
are the immediate neighbors of �) – let that be VIEW A. A self-join
is then computed over the Edges VIEW (this is for computing the
neighbors of neighbors of �), where each of the tuples in the result
is tagged with the source vertex of the source id in the left hand
side of the join; let this be VIEW B. A union of A [ B is used, and
the �nal result is �nally aggregated by each edge, thus creating
a list of tags, each one signifying a subgraph each edge belongs
to. By continuously repeating the above process on the result of
each subsequent self-join this technique works for obtaining the
ego-graph x-hops away from each vertex.

Thus, a key challenge for us, is to develop a systematic approach
to optimizing the extraction of, and execution against, such Multi-
GraphViews.
Dealing with Large-Output Joins: It is very natural to specify
graphs that require doing a non-key-foreign-key join for creating
the edges, resulting in a space blowup. A primary example of that
is the self-join that is typical in the extraction of nearly any homo-
geneous graph (like the CoAuthor or UnivGraph de�ned above).
By “large-output”, we refer to joins where the cardinality of the
join attribute is low compared to the input table sizes , resulting

in a large number of tuples in the join. As we showed in our prior
work [16], operating on a condensed representation of the graph
in-memory may be ideal in such cases. This representation is built
to e�ciently load the de�ned graph into memory without explicitly
generating all of the edges. This representation can be very useful
when one does not want to analyze the entire graph but portions of
it at a time. With a trade-o� in latency, we can also analyze graphs
that normally wouldn’t �t in memory using this representation.

Developing similar condensed representations for more complex
Graph-Views that avoid generation of any large intermediate re-
sults remains a rich area of future work. This is also closely tied
with the work on factorized representations of query results [18]
and worst-case optimal joins; we refer to [16] for a more in-depth
discussion.

6 CONCLUSIONS
We presented a uni�ed framework for extraction and analysis of
graph-structured data stored in an RDBMS or similar structured
storage engines. Apart from providing an intuitive means of speci-
fying various graph structures within the relational data without
compromising on the ability to write complex graph algorithms,
our high-level abstractions enable a wide variety of adaptive opti-
mizations for conducting these types of analyses. There are many
interesting and di�cult challenges here in terms of deciding where
to execute graph queries/tasks, re-writing the SQL queries, making
materialization decisions, and handling inaccuracies of the query
optimizer and database statistics exposed by natural graph extrac-
tion and analysis tasks.
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A DATABASE SCHEMATA
Figure 5 shows the schemata of the di�erent databases we used
in our experiments, as well as in our examples when describing
GraphGenQL and GraphGenDL.

Author

(a) DBLP

(b) University 

id integer

name varchar(1024)

AuthorPub

aid integer

pid integer

Publication

pid integer

title

cid varchar(2048)

area varchar(1024) integer

I_ID integer
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S_ID integer

name varchar(1024)

I_ID integer

CourseID integer
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SC_ID integer
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address varchar(2048)

School

S_ID integer

CourseID integer

TookCourse
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SC_ID integer

Customer

custkey numeric(9,0)

name varchar(25)

address varchar(40)

LineItem

orderkey numeric(12,0)
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suppkey numeric(8,0)

Orders

orderkey numeric(12,0)
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orderstatus character(1)

Part

partkey numeric(10,0)

name varchar(55)

mfgr character(25)

brand character(10)
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Figure 5
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