
Local Structure and Determinism in Probabilistic
Databases

Theodoros Rekatsinas
University of Maryland
College Park, MD, USA

thodrek@cs.umd.edu

Amol Deshpande
University of Maryland
College Park, MD, USA
amol@cs.umd.edu

Lise Getoor
University of Maryland
College Park, MD, USA
getoor@cs.umd.edu

ABSTRACT
While extensive work has been done on evaluating queries over
tuple-independent probabilistic databases, query evaluation over
correlated data has received much less attention even though the
support for correlations is essential for many natural applications
of probabilistic databases, e.g., information extraction, data inte-
gration, computer vision, etc. In this paper, we develop a novel
approach for efficiently evaluating probabilistic queries over cor-
related databases where correlations are represented using a factor
graph, a class of graphical models widely used for capturing corre-
lations and performing statistical inference. Our approach exploits
the specific values of the factor parameters and the determinism
in the correlations, collectively called local structure, to reduce
the complexity of query evaluation. Our framework is based on
arithmetic circuits, factorized representations of probability distri-
butions that can exploit such local structure. Traditionally, arith-
metic circuits are generated following a compilation process and
can not be updated directly. We introduce a generalization of arith-
metic circuits, called annotated arithmetic circuits, and a novel al-
gorithm for updating them, which enables us to answer probabilis-
tic queries efficiently. We present a comprehensive experimental
analysis and show speed-ups of at least one order of magnitude in
many cases.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing; H.2.m
[Database Management]: Miscellaneous; B.2.m [Arithmetic and
Logic Structures]: Miscellaneous; G.3 [Mathematics of Com-
puting]: [Probability and Statistics]

General Terms
Algorithms, Design, Management, Performance

Keywords
Probabilistic Databases, Arithmetic Circuits, Query processing

1. INTRODUCTION
An increasing number of applications are producing large volumes
of uncertain data, fueling an interest in managing and querying such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ‘12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

data using probabilistic databases. Examples of such applications
include information extraction [20], data integration [17], sensor
networks [16], object recognition [27], and OCR [26], to name a
few. This has led to much work on extending relational databases
to support uncertainty, and on efficiently evaluating different types
of queries over such databases (see [40] for a recent survey).

Query evaluation over probabilistic databases is unfortunately
known to be #P -hard even under tuple-independence assumptions
for perhaps the simplest class of queries, namely, conjunctive queries
without self-joins [10]. To overcome this limitation, a number of
different approaches have been explored that can be categorized,
at a high level, into extensional approaches and intensional ap-
proaches. In an extensional approach, the query evaluation process
is guided solely by the query expression, and query operators are
extended to directly compute the corresponding probabilities. For
example, the probability of a join result tuple s 1 t is the product
of the probabilities of the tuples s and t. When such extensional
evaluation is possible, the query can be evaluated in polynomial
time, hence, much research has focused on characterizing datasets,
queries, and query plans for which extensional methods can be cor-
rectly applied [9, 30, 21, 31]. On the other hand, in an intensional
approach, the intermediate tuples generated during query execution
and the final result tuples are associated with propositional sym-
bolic formulas (often called lineage expressions) over a subset of
the random variables corresponding to the base input tuples. One
of several general purpose inference algorithms can then be used
to compute the result tuple probabilities, either exactly, e.g., using
Shannon expansion [30], variable elimination [38], etc., or approx-
imately [25, 32, 34], depending on the complexity of the lineage
expression and the uncertainty model.

Extensional methods scale well but the class of queries for which
they can be applied correctly is relatively small. Furthermore, if we
relax the tuple-independence assumption and allow representation
of correlated data, then extensional methods cannot be directly ap-
plied. Being able to handle correlations is critical for probabilis-
tic databases because many of their natural applications require
it. These include applications such as information extraction, data
integration, computer vision applications, sensor networks, etc.,
where heavy use of machine learning techniques naturally results
in complex correlations among the data. Hence, over the last few
years, several probabilistic database systems have been proposed
that can manage such correlated databases [37, 41, 42], with cor-
relations typically captured using graphical models such as fac-
tor graphs or Bayesian networks [15]. However, intensional ap-
proaches that can process queries over such correlated databases
and handle more general classes of queries, are typically much
slower than extensional approaches and have poor scalability, lead-
ing to a significant efficiency gap between the two approaches [21].

In this work, we aim to increase the efficiency of intensional
methods by developing a framework that represents correlations
using factor graphs [37, 42], and can exploit context-specific in-
dependence and determinism in the correlations, collectively re-
ferred to as local structure [13]. Context-specific independence [3,
43], often observed in practice, refers to independences that hold
given a specific assignment of values to certain variables. De-
terminism in the correlations, i.e., assigning zero probability to
some joint variable assignments, typically manifests in uncertain-
ties involving logical constraints, e.g., mutual exclusion, impli-
cations, etc. Exploiting such local structure enables probabilis-
tic inference to run efficiently in many scenarios, where the stan-
dard inference techniques such as variable elimination are not fea-
sible [13]. Our framework builds upon the notion of an arithmetic
circuit (AC) [13], which is a compiled and compact representation
of a factor graph that can effectively exploit local structure to dras-
tically reduce online inference times [5]. To our knowledge, there
is no prior work on either modifying ACs directly or on computing
probabilities of Boolean formulas over them. The highly-compact
compiled form of ACs makes it a non-trivial challenge to support
either of these efficiently. Hence, we introduce annotated arith-
metic circuits (AACs), an extension where we add variable annota-
tions on the internal operation nodes of an AC, and develop a novel
algorithm for merging two AACs to, in essence, combine the uncer-
tainties captured by the AACs. For evaluating conjunctive queries
over an AAC-representation of a probabilistic database, we repre-
sent the resulting lineage formulas using ordered binary decision
diagrams (OBDDs), suggested in prior work [30]. However, the
AAC-representation of the database imposes significant constraints
on how OBDDs can be generated, requiring us to develop new al-
gorithms for this task.

Our approach can be seen as generalizing the prior work on what
we refer to as instance optimal query evaluation, i.e., optimizing
the evaluation of a particular query on a given dataset (with or
without correlations). Using AACs enables us to exploit not only
the conditional independences in the uncertainty, but also the local
structure widely observed in practice. On the other hand, repre-
senting the lineage expressions as OBDDs enables us to utilize the
structure and the regularities within the lineage expressions them-
selves, e.g., read-once lineage expressions can be evaluated effi-
ciently on tuple-independent databases [30, 38]. In fact, for tuple-
independent databases our approach reduces to the OBDD-based
approach of Olteanu et al. [30], whereas for correlated databases
without any local structure it reduces to the junction tree-based ap-
proach of Kanagal et al. [24, 23].
The main contributions of this paper are as follows:
• We introduce a new exact probabilistic query evaluation frame-

work for supporting arbitrary correlations among the stored tu-
ples, that exploits local structure for efficiency and generalizes
several prior techniques for instance-optimal query evaluation.

• We introduce an extension of arithmetic circuits called anno-
tated arithmetic circuits (AACs), that enables us to answer prob-
abilistic queries efficiently. To our knowledge this is the first
work that addresses the problem of evaluating complex queries
over arithmetic circuits.

• We introduce a novel algorithm for incrementally updating AACs
by exploiting the annotations present in the internal operation
nodes of the circuit. Our merging algorithm allows us to incor-
porate new correlations introduced over a subset of tuples into
the correlations already present in the database, without recom-
piling the existing arithmetic circuits.

• We experimentally verify the performance of our algorithm for

both tractable and hard queries over tuple-independent databases
and correlated databases based on the TPC-H benchmark. We
observe a speed-up of at least one order of magnitude over vari-
able elimination. Moreover the performance of our algorithm is
similar to that of other intensional methods based on Shannon
decomposition.

2. PRELIMINARIES
In this section we present a short review of probabilistic databases

and arithmetic circuits.

2.1 Probabilistic Databases
A probabilistic database can be defined using the possible world

semantics [10]. Let R be a set of relations, X = {X1, · · · , Xn}
be a set of random variables associated with the tuples or attributes
stored in the database (these could either be binary random vari-
ables capturing tuple existence uncertainty, or discrete random vari-
ables capturing attribute value uncertainty), and Φ be a joint prob-
ability distribution over X . A probabilistic database D is defined
to be a probability distribution over a set of deterministic databases
(or possible worlds)W each of which is obtained by assigning X
a joint assignment x = {X1 = x1, . . . , Xn = xn} such that
xi ∈ dom(Xi). The probability associated with a possible word
obtained from the joint assignment x is given by Φ.

Given a query q to be evaluated against database D, the result
of the query is defined to be the union of results returned by each
possible world. Furthermore, the marginal probability of each re-
sult t in the union is obtained by summing the probabilities of the
possible worlds Wt ⊆W that return t: Pr(t) =

∑
w∈Wt

Pr(w).

Representation: Typically, we are not able to represent the uncer-
tainty in the dataset using an explicit listing of the joint probability
distribution Φ. Instead more compact representations need to be
used. The different representations differ in their expressibility and
the complexity of query evaluation. The simplest representation
associates tuple existence probabilities with individual tuples, and
assumes that the tuple existences are independent of each other.
However, most real-world datasets contain complex correlations,
therefore, making an independence assumption can lead to over-
simplification and large errors [36, 37].

Instead, we use a general and flexible representation of a proba-
bilistic database, proposed by Sen et al. [36] and also used by Wick
et al. [42], that can capture complex correlations among the tuples
or the attributes in the database through use of factor graphs, a class
of graphical models that generalizes both directed Bayesian net-
works and undirected Markov networks. More formally we have:

Definition 1. A factor f : dom(X1) × dom(X2) × · · · ×
dom(Xm) → R+ is a function over a set of random variables
X = {X1, X2, . . . , Xm} such that f(x) ≥ 0, ∀x ∈ dom(X1) ×
· · · × dom(Xm). The set of variables X is called the scope of the
factor and denoted Scope[f].

Definition 2. A factor graph P = (F ,X) defines a joint distri-
bution Φ over the set of random variables X via a set of factors F ,
where ∀f(·) ∈ F , Scope[f] ⊆ X . Given a complete joint assign-
ment x = {X1 = x1, . . . , Xn = xn} such that xi ∈ dom(Xi),
the joint distribution is defined by Φ(x) = Pr(x) = 1

Z
∏

f∈F
f(xf)

where xf denotes the assignments restricted to Scope[f] and Z =∑
x′∈X

∏
f∈F

f(x′f).

This leads us to a formal definition of a probabilistic database:

x2 x2b2a2

rv

x1a1x1

A

b1

Btid

X:

y2b2y2 c2

tid

y1 c1

rvB

y1b1

C

Y:

D

c1

rv

c2

C

z2

z1

d2

z1

tid

d1

z2

Z:

X1 X2

X1 f(.)

0.4x12

0.6x11

X2 f(.)X1

x22x12 1

x12 x21 0

0.7

0.3

x22x11

x21x11

f(.)Z1

0.2z12

0.8z11

Z2 f(.)Z1

z22z12 1

z12 z21 0

0.9

0.1

z22z11

z21z11

Y1 f(.)

0.8y12

0.2y11

Y1

f1:
f5:f3:

f2:
f6:

{z1,z2}f5

{z1}

f4

{y1}

f1

fid

{y1,y2}

{x1,x2}

{x1}

f3

f5

rv

f2

factor:

f1 f2
f5

f6f3

Z2Z1

Y2 f(.)Y1

y22y12 0.9

y12 y21 0.1

0.3

0.7

y22y11

y21y11

f4:

f4

Y2

Lineage: (x
1
∧y
1
∧z
1
) ∨ (x

2
∧y
2
∧z
2
) Query: q():- X(A,B), Y(B,C), Z(C,D)

(a)

(b)

Figure 1: (a) A probabilistic database where the uncertainty is
represented with factors. (b) The lineage corresponding to a
conjunctive query.

Definition 3. A probabilistic databaseD is a pair (R,P) where
R is a set of relations and P denotes a factor graph defined over
the set of random variables associated with the tuples inR.

We require that the joint distribution defined by the factor graph
satisfy certain normalization constraints, i.e., the partition function
Z = 1. This does not imply a limitation on the applicability of
the proposed framework but is only used for ease of representation.
Figure 1(a) shows an example probabilistic database represented
using factors, along with the factor graphs themselves (which con-
tain nodes for each factor and each random variable, and a factor
is connected to all variables that it is defined over). We assume
we only have tuple existence uncertainties, and the Boolean ran-
dom variables corresponding to the tuple existences are associated
with the tuples (x1, x2, · · ·). In the remainder of the paper, for
any Boolean random variable x we will denote its true and false
assignment with x1 and x2 respectively. The factors are stored
separately. In this example, we have six factors, f1, · · · , f6. The
random variables over which they are defined are stored in a sep-
arate table (called factor). As an example, we have two factors
containing variable x1, namely, f1 and f2, the latter of which is a
joint factor over x1 and x2. The joint probability distribution over
all variables is defined as:
Φ = f1(X1)f2(X1, X2)f3(Y1)f4(Y1, Y2)f6(Z1)f6(Z1, Z2).

Querying a probabilistic database: Executing an SQL query over
a probabilistic database efficiently has been a subject of much re-
search over the last decade in the database community, and as we
discussed earlier, the approaches can roughly be divided into ex-
tensional approaches and intensional approaches. With our focus
on correlated databases, we are restricted to using an intensional
approach. In intensional methods the relational operators are ex-
tended to build a Boolean formula (called lineage) for each inter-
mediate tuple and each result tuple generated during query evalu-
ation (Figure 1(b)). The marginal probability of a result tuple can
now be obtained by computing the probability of the corresponding
Boolean formula evaluating to true, which is #P-hard.

Next, we review some of the intensional query evaluation tech-
niques that have been proposed in the literature.
Variable Elimination (VE)-based Approach: In the VE-based ap-
proach [36], instead of constructing a lineage formula for each
result tuple, we construct an equivalent representation as a factor
graph where each intermediate tuple is explicitly represented (see

(a) Factor graph (b) OBDD

Lineage: (x1∧y1∧z1) ∨ (x2∧y2∧z2)

x1 y1 z1 x2 y2 z2

i1 i3

i4
i2

i5

f
1

f
3

f
5

f
2

f
4

f
6

^ ^

^^

v

x2 y2

z2

10

x1

y1

z1

1

1

1

1

1

0
0

0

0

0

0
1

Figure 2: A query over the probabilistic database in Figure 1.
(a) The factor graph for the query with AND and OR factors.
(b) The OBDD for the lineage of the result tuple when the ran-
dom variables are independent.

Figure 2(a)). For each intermediate tuple, we add an appropriate
factor containing the tuple and the tuples that generated it. For
instance, for tuple i1 generated by joining tuples x1 and y1, we in-
troduce an AND factor that captures the logical constraint that i1 is
true iff x1 and y1 are both true. Similarly, for tuple i5, we add an
OR factor capturing the logical constraint that i5 is true if either i2
or i4 is true (corresponding to a project operation). Query evalua-
tion is now equivalent to performing inference on this factor graph
to compute the marginal probability distribution of i5.

Variable elimination [14] is a simple and widely-used technique
for performing inference over factor graphs. In essence, VE op-
erates by eliminating one variable at a time from the factor graph
until we are only left with the variable of interest (in this case, i5).
For this purpose, a variable ordering needs to be chosen a priori
to specify the order in which to eliminate the variables. At each it-
eration two operations are performed: Let X be the variable under
consideration. All factors that refer toX are multiplied to get a new
factor f ′ and then X is summed out of f ′ to get a factor f ′′ with
no reference to X . As an example, if we choose to eliminate x1 in
the first step, we would multiply the factors f1, f2, and the AND
factor on x1, x2, i1 to get a factor on x1, y1, i1, x2, and sum-out x1
to get a new factor on y1, i1, x2. The complexity of the inference
procedure is exponential in the size of the largest factor (measured
as the number of variables) created during the process, which is at
least the treewidth of the factor graph. However, finding the optimal
variable ordering is NP-hard and heuristics are typically used.

Sen et al. [37] introduced a lifted inference technique that ex-
ploits the symmetry in the probabilistic database to reduce the com-
plexity of query evaluation. Our work is orthogonal to their pro-
posal of exploiting symmetry, and it is an interesting future direc-
tion to see how these two can be combined.
OBDD-based approach: In a different approach, Olteanu et al. [30]
focus on tuple-independent databases and explore the connection
between ordered binary decision diagrams (OBDDs) [4] and query
evaluation for a large class of queries ranging from conjunctive
queries with safe plans, to hard queries on restricted databases. OB-
DDs are rooted, directed acyclic graphs that compactly represent
Boolean formulas. They consist of decision nodes and two termi-
nal nodes, called 0-terminal and 1-terminal. Each decision node is
labeled with a Boolean variable and has two children, one for each
instantiation of the corresponding Boolean variable. Dashed edges
represent the assignment of the variable to false, while solid edges
represent the assignment to true. Finally, the two terminal nodes
represent the value of the Boolean formula for a particular variable
assignment defined by a path from the root node to that terminal

node. In the worst case, an OBDD may be a complete binary tree
with exponential size, but since it can exploit the structure of the
Boolean formula, it is typically much more compact. Figure 2(b)
shows the OBDD corresponding to the lineage formula in Figure
1(b).

Under the tuple-independence assumption, given the OBDD of a
lineage formula, each edge can be annotated with the probability of
its source decision node taking the corresponding value. The prob-
ability of any non-terminal node is computed as the sum over the
probabilities of its children, weighted by their corresponding edge
probabilities. One can, therefore, compute the probability that the
lineage formula evaluates to true by traversing all bottom-up paths
from the 1-terminal node to the root, multiplying the probabilities
along the way, and then summing the products. This can be done
in time linear in the size of the OBDD, hence, when the lineage
formula results in an OBDD of polynomial size, the query can be
evaluated efficiently.

However not all Boolean formulas admit an OBDD of polyno-
mial size. In fact, OBDD construction is also driven by a variable
ordering which dictates the order in which the variables are evalu-
ated and corresponds to the top-down order of decision nodes in the
final OBDD. Choosing the optimal variable ordering is NP-hard. A
comprehensive review of different construction techniques is pre-
sented by Mantadelis et al. [29].
Discussion: All the approaches mentioned above present signifi-
cant limitations in presence of correlations and local structure. Fac-
tor graphs do not exploit the local structure of the factors to reduce
the complexity of inference. Moreover, OBDDs are applicable
only under the tuple-independence assumption. In the next section
we present an approach that combines the representational power
of factor graphs with the compactness of decomposition methods
leading to more efficient query evaluation over correlated databases.

2.2 Arithmetic Circuits
In this section we briefly review how context-specific indepen-

dence and determinism can be exploited to enable efficient exact
inference even in factor graphs with high treewidth, through use of
arithmetic circuits [5, 6, 7, 8]. Context-specific independence is
prevalent in relational domains, since the underlying structure in-
troduces regularities and conditional independencies that are true
only under specific contexts. Furthermore, determinism appears
during query evaluation, where every relational operator introduces
deterministic constraints over its input tuples, e.g., both input tu-
ples of a join must exist in order for the intermediate tuple to exist.
One can also consider the constraints introduced by foreign keys
as another source of deterministic correlations. Exploiting such de-
terminism is important for improving the efficiency of probabilistic
query processing.

Let Φ(·) be the joint distribution over a set of random variables
X defined by a factor-graph. We associate Φ with a unique multi-
linear function (MLF) [12] over two types of variables:
• Evidence indicators: For each random variable Y ∈ X with

dom(Y) = {y1, · · · , yn}, we have a set of evidence indicators:
{λy1 , λy2 , . . . , λyn}, i.e., one evidence indicator for each yi.

• Factor parameters: For each factor f over a set of random vari-
ables X, we have a set of parameters θX=x.

For any unobserved random variable, i.e., a random variable whose
value is not fixed, all the evidence indicators are set to 1. When a
particular value is assigned to a random variable, the indicator cor-
responding to that value is set to 1 and all other indicators is set to
0. The factor parameters θX=x correspond to the actual values in
the factors of the factor graph. The MLF for a factor graph has an

A +

* *
λ
a
1

θ
a
1

λ
a
2

θ
a
2

+

* *

θ
b
1
a
1

θ
b
2
a
1

λ
b
1

λ
b
2

+

*

θ
b
2
a
2

*

θ
b
1
a
2

B

B f(.)A

b
2

a
2

θ
b
2
a
2

a
2
b
1
θ
b
1
a
2

θ
b
2
a
1

θ
b
1
a
1

b
2

a
1

b
1

a
1

+

* *λ
a
1

0.6

λ
a
2

0.4+

* *

0.3 0.7λ
b
1

λ
b
2

A f(.)

0.4a
2

0.6a
1

BA f(.)

b
2

a
2 1

a
2
b
1 0

0.7

0.3

b
2

a
1

b
1

a
1

(a) (b)

f
a

f
ab

f
a
:

Factor graph:

Factors:

f
ab
:

Arithmetic Circuit:

A Bf
a

f
ab

Factor graph:

f
a
:

Factors:

f
ab
:

Arithmetic Circuit:

A f(.)

θ
a
2

a
2

θ
a
1

a
1

Figure 3: ACs and their factor graphs. Although ACs are
DAGs, the directions on the edges are not explicitly drawn. (a)
Assuming no local structure, the size of the AC is exponential
in the number of variables. (b) Exploiting determinism (i.e.,
Pr(A = a2, B = b1) = 0) leads to an AC of smaller size.

exponential number of terms, i.e., one term for each joint assign-
ment of the random variables in X . For example, the factor graph
in Figure 3(a), in which all random variables are binary, induces
the following MLF:

λa1λb1θa1θb1a1 + λa1λb2θa1θb2a1+

λa2λb2θa2θb2a2 + λa2λb2θa2θb2a2

Given the MLF for a factor graph, we can compute the probabil-
ity of evidence, denoted by Pr(e), i.e., the probability of a specific
joint assignment of all (or of a subset of) the random variables, by
setting the appropriate evidence indicators to 0 instead of 1 and
evaluating the MLF. While the MLF has exponential size, if we can
factor it into something small enough to fit within memory, then we
can compute Pr(e) in time linear in the size of the factorization.
The factorization will take the form of an arithmetic circuit [13].
More rigorously we have the following definition.

Definition 4. An arithmetic circuit (AC) over variables Σ is a
rooted, directed acyclic graph whose leaf nodes are either numeric
constants or evidence indicators, internal nodes correspond to prod-
uct and sum operations, and the root node corresponds to the cir-
cuit’s output. The size of the arithmetic circuit is defined to be the
number of its edges.

We elaborate more on the connection between ACs and variable
elimination. As mentioned earlier, VE is an algorithm that acts on
a set of factors and, driven by a variable ordering, performs two
operations at each iteration: First, factors that contain a particular
variable are multiplied to create a new factor and, then, that variable
is summed out of that factor. An arithmetic circuit can be viewed
as the trace of the VE process for a particular factor graph [13].

We refer to the process of producing an AC from a factor graph as
compilation. One way to do this is to represent the joint distribution
by a propositional logical formula in tractable logical form, known
as deterministic, decomposable negation normal form (d-DNNF),
which is then mapped to an AC [11]. Other approaches are based
on decision diagrams, and we discuss them in Section 4.2. Jha and
Suciu [22] show that d-DNNF is a tractable logical form which
subsumes decision diagrams. Therefore, arithmetic circuits can be
viewed as a generalization of the decision diagrams used in the
intensional probabilistic inference methods presented earlier.

A probability of evidence query is computed by assigning ap-
propriate values to the evidence-indicator nodes and evaluating the
circuit in a bottom-up fashion to compute the value of the root. For
example, using the AC in Figure 3(b) we can compute the prob-
ability of evidence Pr(A = a1, B = b1) by first setting λa1 =
1, λa2 = 0, λb1 = 1, λb2 = 0, and then traversing and evaluating

the circuit. This process may be repeated for as many probabil-
ity of evidence queries as desired and it is only linear in the size
of the AC. The size of an AC is in the worst case exponential in
the treewidth of the factor graph. However, if local structure is
present, the size of an AC is often significantly smaller. Figure 3(b)
shows one example where the factor value for the joint assignment
A = a2, B = b1 is set to 0, hence, the corresponding sub-circuit is
pruned, resulting in a much smaller AC.

3. ARITHMETIC CIRCUITS IN PROBA-
BILISTIC DATABASES

In this section we discuss how arithmetic circuits can be used in
correlated probabilistic databases. We begin by discussing a naive
approach that uses ACs for inference alone, discuss its limitations,
and then present an overview of our proposed approach.

3.1 Naive Approach
LetD denote a probabilistic database andP the factor graph rep-

resenting the correlations among the stored data. Consider a query
Q againstD. Following the factor graph approach (Figure 2(a)), we
can construct a new (augmented) factor graph P ′ for Q on which
inference needs to be performed. Compiling P ′ into an arithmetic
circuit results in a compact representation of the VE process due to
the deterministic intermediate factors introduced. Inference can be
performed by parsing the circuit to compute the result probabilities.
However, although the inference time in ACs is low, compilation
time can be quite expensive. Furthermore, for each different query,
the corresponding augmented factor graph needs to be compiled
into a new AC. Therefore, such an approach is not a viable means
for evaluating queries against probabilistic databases.

Ideally, we would like to avoid repeatedly compiling the base
arithmetic circuit, ACP , from the database. Instead, it would be
desirable that we construct ACP offline once, and save it in the
database. Then, for a given query Q, we can construct a new arith-
metic circuit, ACQ, and somehow “merge" the two ACs to get a
single AC for computing the query result. However, arithmetic
circuits do not support online updates. This significant limitation
arises because only the leaf nodes of the circuit provide informa-
tion about the random variables present in the factor graph through
the corresponding evidence indicators. The internal nodes do not
have enough information to determine which variables participate
in a particular operation. Therefore, it is impossible to merge arith-
metic circuits into a unified variable elimination trace, which takes
into account all the corresponding correlations.

3.2 Overview of the Proposed Framework
We begin with a brief overview of our proposed query evaluation

framework. We elaborate on the steps in the next two sections. We
also introduce the running example that we will be using.

Phase 1 - Preprocessing: We assume that a probabilistic database
D and the factor graph P representing the correlations among
the stored tuples are given as input to the proposed framework.
The factors in P are represented using ADDs to capture the local
structure. Offline, we compile the given probabilistic database
into an annotated arithmetic circuit (AAC), an extended version
of an AC where sum nodes are annotated with the variable on
which the summation is performed. The AACs corresponding to
the probabilistic database shown in Figure 1 are shown in Fig-
ure 4. As depicted, we do not have a single AAC for the entire
network. Instead, we require that disconnected parts of the fac-
tor graph referring to independent sets of variables correspond
to separate AACs. An immediate consequence of this is that a

+ x1

* *
λx11

0.6

λx12

0.4+ x2

* *

0.3 0.7λx21
λx22

+ x2

*

0

+ y1

* *
0.2 0.8

λy11
λy12

0

0 1

0 1

1
10

+ z1

* *

λz11

0.8

λz12

0.2

+ z2

* *
0.1 0.9λz21

λz22

+ z2

*
0

0

0 1 0 1

1

+ y2

* *

0.7 0.3λy21
λy22

10

+ y2

* *

0.1 0.9

10

Figure 4: The (complete) AACs corresponding to the proba-
bilistic database shown in Figure 1.

random variable can be present only in one AAC. Maintaining a
collection of AACs, denoted by ACol, instead of a single AAC,
allows for indexing the AACs, thereby, offering more flexibility
while merging them.

Phase 2 - Lineage Processing: Given a query Q, we compute a
lineage formula for each result tuple using standard techniques.

Phase 3 - Query Evaluation: During this phase we iterate through
the result tuples of the given query Q. For each tuple we perform
the following steps:

(a) The lineage formula introduces a set of new determinis-
tic correlations among the random variables present in it.
Specifically, the new correlations describe the logical con-
straints under which the lineage formula evaluates to 1. Then
lineage is compiled into a new AAC (called a lineage-AAC)
that captures the constraints and represents them in a com-
pact way.

(b) The lineage-AAC is merged with the collection of all the
AACs that refer to variables present in the lineage-AAC.

(c) The result tuple probability is computed by traversing the
resulting merged AAC.

We define and describe AACs in Section 4.1, and describe algo-
rithms to compile the database factor graph and the lineage formula
into AACs in Sections 4.2 and 4.3. We then present our merging
algorithm for combining multiple AACs in Section 5.

4. ANNOTATED ARITHMETIC CIRCUITS
In this section we introduce annotated arithmetic circuits and

show how a correlated probabilistic database can be compiled into
a collection of AACs. We also introduce a novel algorithm for rep-
resenting lineage formulas as AACs.

4.1 Definitions
An annotated arithmetic circuit is a generalization of an arith-

metic circuit that includes full information on the sequence of arith-
metic operations performed during inference and the variables that
participate in them. We maintain this information by adding vari-
able annotations to the internal operation nodes. More formally, we
have the following definition:

Definition 5. An annotated arithmetic circuit (AAC) over vari-
ables Σ is a rooted, directed acyclic graph whose leaf nodes are
either numeric constants or evidence indicators, internal nodes cor-
respond to product and sum operations, and the root node corre-
sponds to the circuit’s output. Each sum node is annotated with the
corresponding variable si that is being summed out and its outgoing
edges are annotated with the values of the different instantiations of
variable si. The size of the annotated arithmetic circuit is defined
to be the number of its edges.

AACs inherit their representational power from regular ACs, and
therefore, can capture the local structure and the conditional inde-
pendences present in a network. Moreover, variable annotations

provide the necessary information to detect the exact order of op-
erations performed during variable elimination, as we discuss in
the next section. This enables us to detect and directly update the
corresponding parts of the circuit when new correlations are intro-
duced and thus plays a key role when merging different arithmetic
circuits. To guarantee the correctness of the merging algorithm pre-
sented in Section 5, we require that the circuit be a complete trace
of the variable elimination algorithm.

Definition 6. An AAC over variables Σ is a complete trace of
variable elimination over variables in Σ, if each evidence-indicator
λX=x for a random variable X is preceded by a sum node anno-
tated with variable X and none of its sibling nodes is an evidence-
indicator.

When an AAC is a complete trace of VE, sum and product nodes
appear in an interleaving manner. Every sum node will be followed
by a product node and every operation child of a product node will
be a sum node. From now on, we will assume that all AACs corre-
spond to complete traces, and we will drop the qualification.

Examples of AACs corresponding to complete traces of VE are
shown in Figure 4. As we can see the annotations in the sum nodes
allow us to trace the exact variable that is being summed out. Fur-
thermore if we compare the first AAC presented in Figure 4 with
the arithmetic circuit shown in Figure 3, we have that both factor
graphs present the same pattern of determinism, however the AAC
has an extra sum node in the sub-circuit that expresses the deter-
ministic conditional probabilities. This is necessary because the
presented AAC keeps full trace of the VE process. Moreover, when
a product node has constant 1 as child, we drop it but the product
node itself is kept since it is needed during merging. We note that
a complete AAC exploits local structure as a regular AC does, and
presents only a small increase in size compared to a regular AC.

4.2 Compiling Factor Graphs into AACs
We compile a factor graph into the corresponding collection of

AACs by extending a compilation algorithm introduced by Chavira
[6], which is based on variable elimination and algebraic decision
diagrams (ADDs) [1]. Analogous to how a BDD is a representa-
tion of a Boolean function, an ADD is a graph representation of a
function that maps instantiations of Boolean variables to real num-
bers. Our algorithm to compile factor graphs into AACs extends
the algorithm described in [6] by adding variable annotations and
merging contiguous product nodes, outputting a complete AAC.
For brevity, we omit a detailed description here.

However, one important issue that warrants discussion here is
the variable ordering used to generate the AACs. Similar to vari-
able elimination and the OBDD construction algorithm, we need
to choose an ordering of the variables to compile the database into
AACs using the above procedure. Let Π denote the total order-
ing over all variables that is used to generate the AACs, and let
ΠCol denote a collection of partial orderings over the disjoint sets
of variables corresponding to the different AACs in ACol.

As we will see in the next section, the AAC corresponding to
the lineage of a query result tuple must respect all of these partial
orderings. This crucial constraint imposed by the AAC merging
algorithm means that we cannot use standard algorithms for con-
structing an AAC from a lineage expression.

4.3 Compiling Lineage Formulas into AACs
Lineage can be represented as a factor graph (Figure 2(a)), and

we can use the above algorithm to construct an AAC for it. How-
ever, the lineage corresponds to a factor graph limited to consist
of only two deterministic factors (AND and OR). Hence, we can
employ more efficient techniques based on OBDD construction.

Recall that an OBDD corresponding to a lineage formula is a
compact decision diagram representing the set of constraints over
the instantiations of the random variables under which the lineage
formula evaluates to true (Section 2), and can be constructed by
choosing a ordering of the variables in which the variables are eval-
uated. As discussed above, the variable ordering we choose must
respect all the partial orderings in ΠCol. However, none of the stan-
dard order selection algorithms can be used for our purpose, as they
do not take into account the ordering constraints.
Constructing an AAC from an OBDD: The easiest way to con-
struct an AAC for a given lineage formula is to first construct an
OBDD, and then modify it by adding the necessary annotated op-
eration nodes with the appropriate indicator constants. Figure 5(b)
depicts the OBDD and the AAC (Figure 5(c)) corresponding to
a conjunctive query, executed against the probabilistic database
shown in Figure 1. The query generates a single Boolean formula.
There is a one-to-one mapping between the OBDD and the corre-
sponding AAC; in particular, each decision node is converted into a
sum node, and expanded to add a product node and an appropriate
evidence indicator. We see that the AAC represents the determin-
istic correlations introduced by the query. During the lineage-AAC
construction we ignore the correlations among the random vari-
ables.

(a) OBDD (c) Lineage AAC(b) OBDD

Var. Order:

x1, y1, z1, x2, y2, z2

Var. Order:

x1, x2, y1, y2, z1, z2

Var. Order:

x1, x2, y1, y2, z1, z2

x
2

y
2

z
2

10

x
1

x
2

y
1

z
1

y
1

y
2

z
1

1

1
1

1

1

1

1

11

1

0
0

0

0

0

00

0

0

0

+ x
2

* λ
x
22

+ y
2

*

0 λ
y
22

+ z
2

*
λ

z
22

+ x
1

*
λ

x
12

+ y
1

*
λ

y
12

+ z
1

*

λ
z
12

*

λ
z
11

*
λ

x
11

+ x
2

*

0 1

*

+ y
1

*

λ
x
21

+ z
1

*

*

λ
y
11

+ y
2

*

λ
y
21

*

0

0

0

0

0

0

0

0

0 11

1

1

1

1

1

1

1

Lineage: (x
1
∧y
1
∧z
1
) ∨ (x

2
∧y
2
∧z
2
)

x
2

y
2

z
2

10

x
1

y
1

z
1

1

1

1

1

1

0

0

0

0

0

Query: q():- X(A,B), Y(B,C), Z(C,D)

Figure 5: (a) The OBDD for the given lineage formula when the
variable ordering is generated by a constraint oblivious heuris-
tic. (b,c) An example of the lineage AAC corresponding to the
given query when executed against the database shown in Fig-
ure 1. The new constraint aware heuristic was used to generate
the variable ordering.

Choosing a variable order for the lineage OBDD: The order in
which the variables are evaluated in an OBDD plays a crucial role
in determining its size. Given a good variable ordering, the size
of the OBDD can be polynomial in the size of the corresponding
Boolean expression. In the general case, finding the optimal vari-
able ordering for a given Boolean formula is NP-hard [2]. OBDDs
have been extensively used in VLSI design and many heuristics that
give good variable orderings have been proposed in the correspond-
ing literature [18]. In particular, there are two main guidelines that
the proposed heuristics satisfy:

(a) Input variables of a Boolean formula that are connected should
appear together in the ordering. For example, consider a

CNF formula where we fix the values of a set of variables
that belong to the same clause so that the clause evaluates to
zero. The entire formula will then evaluate to zero.

(b) Input variables with higher fan-out should appear sooner in
the variable ordering since they have greater influence in the
output of the formula. Fixing the values of influential vari-
ables first may lead to fixing the values of larger parts of the
Boolean formula. By having those variables together in the
OBDD, we can significantly reduce the size of the OBDD.

Another advantage of these requirements is that they facilitate cach-
ing. During OBDD construction the results of intermediate opera-
tions are stored in a cache, following a similar rationale as dynamic
programming algorithms where the subproblems of the initial prob-
lem are cached. This ensures that all intermediate OBDDs are of
polynomial size if the final OBDD is of polynomial size.

Partial order constraints: This brings us to the main challenge
in constructing an AAC for the lineage formula. Recall that ΠCol

can be seen as a list of disjoint orderings, each specifying an order
over a disjoint subset of the variables. Let Πfinal denote the vari-
able ordering used to construct the lineage-AAC. We require that
Πfinal satisfy two constraints, one motivated by the merging algo-
rithm (Section 5), and the second motivated by the desire to enable
caching in that phase (cf. Section 5). Specifically we require that:

(c) Πfinal must respect the partial orderings in ΠCol. This is nec-
essary since it enables merging multiple AACs that refer to
the same set of variables.

(d) Variables that are present in a constraint must be kept to-
gether in Πfinal to enable caching in the merging phase.

Requirement (c) is mandatory for the correctness of the merg-
ing algorithm, therefore, we assume that it is always satisfied. We
elaborate more on requirement (d). Heuristics that only take into
account requirements (a) and (b) may generate a variable ordering
that minimizes the size of the lineage-AAC but will not always give
a good variable ordering for the final AAC. In particular, disregard-
ing the partial ordering constraints may lead to a variable ordering
that does not enable efficient caching during the merging phase,
leading to a final AAC of exponential size. As we show in Sec-
tion 5, caching plays an important role in the performance of our
proposed AAC merging algorithm.

Keeping the variables that are present in a constraint together in
Πfinal, enables the detection of parts of the final AAC that refer to
disjoint sets of variables, allowing caching of those parts. Interleav-
ing variables present in different partial ordering constraints makes
it harder to detect isomorphic sub-graphs of the AAC.

Consider the left part of the OBDD shown in Figure5(a). As
mentioned earlier, we require that the final (after merging) AAC
respect a global variable ordering, specifically, the one shown in
the figure. Observe that during merging, variables y1 and z1 will
be inserted before x2, y2, and z2, as the latter depend on the for-
mer. Since x2 is independent of z1, the parts of the left sub-AAC
that refer to x2 and appear in the two sub-AACs corresponding to
z1 = 0 and z1 = 1, denoted by Az1=0 and Az1=1 respectively,
will be the same. However, caching can not be used since Az1=0

and Az1=1 are not isomorphic. The reason is that the sub-circuits
corresponding to z2 which appear at the end of Az1=0 and Az1=1

are different. Finally, we note that the problem of minimizing the
size of an OBDD given order constraints over the input variables
is NP-hard because the OBDD construction without any such con-
straints is NP-hard. Next, we develop a heuristic for this problem.

Variable ordering heuristic: Ideally, we would like to find a vari-
able order that satisfies all four requirements listed above. How-
ever, the requirements will usually conflict with each other. We

introduce a new heuristic algorithm to generate a good variable or-
dering Πfinal that will be used during the construction of both the
lineage AAC and the final AAC. The new heuristic is shown in Al-
gorithm 1. It takes as input the ordering constraints defined in ΠCol

and the lineage formula L and it returns the variable ordering Πfinal.
In Algorithm 1, we represent orderings as vectors.

Let us elaborate on the algorithm. First, the Boolean formula
L is converted to its corresponding Boolean circuit C. Assuming
that connections between the input variables are only introduced
because of the lineage formula, the algorithm starts by detecting
groups of connected input variables. This directly addresses re-
quirement (a). Let Sg denote the set of groups. Variables contained
in a single group should appear together.

Variables are assigned to groups in Sg by traversing circuit C
recursively: for each variable node v in C we examine its siblings,
i.e., other nodes that are connected with v via some Boolean oper-
ation. If any of these siblings is assigned to a group g, we assign v
to g. Otherwise, we create a new group and assign v to it. For each
internal operation node o we examine its children nodes. If all of
them belong to the same group then we assign o to it, otherwise we
assign o to a new one.

The algorithm proceeds by generating an ordering Ov
g among

the variables contained in a single group. Variables are ordered in
descending order of their fan-out in C. This step complies with re-
quirement (b), stating that more influential variables appear sooner.
So far the algorithm is oblivious to the ordering constraints in ΠCol.
The following steps are introduced to account for them.

Ordering variables within groups only generates partial order-
ings over the variables. To get a total ordering, it is necessary to
impose an ordering OCl on the groups according to their position
score (PScore). Motivated by requirement (c), we define the fol-
lowing process: Each input variable is associated with a position
score, which is defined to be its position in the corresponding or-
dering in ΠCol. The position score of each group in Sg , is defined
to be the average position score of the variables contained in it.
The intuition behind this is that variables that appear early in an
ordering in ΠCol should also appear early in Πfinal.

Until now the proposed algorithm does not explicitly satisfy re-
quirements (c) and (d), presented above. To address them, the al-
gorithm iterates over the groups and the variables in them. Let v
denote the variable under consideration at each step of the iteration.
The algorithm finds the ordering constraint Constrv corresponding
to v and appends in the final ordering Πfinal the set of variables S
that contains v and all variables u ∈ Constrv that precede v and
are not present in Πfinal. It is easy to see that both requirements (c)
and (d) are satisfied.

In Algorithm 1 we show the append operation with the concate-
nation symbol ‖. Notice that some of the variables may not be
present in the lineage formula but are necessary in the merging
phase as they appear before v in the corresponding ACs.

5. MERGING AACS
In this section, we introduce a new algorithm for merging a lineage-

AAC with the corresponding complete AACs in the database. We
begin with formally defining the problem.

The merging problem: As before, let ACol denote the collection
of AACs produced after the compilation of the database, ΠCol the
collection of partial orderings over the random variables in the
database, and Πfinal the variable ordering generated by the heuristic
algorithm presented in the previous section. The merging algorithm
takes as inputACol and the lineage-AAC and generates a new AAC,
which is used to evaluate the probability of the lineage.

Algorithm 1 variableOrdering(ΠCol: a collection of ordering con-
straints, L: a lineage formula): returns Variable Ordering
1: C ← transform L into its corresponding Boolean circuit.
2: V arL ← get the set of variables present in L.
3: Sg ← Get the set of groups of connected variables for circuit C.
4: for c ∈ Sg do
5: Ov

g ← order the variables in c in a decreasing order with respect to
their fan-out in C.

6: Assign a position score PScoreg to group g.
7: end for
8: OCl ← order the groups in an increasing order by their PScore.
9: Πfinal ← {}

10: for c ∈ OCl do
11: for v ∈ Ov

g do
12: if v /∈ Πfinal then
13: Constrv ← get the constraint for v from ΠCol
14: u← arg max

w∈Constrv∩L
(Position of w in Constrv)

15: S ←
⋃

w∈Constrv,w�u

w

16: Πfinal ← Πfinal‖S
17: end if
18: end for
19: end for
20: return Πfinal

The core idea of the algorithm can be simply stated: we tra-
verse the lineage-AAC and all the appropriate database-AACs, i.e.,
AACs that refer to the variables present in the lineage-AAC, simul-
taneously by keeping one or more cursors over each of them. At
any point, the algorithm considers exactly two AAC nodes, a node
from the lineage-AAC and a corresponding node from a database-
AAC, and tries to merge them. Since the database-AACs refer to
disjoint sets of random variables, a node in the lineage-AAC can
only correspond to one database-AAC node. We check whether we
can compute the result of the merge operation for the two nodes
immediately, otherwise we choose a variable to branch on and re-
cursively perform the merge operation for each instantiation of the
variable. The variable is chosen according to Πfinal. In the remain-
der of the section, we elaborate on these steps.

Path annotations: When traversing the input AACs, it is important
to be able to identify in which path of an AAC a variable appears,
since traversing redundant paths will significantly deteriorate per-
formance. In general, a product node can have multiple sum nodes
as children. This can happen when two or more variables are con-
ditionally independent given the value of a particular variable. To
address this issue, we introduce a new annotation for each variable,
which we call the path annotation of the variable.

Path annotations are set according to the following process: we
start by assigning a path annotation of 0 to the root of each AAC
in ACol and then we traverse each AAC in a depth-first manner.
If a product node has multiple sum children we extend the path
annotation with the count information of each child. Consider for
example a product node with two sum nodes as children and a path
annotation 0. The annotations of its children will be 0::1 and 0::2.

Path annotations are created offline during the compilation phase.
The order in which sum nodes appear in the set of children of a
product node is determined by the corresponding ordering ΠCol.
Thus, for different instantiations of the predecessor variables the
children of a product node appear in the same order.
Traversing multiple AACs simultaneously: The merging algori-
thm traverses all the AACs in a breadth-first or a depth-first manner,
by keeping multiple cursors at different sum nodes, and recursively
traversing down the children of an appropriate product node. If it is
traversing down a product node that has two or more sum children,

then multiple cursors are generated pointing to those different sum
nodes. At any point, we may have at most as many cursors as
the number of variables in the AAC. A key requirement here is to
be able to identify first which database-AAC contains a particular
variable, and then, along which path the variable may be found in
that AAC. We use a simple index for the first purpose, whereas the
path annotations are used for the second purpose. For example, let
the considered variable have a path annotation of 0::1::1, and let the
cursors in the corresponding database-AAC point to 0::1 and 0::2.
By comparing the prefixes, we can deduce that the variable will be
found under the former cursor.
Merging AACs: We continue our discussion by introducing the
merging algorithm (shown in Algorithm 2). The multi-merge oper-
ation is implemented recursively, reducing the operation of merging
the lineage-AAC with the appropriate AACs, into operations over
smaller AACs, until we reach boundary conditions: AACs that cor-
respond to constant nodes.

Let a1 and v1 denote the root node of the input lineage-AAC
and the variable that is associated with it. The algorithm starts by
finding the database-AAC Ad that needs to be merged and selects
the appropriate cursor of Ad (using the procedure described above,
and encapsulated in the function getAACCursor()). Let a2 denote
the sum node that the selected cursor points to.

If the algorithm is given a trivial input, i.e., a lineage-AAC equal
to 0 or 1, or if the result of the multi-merge between a1 and a2 is
present in the cache, the multi-merge operation terminates imme-
diately. Otherwise we must recursively compute the result of the
operation for a1 and a2. Recall that v1 is the variable that corre-
sponds to a1 and let v2 be the variable that corresponds to a2. Be-
cause all variables present in the lineage-AAC are already present
in an AAC in ACol and all AACs respect Πfinal, there are only two
cases that the algorithm needs to consider: (a) v2 ≺ v1 and (b)
v2 = v1. We also note that in each turn the merging algorithm
expands two contiguous levels of the AACs under consideration,
exploiting that in a complete AAC sum and product nodes appear
in turns. The algorithm proceeds as described below.
Case - Same variables: When both sum nodes refer to the same
variable v1, the merge operation outputs a sum node a annotated
with v1. To construct the children of a the algorithm iterates through
all values v in the domain of v1 and performs the following pro-
cess: let c and c′ denote the child node of a1 and a2 respectively
that correspond to v1 = v. The algorithm checks for the following
terminal cases: (1) if either c or c′ are 0 it outputs 0 and (2) if c and
c′ are indicator constants it outputs c′. If none of the terminal cases
are met, then it outputs a new product node c1 with children as the
constant children of c. Subsequently the merge operation is propa-
gated by: (1) traversing both input AACs and updating the cursors
of the database-AAC appropriately, (2) considering the descendant
sum nodes of a1 and a2 and (3) recursively merging them. Finally,
the result of the merge operation between a1 and a2 is cached.

Figure 6 depicts the merging operation as applied to the database-
AACs in Figure 4 and the lineage-AAC in Figure 5(c) using the
variable order X1, X2, Y1, Y2, Z1, Z2. The first step is to merge
the sum nodes that are annotated with X1 and create a new sum
node with the same annotation that contains both 0.6 and λx11 in its
children nodes. As shown the algorithm continues in a depth-first
manner and considers the sum node present in the left sub-AAC.

Case - Different variables: When the merge operation is applied
to sum nodes with variables v2 ≺ v1 in Πfinal the output node is a
sum node a annotated with v2. To construct the children of node a
the algorithm iterates through each child c of node a2 correspond-
ing to a particular instantiation of v2 and performs the following
process: if c is a constant it outputs c, otherwise it outputs a new

Algorithm 2 multiMerge(a1: lineage AAC, acol: AAC Collec-
tion): returns AAC
1: a2 ← getAACCursor(Var(a1))
2: if cache(a1, a2) 6= null then
3: return cache(a1, a2)
4: else if (a1 == 0) or (a1 == 1) then
5: return a1
6: end if
7: if (Pos(a2) < Pos(a1)) then
8: a← new + node; Var(a)← Var(a2)
9: for v ∈ Values(Var(a2)) do

10: c← getChild(a2, v)
11: //c is either a ∗ node or a constant
12: if (c == 0) or (c is indicator constant) then
13: c1 ← c
14: else
15: c1 ← new ∗ node
16: Const(c1)← Const(c)
17: moveCursorToChild(a2, v)
18: c2 ← multiMerge(a1, acol); addChild(c1, c2)
19: moveCursorToParent(a2, v)
20: end if
21: addChild(a, c1, v)
22: end for
23: else if (Pos(a2) == Pos(a1)) then
24: a← new + node; Var(a)← Var(a1)
25: for v ∈ Values(Var(a1)) do
26: c← getChild(a1, v); c′ ← getChild(a2, v)
27: //c and c′ are either ∗ nodes or constants
28: if (c == 0) or (c′ == 0) then
29: c1 ← 0
30: else if (c and c′ are indicator constants) then
31: c1 ← c′

32: else
33: c1 ← new ∗ node
34: Const(c1)← Const(c′)
35: moveCursorToChild(a2, v)
36: if (c has a + node in its children) then
37: c← getChild(c)
38: c2 ← multiMerge(c, acol); addChild(c1, c2)
39: end if
40: moveCursorToParent(a2, v)
41: end if
42: addChild(a, c1)
43: end for
44: end if
45: cacheInsert(a, a1, a2)
46: return a

product node c1 with children the constant children of c. Subse-
quently, the merge operation is propagated by: (1) traversing the
database-AAC and updating its cursors appropriately, (2) consider-
ing the descendant sum nodes of a2, and (3) recursively merging
them with a1. Finally, the result of the merge operation between a1
and a2 is stored in the cache.

Figure 7 depicts a subsequent step of the merging process shown
in Figure 6. The merging operation is performed between two dif-
ferent variables, namely Y2 and Y1. Since Y1 ≺ Y2 in the variable
order, the output is a copy of the sum node, annotated with Y1,
in the database-AAC. The algorithm proceeds recursively to merge
the sum nodes that are annotated with variable Y2.

In the algorithm, method getAACCursor(x) returns the appro-
priate running cursor of the AAC in ACol in which variable x ap-
pears. When applied to a sum node, method Var() returns the vari-
able annotation of that node. Furthermore method Values(v) re-
turns a set of all possible values in the domain of variable v. For a
sum node a, method addChild(a, c, v) adds a new child c in a for
Var(a) = v. For product nodes, method Const() returns the chil-
dren of the node corresponding to constant nodes. For a sum node

+ x
1

*
λ

x
11

0 1

+ x
2

* λ
x
22

0 1

0

+ x
1

*
λ

x
11

0 1

Lineage AAC

+ x
2

*
0.3 0.7λ

x
21

λ
x
22

0 1

Database AAC Merged AAC

0.6

*

+ x
1

*
λ

x
11

0 1

+ x
2

0.7

λ
x
22

0 1

0.6

*
0

Var. Order: x
1,
x
2,
y
1,
y
2,
z
1,
z
2

Figure 6: Partial AAC produced after merging the lineage-
AAC with the corresponding database-AAC.
Lineage AAC Database AAC Merged AAC

+ y2

* λy22

0 1

0

+ y1

* *
0.2 0.8

λy11
λy12

10

+ y2

* *

0.7 0.3λy21
λy22

10

+ y2

* *

0.1 0.9

10

+ y1

* *
0.2 0.8

λy11
λy12

10

+ y2

*

0.3 λy22

10

+ y2

*

0.9

10

0

Var. Order: x
1,
x
2,
y
1,
y
2,
z
1,
z
2

Figure 7: A subsequent step of the merging process shown
in Figure 6. Note that the sum nodes to be merged in this step
refer to different variables, namely Y2 and Y1.

with a variable annotation V , methods getChild(v) and Pos() re-
turn the child of the node corresponding to V = v and the posi-
tion of the variable labeling of the node in the global variable or-
der Πfinal respectively. Method moveCursorToChild(a, v) sets the
AAC cursor to point to the descendant sum node of node a in the
path for which Var(a) = v. Finally, moveCursorToParent(a, v)
returns the AAC cursor to the preceding sum node of a.

As mentioned in the previous section, minimizing memory usage
and the number of operations performed during merging is impor-
tant for the performance of the algorithm. A variable in the lineage-
AAC may appear in different paths, therefore, after the merge, parts
of the database-AACs will be repeated. In order to leverage the de-
tection and caching of those sub-circuits we require that variables
which appear together in an AAC from ACol also appear together
in the final AAC (Section 4.3, Requirement (d)).

Finally, we analyze the complexity of the merging algorithm af-
ter caching is introduced. Let m be the size of the query AAC and
si be the size of the ith AAC from the set A ⊆ ACol of AACs used
during the merge phase. In the worst case the algorithm parses each
entire annotated arithmetic circuit at most once. Therefore, its com-
plexity is O(m ∗

∑
i∈A

si). To compute the result probability, we set

all indicator variables in the final AAC to 1 and parse the circuit.
This operation takes time linear in the size of the final circuit.

6. EXPERIMENTS
In this section we present an experimental evaluation of our frame-

work. The evaluation was performed on an Intel(R) Core(TM) i5
2.3 GHz/64bit/8GB machine running Mac OS X/g++ 4.6.1. Our
framework is implemented in C++ for query extraction, lineage
processing and probability computation. We used PostgreSQL 9.0
for storing the probabilistic database and the factors. For BDD
construction we use the publicly available CUDD package [39]
released by the VLSI group at the University of Colorado. We
compare our approach to variable elimination, a generic approach

which can support both tuple-independent and correlated tuples [36].
We examine two versions of VE. The first is regular VE using a
tabular representation of the factors, and the second is VE where
factors are represented using ADDs. VE with ADDs can capture
the local structure in the factors of the network. For our results we
report wall-clock times of queries averaged over 5 runs.

6.1 Datasets and Queries
We study both tuple-independent and correlated cases. The data

used for the experiments was generated by a modified version of
the TPC-H data generator. In the first case the generator was mod-
ified to create tuple-independent probabilistic databases. We as-
sume that all tables apart from nation and region are probabilistic
and associate each tuple with some existence probability uniformly
sampled between (0, 1].

In the second case, we focus on probabilistic databases with arbi-
trary correlations. We extend the TPC-H data generator to generate
correlated probabilistic data according to the following model. We
assume that all the tables apart from nation and region contain un-
certain data. Furthermore, tables customer, supplier, and partsupp
contain independent tuples. Following the foreign key constraint,
each tuple in the lineitem table depends on the corresponding tu-
ple from the orders table. We note that many entries of the orders
table are associated with multiple entries from the lineitem table.
This introduces many conditionally independent random variables
associated with tuples from the lineitem table.

For the part table, we assume that there is uncertainty over the
part price, and that there is a mutual exclusion constraint over price.
Finally, for the table orders we assume that the orders of a particular
customer for a given month are correlated. In particular, this type of
correlation can be represented as a chain where the orders are sorted
chronologically and then the existence of an order depends on the
preceding order. This scenario is realistic as the orders within a
particular month may be connected with the same project and they
may depend on each other for the fulfillment of that project. The
length of the chain varies for databases of different sizes. For a
scale factor of 0.001 the maximum length is restricted to 2 while
for a scale factor of 0.1 it increases to 10.

We evaluate our framework for both tractable and hard queries
for five different scale factors, namely 0.001, 0.005, 0.01, 0.05 and
0.1. We consider queries Q2, Q3, Q5, Q6, Q8, and Q16. Queries
Q6 and Q16 do not contain complicated joins and are easy. How-
ever, they are challenging because they generate an increased num-
ber of result tuples. For every query we remove the top-level ag-
gregate functions and consider its Boolean version.

6.2 Experimental Results
We begin by evaluating the scalability of the database compi-

lation technique based on arithmetic circuits. Figure 8 illustrates
the compilation time as a function of the size of the underlying
database and, in particular, the scale factor used to generate it. As
illustrated the time required for compiling the database introduces
an sizeable overhead to our framework. However, since compila-
tion is performed offline this overhead does not affect the perfor-
mance of the system during query evaluation.

We examine the efficiency of our framework during query eval-
uation and, in particular, the total execution time for the Boolean
versions of the TPC-H queries described above. The results are
shown in Figure 9. Each graph presents the total evaluation time
for a single query for both independent and correlated databases of
different sizes. Note that in all graphs the y-axis is in logarithmic
scale. Finally, missing values for a particular scale factor corre-

100

101

102

103

 0.01 0.05 0.1

C
om

pi
la

tio
n

T
im

e
(s

ec
)

TPC-H Scale factor

Database Compilation Time

Independent DB
Correlated DB

Figure 8: The time required to compile the database as a func-
tion of its size.

spond to cases where the total evaluation time exceeds the time
threshold of 100 seconds.

We focus on hard queries. As shown, for all hard queries, the
evaluation based on AACs is at least one order of magnitude faster
compared to regular VE but it is also significantly faster than VE
with ADDs . As expected, VE with ADDs is faster than tabular
VE, since ADDs can capture the local structure in the factors of the
network. However, even when using VE with ADDs we still have
to pay the cost of multiplying the different ADDs and summing-
out variables during online query evaluation. To the contrary, our
approach has a significant advantage compared to both baselines as
this cost is paid only once, during the offline preprocessing phase.
Of particular interest are queries Q3 and Q8 where both versions
of VE exceeds the threshold of 100 seconds for both dependency
assumptions for scale factors larger than 0.01. This is because of
the increasing number of distinct variables in the lineage formulas
for larger scale factors. For example the lineage formula for Q3
contains 6276 distinct random variables for a scale factor of 0.1.

Since we are considering the Boolean versions of the queries, the
size of the lineage formula is directly associated with the treewidth
of the final augmented factor graph. To the contrary, AACs are
more scalable since they can fully exploit determinism across the
entire network rather than only at a factor level. For example, for
Q3 and a scale factor 0.1, the resulting AACs have 42486 and
53803 edges for the independent and the correlated case respec-
tively. Observe that the difference in the size is not that significant
despite the presence of correlations as determinism is present in the
network. In general, the sizes of the final AACs were sensitive to
the queries and the size of the database. For the correlated database
experiments the size of the AACs ranged from 19 to 2570 edges for
a scale factor of 0.001 and from 1359 to 353214 edges for a scale
factor of 0.1.

We continue our discussion and focus on queries 6 and 16. Re-
call that query 6 contains a projection over table lineitem and no
joins, while query 16 contains a join between tables partsupp and
part. For both, we observe that the performance gain of using
AACs is decreasing as the size of the database increases.

To understand this behavior better, we ran micro-benchmarking
experiments to investigate the performance of the different compo-
nents in our framework. We evaluated all queries against correlated
databases and we measured the time spent at the different steps of
the final AAC creation process. We measure the time for: (a) gen-
erating the lineage for the result tuples, (b) generating the final vari-
able ordering using the new algorithm presented in Section 4.3, (c)
creating the lineage OBDD and converting it to an AAC using the
previous variable ordering, and (d) merging all the AACs together.

10-4

10-3

10-2

10-1

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B2

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-3

10-2

10-1

100

101

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B3

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-4

10-3

10-2

10-1

100

101

 0.001 0.005 0.01

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B5

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-3

10-2

10-1

100

101

102

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B6

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-3

10-2

10-1

100

101

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B8

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-3

10-2

10-1

100

101

102

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B16

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

Figure 9: Query evaluation times for the Boolean versions of TPC-H queries for both independent and correlated databases of
different sizes. Figures (a), (b), (e) refer to hard queries, while the rest to easy queries. Missing values for a scale factor correspond
to queries that exceeded the time threshold of 100 seconds.

We omit the actual evaluation of the final AAC since it is linear in
the size of the final structure , therefore, extremely efficient. Due
to space constraints we present the results for two representative
queries in Figure 10. Similar patterns were observed for the rest of
the queries.

As shown in the figure, most of the time is spent in creating
the lineage OBDD. We demonstrate that this time increases sig-
nificantly as the size of the database (and consequently the size of
the lineage formula) increases. In particular, the size of the linage
formula ranges from 59 to 6276 distinct random variables for Q3
and from 142 to 15010 distinct random variables for Q16. More-
over we observed that for all cases where query evaluation with
AACs exceeded the threshold of 100 seconds, the actual bottleneck
was creating the OBDD for the lineage formula. We would like to
point out that an external package was used for creating OBDDs.
Improving the performance and optimizing this process is left as
future work. Nevertheless, we see that only a small portion of the
total running time is spent in the new merging algorithm proposed.
Finally, this analysis also explains why for Q6 and Q16 we see a
decreasing performance gain when using AACs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.001 0.005 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B3 evaluation breakdown

Lineage Creation
Variable Ordering

Lineage-to-AAC
Merging Phase

 0

 1

 2

 3

 4

 5

 6

 7

0.001 0.005 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B16 evaluation breakdown

Lineage Creation
Variable Ordering

Lineage-to-AAC
Merging Phase

Figure 10: Evaluation time breakdown for queries 3 and 16,
against correlated databases of multiple sizes.

7. RELATED WORK
Much of the work in probabilistic database literature has fo-

cused on query evaluation under tuple-independence assumption,
with some of that work also allowing deterministic correlations like
mutual exclusion. Several recent works have attempted to support
more complex correlations, typically represented using graphical
models; these include BayesStore [41], PrDB [37], and the work
by Wick et al. [42] which uses an MCMC-based technique. How-
ever, none of that work exploits local structure for efficient query
evaluation. In a followup work to the OBDD-based approach that is
limited to tuple-independent databases, Olteanu et al. [32] proposed
decomposition trees (d-trees), that can support simple correlations
expressed via Boolean formulas, but they cannot handle arbitrary
correlations in a natural way. While obeying similar structural
properties as AACs, d-trees can decompose the lineage formula
only partially and can exploit sub-formulas that can be evaluated
efficiently. Moreover d-trees can be used to compute approximate
confidence values. It would be an interesting future research di-
rection to combine our approach with d-trees. In a recent work,
Jha et al. [21] proposed a framework to combine the intensional
and extensional approaches, where they try to use an extensional
method as much as possible, falling back to using an intensional
approach only when necessary. However, their approach cannot
be applied directly to correlated databases represented using factor
graphs. Aside from factor graphs, other representations like pc-
tables [19] can be used to represent correlations. We note that our
framework is still applicable in that case, however the preprocess-
ing compilation algorithm (Section 4.2) should be replaced with
a logical knowledge base compilation algorithm [5] for compiling
the database-AACs. Finally, Sanner et al. [35] propose an exten-
sion of ADDs, called Affine ADDs, that is capable of compactly
representing context-specific, additive, and multiplicative structure.

While sharing similarities with AACs, affine ADDs cannot repre-
sent conditional independences present in the correlations.

8. CONCLUSIONS AND FUTURE WORK
Probabilistic databases are becoming an increasingly appealing

option to store and query uncertain data generated in many appli-
cation domains. In this paper, we focused on efficiently supporting
query evaluation over probabilistic databases that contain corre-
lated data, naturally generated in many applications of probabilis-
tic databases. We introduced a novel framework that exploits the
prevalent determinism in the correlations, and other types of local
structure such as context-specific independence. Our framework
builds upon arithmetic circuits, an enhanced exact inference tech-
nique that exploits such local structure for compact representation
and efficient inference. We introduced an extension of arithmetic
circuits, called annotated arithmetic circuits, and showed how to
execute probabilistic queries over them. Our experimental evalu-
ation shows that our approach can result in orders-of-magnitude
speedups in query execution times over prior approaches. Our
techniques are also of independent interest to the machine learn-
ing community where arithmetic circuits have re-emerged as an ap-
pealing alternative to model uncertainties in several domains with
large volumes of uncertain data [28, 33]. Our research so far has
raised several interesting challenges, including developing lifted
inference-based approaches that can exploit not only local struc-
ture but also symmetry and other regularities in the uncertainties,
and developing approximate query evaluation techniques.

Acknowledgments: We would like to thank Angelika Kimmig
and Vassilis Zikas for their valuable comments. This work was sup-
ported by Air Force Research Lab (AFRL) under contract FA8750-
10-C-0191, and by NSF under grant IIS-0916736.

9. REFERENCES
[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,

A. Pardo, and F. Somenzi. Algebraic decision diagrams and their
applications. In ICCAD, 1993.

[2] B. Bollig and I. Wegener. Improving the variable ordering of
OBDDs is NP-complete. IEEE Trans. Comput., 45, 1996.

[3] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks. In UAI, 1996.

[4] R. E. Bryant. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Comput. Surv., 24(3), 1992.

[5] M. Chavira and A. Darwiche. Compiling Bayesian networks with
local structure. In IJCAI, 2005.

[6] M. Chavira and A. Darwiche. Compiling Bayesian networks using
variable elimination. In IJCAI, 2007.

[7] M. Chavira and A. Darwiche. On probabilistic inference by
weighted model counting. Artif. Intell., 172(6-7), 2008.

[8] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational
Bayesian networks for exact inference. Int. J. Approx. Reasoning,
42(1–2), 2006.

[9] N. Dalvi, K. Schnaitter, and D. Suciu. Computing query probability
with incidence algebras. In PODS, 2010.

[10] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, 2004.

[11] A. Darwiche. A logical approach for factoring belief networks. In
Proceedings of KR, 2001.

[12] A. Darwiche. A differential approach to inference in Bayesian
networks. JACM, 50, 2003.

[13] A. Darwiche. Modeling and Reasoning with Bayesian Networks.
Cambridge University Press, 2009.

[14] R. Dechter. Bucket elimination: A unifying framework for
probabilistic inference. In UAI, 1996.

[15] A. Deshpande, L. Getoor, and P. Sen. Graphical Models for
Uncertain Data. Managing and Mining Uncertain Data. Charu
Aggarwal ed., Springer, 2008.

[16] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In
VLDB, 2004.

[17] X. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty.
In VLDB, 2007.

[18] R. Ebendt, G. Fey, and R. Drechsler. Advanced BDD Optimization.
Springer, 2005.

[19] T. J. Green and V. Tannen. Models for incomplete and probabilistic
information. In EDBT Workshops, 2006.

[20] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu. Avatar information extraction system. In IEEE Data
Engineering Bulletin, 2006.

[21] A. Jha, D. Olteanu, and D. Suciu. Bridging the gap between
intensional and extensional query evaluation in probabilistic
databases. In EDBT, 2010.

[22] A. Jha and D. Suciu. Knowledge compilation meets database theory:
compiling queries to decision diagrams. In ICDT, 2011.

[23] B. Kanagal and A. Deshpande. Indexing correlated probabilistic
databases. In SIGMOD, 2009.

[24] B. Kanagal and A. Deshpande. Lineage processing over correlated
probabilistic databases. In SIGMOD, 2010.

[25] C. Koch. Approximating predicates and expressive queries on
probabilistic databases. In PODS, 2008.

[26] A. Kumar and C. Re. Probabilistic management of OCR data using
an RDBMS. In PVLDB, 2012.

[27] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian.
Probview: a flexible probabilistic database system. TODS, 1997.

[28] D. Lowd and P. Domingos. Learning arithmetic circuits. In UAI,
2008.

[29] T. Mantadelis, R. Rocha, A. Kimmig, and G. Janssens. Preprocessing
boolean formulae for bdds in a probabilistic context. In JELIA, 2010.

[30] D. Olteanu and J. Huang. Using OBDDs for efficient query
evaluation on probabilistic databases. In SUM, 2008.

[31] D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager query
plans for tuple-independent probabilistic databases. In ICDE, 2009.

[32] D. Olteanu, J. Huang, and C. Koch. Approximate confidence
computation in probabilistic databases. ICDE, 2010.

[33] H. Poon and P. Domingos. Sum-product networks: A new deep
architecture. In UAI, 2011.

[34] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In ICDE, 2007.

[35] S. Sanner and D. McAllester. Affine algebraic decision diagrams
(aadds) and their application to structured probabilistic inference. In
IJCAI, 2005.

[36] P. Sen and A. Deshpande. Representing and querying correlated
tuples in probabilistic databases. In ICDE, 2007.

[37] P. Sen, A. Deshpande, and L. Getoor. PrDB: managing and
exploiting rich correlations in probabilistic databases. The VLDB
Journal, 18, 2009.

[38] P. Sen, A. Deshpande, and L. Getoor. Read-once functions and query
evaluation in probabilistic databases. PVLDB, 2010.

[39] F. Somenzi. Cudd: Cu decision diagram package.
http://vlsi.colorado.edu/fabio/CUDD/.

[40] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool, 2011.

[41] D. Z. Wang, E. Michelakis, M. Garofalakis, and J. M. Hellerstein.
BayesStore: Managing large, uncertain data repositories with
probabilistic graphical models. In VLDB, 2008.

[42] M. L. Wick, A. McCallum, and G. Miklau. Scalable probabilistic
databases with factor graphs and MCMC. PVLDB, 3(1), 2010.

[43] N. L. Zhang and D. Poole. On the role of context-specific
independence in probabilistic inference. In IJCAI, 1999.

