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Abstract

In this paper we address the problem of minimizing the response time of a multi-way join query
using pipelined (inter-operator) parallelism, in a parallel or a distributed environment. We observe that
in order to fully exploit the parallelism in the system, we must consider a new class of “interleaving”
plans, where multiple query plans are used simultaneously to minimize the response time of a query (or
maximize the tuple-throughput of the system). We cast the query planning problem in this environment
as a “flow maximization problem”, and present polynomial-time algorithms that (statically) find the
optimal set of plans to use for a large class of multi-way join queries. Our proposed algorithms also
naturally extend to query optimization over web services. Finally we present an extensive experimental
evaluation that demonstrates both the need to consider such plans in parallel query processing and the
effectiveness of our proposed algorithms.

1 Introduction

Parallelism has long been recognized as the most cost-effective approach to scaling up the performance of
database query processing [11, 13, 18, 21]. Over the years, this has led to the development of a host of
query processing and optimization algorithms for parallel databases, aimed toward maximizing the query-
throughput of the system or minimizing the response time of a single large query. Broadly speaking, the
parallelism in a parallel database can be exploited in three ways during query processing [19, 24]. Different
query operators that do not depend on each other can be executed in parallel on different processors (inde-
pendent parallelism). Two operators in a producer-consumer relationship can be run in parallel by pipelining
the output of the producer to the consumer (pipelined or inter-operator parallelism). Finally, copies of the
same query operator may be run on multiple processors simultaneously, each operating on a partition of
the data (partitioned or intra-operator parallelism). Typically, most systems use a combination of these,
depending on the available resources, the data placement (in a shared-nothing system), and the execution
plan itself (some execution plans are naturally more parallelizable than others). For example, partitioned
parallelism can exploit the available processors maximally, and should be used if the number of proces-
sors exceeds the number of operators. Partitioned parallelism, however, suffers from higher communication
overhead, is sensitive to data skew [12], and is typically more complicated to set up. Pipelined parallelism
is typically considered easier to implement and reason about, and results in less communication overhead;
however, it enables limited parallelism since the number of operators in a database query is typically small.

In this paper, we consider the problem of minimizing the response time of a multi-way join query being
executed using a left-deep pipelined plan with each join operator being evaluated on a separate processor.
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This type of execution appears naturally in many settings, especially in shared-nothing systems where the
query relations might be stored at different machines. In shared-memory or shared-disk environments, such
execution might lead to better cache locality. Further, as Srivastava et al. [26] observe, query optimiza-
tion over web services reduces to this problem as well: each web service can be thought of as a separate
processor.

Perhaps the biggest disadvantage of this type of execution is that, in general, one of the processors in
the system, most likely the processor executing the first join operator, will quickly become the bottleneck
with the rest of the processors sitting idle [26]. We propose to remedy this problem by exploiting a new
class of plans, called interleaving plans, where multiple regular query plans are used simultaneously to
fully exploit the parallelism in the system. We would like to note that despite the superficial similarities
to adaptive query processing techniques such as eddies [2], interleaving plans are not adaptive; we are
instead addressing the static optimization problem of finding an optimal interleaving plan, assuming that the
operator characteristics (selectivities and costs) are known.

Our algorithms are based on a characterization of query execution as tuple flows that we proposed in
a prior work [7]; that work considers the problem of selection ordering in a parallel setting, and presents
an algorithm to find an optimal solution by casting the problem as a flow maximization problem. In this
paper, we first generalize that work by designing an O(n3) algorithm to find the optimal interleaving plan
(that minimizes the response time) to execute a selection ordering query with tree-structured precedence
constraints (where n is the number of operators). Our algorithm has the additional, highly desirable, sparsity
property in that the number of different regular plans used is at most O(n). We then extend this algorithm
to obtain algorithms for a large class of multi-way join queries with acyclic query graphs, by reducing the
latter type of queries to precedence-constrained selection ordering [22, 23, 26].

Outline
We begin with a discussion of related work in parallel query optimization (Section 2). We then present our
execution model for executing a multi-way join query and present a reduction of this problem to precedence-
constrained selection ordering (Section 3). We then present our main algorithm for finding an optimal
interleaving plan for the case when all operators are selective, ie., have selectivity < 1 (Section 4). We
then discuss how this algorithm can be extended to solving a large class of general multi-way join queries,
which may result in non-selective operators (Section 5). We then present an extensive simulation-based
experimental study that demonstrates the practical benefits of using interleaving plans (Section 6). In Section
7, we consider an alternative caching-aware approach to evaluating non-selective operators. The proofs of
the lemmas and theorems in the body of the paper are presented in the Appendix.

2 Related Work

There has been much work in the database literature on designing query processing and optimization al-
gorithms that can effectively exploit multi-processor parallelism. Apers et al. [1] were the first, to our
knowledge, to explicitly study the tradeoffs between response time optimization (that minimizes the total
time taken to execute a query) and total work optimization (that minimizes the total work across all proces-
sors), in the context of distributed query processing. Ganguly et al. [15] formalize these tradeoffs and show
that optimizing for response time is much harder than optimizing for total work, since the response time
metric does not obey the principle of optimality. To make the parallel query optimization problem tractable,
Hong and Stonebraker [21] present a two-phase approach that separates join order optimization from parallel
scheduling issues. Wilschut et al. [30] adopt the two-phase approach and analyze several strategies for the
second phase that exploit pipelined, non-pipelined and intra-operator parallelism in various ways. Hasan et
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al. [20, 6] present communication-cost aware scheduling algorithms for the second phase. Garofalakis and
Ioannidis [16, 17] consider the issues of choosing the degrees of intra-operator parallelism to best execute
the plan in presence of resource constraints. However, to our knowledge, none of the prior work in parallel
query optimization has considered using interleaving plans to minimize response time. To our knowledge,
none of the prior work in parallel query optimization has considered using interleaving plans to minimize
response time.

Our work is closely related to two recent papers. In our prior work (Condon et al. [7]), we introduced the
notion of interleaving plans for parallel selection ordering. In this work, we substantially extend that work by
generalizing the algorithms to executing multi-way join queries; we also present an extensive experimental
evaluation to demonstrate the practical benefits of interleaving plans. Srivastava et al. [26] study query
optimization over web services. Although they focus on finding a single plan for all input tuples, they
allow sending a tuple to multiple web services simultaneously in parallel. They don’t, however, consider
interleaving plans. In the extended version of this paper [10], we discuss an approach to combine these two
classes of plans.

Interleaving plans bear a superficial similarity to tuple-routing query processors, particularly eddies [2].
The eddies approach treats query processing as routing of tuples through operators, and uses a different route
for executing each tuple. Tian and DeWitt [27] considered the problem of designing tuple routing strategies
for eddies in a distributed setting, where the operators reside on different nodes and the goal is to minimize
the average response time or the maximum throughput (a setting similar to ours). They present an analytical
formulation as well as several practical routing strategies for this problem. Eddies, however, use multiple
plans for adaptivity purposes, with the aim of converging to a single optimal plan if the data characteristics
are unchanged, whereas our goal is to find a statically optimal interleaving plan that minimizes the response
time. In that sense, our work is closer in spirit to conditional plans [9], where the goal is to find a static plan
with decision points to optimally execute a selection query over a sensor network. Our algorithms can be
seen as a way to design routing policies in parallel and distributed setting for eddies.

The algorithms we present are based on a characterization of query execution as tuple flows, where the
amount of flow may change as it travels through the network. Generalized maximum flow problems also
have this property (cf. Fleischer [14]). We refer the reader to Condon et al. [7] for a discussion of how our
problem differs from those problems.

3 Problem Formulation and Analysis

In this section, we formally define the problem of evaluating a multi-way join query using pipelined (inter-
operator) parallelism and show how the problem can be reduced to precedence-constrained selection order-
ing. We then introduce the notion of interleaving plans.

3.1 Parallel Execution Model

Figure 1 shows a 5-way join query that we use as a running example throughout this paper. Executing such
a query using pipelined parallelism requires us to designate one of the input relations as the driver relation1.
The join operators are executed in parallel on different processors (Figure 2), and the tuples of the driver
relation (along with matches found) are routed through the join operators one by one. We assume that the
join operators are independent of each other.

1Although it is possible to drive execution using multiple driver relations through use of symmetric hash join operators [29],
most database systems do not support such plans.
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(i)

Hash Join

Scan(R4)

Build

Scan(R1)

Hash Join

Scan(R2)

Build

pipeline

SELECT *
FROM  R1, R2, R3, R4, R5
WHERE R1.a = R2.a
     AND R1.b = R3.b
     AND R1.c = R4.c
     AND R4.d = R5.d

(ii)

R2

R1 R3

R4 R5

R1.a = R2.a

R1.c = R4.c

R1.b = R3.b

R4.d = R5.d

Hash Join

Scan(R3)

Build

Hash Join

Scan(R5)

Build

Figure 1: (i) A 5-way join query, and the corresponding query graph. (ii) A pipelined plan where R1 is the
driver relation.
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R3
R3.b 

HashTbl

Processor 2

R5
R5.d

HashTbl

Processor 4

Output

R4
R4.c 

HashTbl

Processor 3

Figure 2: Executing query in Figure 1 using pipelined parallelism with each join running on a different
processor. The join with R5 is done using the R4 matches found earlier.

The joins can be done as hash joins (as shown in Figure 1), index joins (based on the availability of
indexes and the sizes of the relations), or nested-loops joins. The techniques we propose are invariant to
this choice; in the rest of the paper, we assume all joins are executed using hash joins. For clarity, we focus
only on the “probe” costs of the join operators, ie., the cost of looking up the matches given a tuple. We
assume that these costs are constant and do not depend on the tuples being used to probe. We ignore the
(constant) cost of scanning the driven relations and/or building indexes on them, and assume that the routing
and communication costs are negligible – it is fairly easy to extend our cost model to include these costs
(e.g., by adding the per-tuple routing and communication overhead to the probe costs of the operators).

operators have a uniform cost structure across tuples (in other words, we assume that the probe cost per
tuple is constant and does not depend on the values of the tuple attributes). In general, join operators may
exhibit a non-uniform cost structure. For example, if the join is being performed using a hash join and the
hash table does not fit into memory, then the probe cost depends on whether the corresponding partition is in
memory or not [28, 5]. Pipelined plans should not be used in such cases, and alternatives like blocking plans
(using multi-pass hash joins or sort-merge joins) or XJoins [28] (which employ sophisticated scheduling
logic to handle large tables) should be considered. In this paper, we assume uniform cost structure across
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R1

(i)

R5

(ii)

O2 = Join R2

O3 = Join R3

O4 = Join R4 O5 = Join R5

O4 = Join R4

O1 = Join R1

O2 = Join R2

O3 = Join R3

Figure 3: Reducing the query in Figure 1 to precedence-constrained selection ordering for driver choices R1

and R5.

cRi Probe cost for relation Ri

fanoutRi Fanout of a probe into Ri

Oi Selection oper. corresponding to join with Ri

ci Execution cost of selection operator Oi

pi Selectivity of selection operator Oi

ri Rate limit of Oi (∝ 1/ci)

Table 1: Notation used in the paper

tuples; in other words, we assume that the probe cost per tuple is constant and does not depend on the values
of the tuple attributes.

3.2 Reduction to Precedence-Constrained Selection Ordering

Assuming that the driver relation choice has been made, the problem of ordering the “driven” relations
bears many similarities to selection ordering. In essence, the join operations can be thought of as selections
applied to the tuples from the driver relation (even though some of the joins may be done using components
from other relations - cf. Figure 2); the precedence constraints arise from the desire to avoid Cartesian
products [22, 23, 26].

Given a multi-way join query over n relations, R1, . . . , Rn, with one of the relations designated as the
driver relation, the reduction begins with creating a selection operator for each of the driven relations, and
setting up appropriate precedence constraints to ensure that no Cartesian products are required (Figure 3).
We denote the selection operator corresponding to relation Ri by Oi. For acyclic query graphs (that we
focus on in this paper), the resulting precedence graph will be a forest of trees. The cost of Oi, denoted by
ci, is set to be the probe cost into the hash table on Ri, whereas the selectivity of Oi, denoted by pi, is set to
be the “fanout” of the join with Ri. Figures 3 (i) and (ii) show two examples of this reduction for example
query in Figure 1.

Unlike selection operators, the join fanouts may be > 1.
Definition: We call the operators with selectivity < 1 selective operators, whereas an operator with selec-
tivity ≥ 1 is called a non-selective operator.

5



3.3 Execution Plan Space

A serial plan for executing a selection ordering query specifies a single permutation of the operators (that
obeys the precedence constraints) in which to apply the operators to the tuples of the relation. In a single-
processor system, where the goal is to minimize the total work done, the rank ordering algorithm [23] can
be used to find the optimal serial plan (shown in Figure 4). Srivastava et al. [26] present an algorithm
to minimize the response time when each operator is being executed on a different processor in parallel.
As they show, when the selectivities are all ≤ 1 and the processors are identical, the optimal algorithm,
called BOTTLENECK (Figure 4), simply orders the operators by their execution costs (more generally, by
their tuple rate limits, ri’s). A somewhat unintuitive feature of this algorithm is that the actual operator
selectivities are irrelevant.

Algorithms: OPT-SEQ (minimize total work) & BOTTLENECK (minimize response time)
1. Let S denote the set of operators that can be applied to the tuples while obeying precedence constraints.

2. Choose next operator in the serial plan to be the one with:

OPT-SEQ: min ci/(1− pi) among S.

BOTTLENECK: min ci (equiv. max ri = 1
ci

) among S.

3. Add newly valid operators (if any) to S.

4. Repeat.

Figure 4: Algorithms for finding optimal serial plans for selective operators (assuming identical processors)

Although the BOTTLENECK algorithm finds the best serial plan for executing the query, it is easy to
see that it will not exploit the full parallelism in the system in most cases. Figure 5 illustrates this through
an example. In this case, the query consists of three identical operators, with probabilities 0.2 and costs
0.1. The best serial plan can process only 10 tuples in unit time. On the other hand, if we use three serial
plans simultaneously by routing 1/3 of the tuples through each of them, the total expected number of tuples
processed in unit time increases to about 24.19.

We call such plans interleaving plans. In general, an interleaving plan consists of a set of permutations
(serial plans) along with a probability weight for each of the permutations (the probabilities sum up to 1).
When a new tuple enters the system, it is assigned one of these permutations, chosen randomly according
to the weights (called the routing for that tuple). The tuple is then sent through the operators in that order,
and is either discarded by some operator, or it is output from the system with a designation specifying it has
satisfied all predicates (for the original multi-way join query, a set of result tuples will be output instead).

4 MTTC Algorithm: Selective Operators

In this section, we present our algorithm for finding the optimal interleaving plan for executing a precedence-
constrained selection ordering problem for tree-structured precedence constraints, when all operators are
selective. The algorithm actually maximizes the tuple throughput, i.e. the number of tuples of the driver
relation that can be processed in unit time. We call this the MTTC problem (max-throughput problem
with tree-structured precedence constraints). We begin with a formal problem definition, followed by an
algorithm for the special case when the precedence constraints are a forest of chains. We then present
an algorithm for the general case that recursively reduces arbitrary tree-stuctured constraints to forests of
chains. Proofs of the results in this section can be found in the appendix.
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(       )
(       )

Execute all tuples
using O1 →O2 →O3

Execute:
1/3 tuples using O1 →O2 →O3

1/3 tuples using O2 →O3 →O1

1/3 tuples using O3 →O1 →O2

O1 O2 O3 O1 O2 O3

(i) (ii)

(       )

(Denoted as          )

Figure 5: Given 3 identical operators, O1, O2, O3, with p = 0.2, c = 0.1 and no precedence constraints, (i)
the best serial plan processes 10 tuples in unit time; (ii) an interleaving plan that uses 3 serial plans equally
can process 24.19 tuples.

4.1 Definition of the MTTC Problem

The input to the MTTC problem is a list of n selection operators, O1, . . . , On, associated selectivities
p1, . . . , pn and rate limits r1, . . . , rn, and a precedence graph G. The pi and ri are real values satisfying
0 < pi < 1 and ri > 0. Rate limit ri = 1/ci is the number of tuples Oi can process per unit time. Table 1
summarizes this notation. Graph G is a forest of rooted trees.

The goal in the MTTC problem is to find an optimal tuple routing that maximizes throughput. The rout-
ing specifies, for each permutation of the operators, the number of tuples to be sent along that permutation
per unit time2. The routing must obey the precedence constraints defined by G: for each distinct Oi, Oj , if
Oj is a descendant of Oi in G, then tuples must be sent to Oi before they are sent to Oj . The routing must
also respect the rate limits of the operators: for each operator Oi, the expected number of tuples reaching Oi

per unit time cannot exceeed ri.
Below we give a linear program formally defining the MTTC problem. We use the following notation.

Let π be a permutation of a finite set S. The kth element of π is denoted by π(k). Let φ(n) be the set of all n!
permutations of {O1, . . . , On}. For i ∈ {1, . . . , n} and π ∈ φn, g(π, i) denotes the probability that a tuple
sent according to permutation π reaches operator Oi without being eliminated. Thus if π(1) = Oi, then
g(π, i) = 1; otherwise, g(π, i) = pπ(1)pπ(2) . . . pπ(m−1), where π(m) = Oi. Define n! real-valued variables
fπ, one for each π ∈ φ(n), where each fπ represents the number of tuples routed along permutation π per
unit time. We call the fπ flow variables.

Formally, the MTTC problem is to find an optimal assignment K to the flow variables in the following
LP:

MTTC LP: Given r1, . . . , rn > 0, p1 . . . , pn ∈ (0, 1), and a precedence graph G on {O1, . . . , On} that is a
forest of trees, maximize

F =
∑

π∈φ(n)

fπ

2These values are normalized using the total throughput at the end, to obtain probabilities to be used for actual routing during
execution.
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subject to the constraints:
(1)

∑
π∈φ(n) fπg(π, i) ≤ ri for all i ∈ {1, . . . , n},

(2) fπ ≥ 0 for all π ∈ φ(n), and

(3) fπ = 0 if π violates some constraint of G.

Definition: We refer to the constraints involving the ri as rate constraints. If assignment K satisfies the
rate constraint for ri with equality, we say Oi is saturated by K. The value F achieved by K is called the
throughput of K, and we call K a routing.

4.2 Fundamental Lemmas and Definitions

Given operators Oi and Oj , we say that Oi can saturate Oj if ripi ≥ rj . If ripi = rj we say that Oi can
exactly saturate Oj , and if ripi > rj we say that Oi can over-saturate Oj . A chain is a tree in which each
node has exactly one child. If C is a chain in the precedence graph of an MTTC instance, we say that C is
proper if each non-leaf node in the chain can saturate its child.

Let K be a feasible solution to an MTTC instance, and let O = {O1, . . . , On}. We say that K has the
saturated suffix property if for some non-empty subset Q ⊆ O, (1) the operators in Q are saturated by K
and (2) if K assigns a positive value to fπ, then the elements of O −Q precede the elements of Q in π (in
other words, no tuples ever flow from an operator in Q to an operator in O − Q). We call Q a saturated
suffix of K.

The following important lemma was proved in [7] for the MTTC problem with no precedence con-
straints. The proof also holds with the precedence constraints.

Lemma 4.1 [7] (The saturated suffix lemma) If feasible solution K to the MTTC LP has the saturated-
suffix property with saturated suffix Q, then K is an optimal solution to the max-throughput problem and
achieves throughput

F ∗ =
∑

Oi∈Q ri(1− pi)
(
∏

Oj∈O−Q pj)(1−
∏

Oi∈Q pi)

The following is a strengthening of results from [7, 8].

Lemma 4.2 Let I be an instance of the MTTC problem in which there are no precedence constraints, and
let the operators in I be numbered so that r1 ≥ r2 . . . ≥ rn. Let

F ∗ = mink∈{1,...,n}

∑n
i=k ri(1− pi)

(
∏k−1

j=1 pj)(1−
∏

i=kn pi)

Then F ∗ is the optimal value of the objective function for instance I . If k′ is the largest value of k achieving
the value F ∗, then there exists an optimal routing for which {Ok′ , Ok′+1, . . . , On} is a saturated suffix. If
the optimal value F ∗ is achieved at k = 1, then every feasible routing K saturates all operators.

The above two lemmas are the basis for our algorithms and their correctness proofs. The idea behind
our algorithms is to construct a routing with the saturated suffix property. This may be impossible due to
precedence constraints; as a simple example, consider a two-operator instance where O1 must precede O2,
but O1 cannot saturate O2. However, by reducing rate limits of certain operators, we can construct a routing
with the saturated suffix property that is also optimal with respect to the original rate limits.
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4.3 An MTTC algorithm for chains

We now present an algorithm for the special case of the MTTC problem in which the precedence graph G
is a forest of chains. This algorithm generalizes the algorithm in [8] for the unconstrained case. The idea
is to find subsets of operators that can be combined into superoperators. A superoperator is a permutation
π′ of a subset of the operators, such that each operator in the permutation (but the last) can saturate the next
one. We treat a superoperator as a new single operator, formed by pasting together its component operators
in the given order. We define the selectivity of π′, denoted σ(π′), to be the product of the selectivities of its
component operators, and its rate limit, denoted ρ(π′), to be the rate limit of its first operator. Note that flow
sent through the operators in π′ in the given order will either saturate all those operators, or none of them.

4.3.1 Preprocessing procedure

To preprocess the input, we first make all chains proper. We do this by performing the following operation
on each operator Oi in the chain but the last, beginning from the top operator in the chain and proceeding
downward: Let Oj be the operator after Oi in the chain. If Oi cannot saturate Oj , then reset the rate limit
rj of Oj to be ripi.

Note that when the above procedure reduces the rate limit of an operator Oj , it does not reduce the
maximum throughput attainable. Under any optimal routing, all flow into Oj must pass through its parent
Oi first, so at most ripi flow can reach Oj , even under the optimal routing. Once the chains are proper,
we sort all of the operators in descending order of their rate limits. Let π be the resulting permutation. We
renumber the operators so that π = (O1, . . . , On).

4.3.2 The RouteChains procedure

Following the preprocessing, we invoke a recursive procedure that we call RouteChains. RouteChains re-
cursively constructs a routing K. It consists of pairs of the form (π, x) indicating that x amount of flow is
to be sent along permutation π. Each recursive call adds one pair to this routing, and we stop when at least
one operator is saturated. The inputs to RouteChains are as follows.
RouteChains: Inputs

1. Rate limits r1, . . . , rn and selectivities p1, . . . , pn, for a set of operators O = {O1, . . . , On},

2. A precedence graph G with vertex set O consisting of proper chains.

3. A permutation π of the operators obeying the constraints of G.

4. An ordered partition P = (π1, . . . , πm) of π into subpermutations, such that each πi is a superopera-
tor.

The inputs to RouteChains must also obey the following “can’t saturate” precondition3: for 2 ≤ j ≤
m, ρ(πj)σ(πj) ≤ ρ(πj−1), which says that each superoperator in the partition either cannot saturate its
predecessor, or can only saturate it exactly.

In the initial call to RouteChains made by the MTTC algorithm for chains (following preprocessing),
the first input is set to the rate limits and selectivities of the operators O1, . . . , On, and the second to the
precedence graph for the operators. Permutation π is set to (O1, . . . , On) and P to the trivial partition
((O1), . . . , (On)). Because the chains are proper, π obeys the precedence constraints. The sort performed
in preprocessing ensures that the “can’t saturate” precondition holds for the initial call, since each pi is < 1.

3This should actually be called the “can’t over-saturate” precondition
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Step 1: Send 600 flow units along 
                O4 ➔ O2 ➔ O3 ➔ O5
            Swap-merge O2 and O4
            Merge O5 into its parent O4

Step 2: Send 240 flow units along 
                  O2 ➔ O4 ➔ O5 ➔ O3
            Swap-merge O3 and {O2→O4→O5}

Step 3: Send 720 flow units along 
                  O3 ➔ O2 ➔ O4 ➔ O5
             All nodes are saturated 
                      ⇒ Optimal Solution.

precedence-constraint

O4

r4 = 900
p4 = 0.5

O2

r2 = 900
p2 = 0.5

O3

r3 = 900
p3 = 0.5

O5

r5 = 225
p5 = 0.5

precedence-constraint

O4

r4 = 900
p4 = 0.5

O2

r2 = 900
p2 = 0.5

O3

r3 = 900
p3 = 0.5

O5

r5 = 225
p5 = 0.5

precedence-constraint

O4

r4 = 900
p4 = 0.5

O2

r2 = 900
p2 = 0.5

O3

r3 = 900
p3 = 0.5

O5

r5 = 225
p5 = 0.5

(   )(   )(   )

Figure 6: Illustration of the algorithm for the case shown in Figure 3 (ii); Oi corresponds to the join with
Ri.

RouteChains: Output RouteChains returns a routing K that obeys the rate limits r1, . . . , rn and the prece-
dence constraints defined by G, and saturates at least one operator in O.

RouteChains: Execution
RouteChains begins by calculating an amount x of flow to send along permutation π, where π is the permu-
tation specified in the input to RouteChains. More particularly, x ≥ 0 is the minimum amount of flow that,
sent along permutation π, triggers one of the following stopping conditions:

1. Some operator is saturated.

2. Some superoperator πi, 2 ≤ i ≤ m, can exactly saturate its predecessor πi−1.

3. Some operator Oi can exactly saturate Oj , where Oj is the child of Oi in a chain of G, and Oj is not
the successor of Oi in a superoperator πl in P .

Conditions 2 and 3 are with respect to the residual rate limits of the operators, after x amount of flow
is sent along permutation π. The residual rate limit of operator Oi is ri − xg(π, i). The value of x is easily
calculated based on the following observations. Consider sending y flow along permutation π. Operator Oj

becomes saturated at y = rj∏j−1

k=1
σ(πk)

. For 2 ≤ j ≤ m, superoperator πj becomes able to exactly saturate

πj−1 at y = ρ(πj)σ(πj)−ρ(πj−1)∏j

k=1
σ(πk)−

∏j−2

k=1
σ(πk)

. For any 1 ≤ i < j ≤ n, operator Oi becomes able to exactly saturate

operator Oj at y = ripi−rj∏i

k=1
pk−

∏j−1

k=1
pk

. Thus x can be calculated by taking the minimum of O(n) values for
y.

After RouteChains computes x, what it does next is determined by the lowest-numbered stopping con-
dition that was triggered by sending x flow along permutation π.

If Stopping Condition 1 was triggered, then RouteChains returns K = (π, x).

Else, if Stopping Condition 2 was triggered for some superoperator πi, then RouteChains chooses one such
πi (arbitrarily, if there are multiple such πi). It swaps πi and πi−1 in (π1, . . . , πm) and concatenates them to-
gether into a single superoperator, yielding a new partition into superoperators P ′ = (π1, . . . , πi−2, πiπi−1, πi+1, . . . , πn)
and a new permutation π′ = (π1π2 . . . πi−2πiπi−1πi+1 . . . , πn). We call this operation a swap-merge.
RouteChains then calls itself recursively, setting P to P ′, π to π′, the ri’s to the residual rate limits, and
keeping all other input parameters the same. The new inputs satisfy the “can’t saturate” precondition and
the other input specifications (assuming the initial inputs did). The recursive call returns a set K ′ of flow
assignments. RouteChains returns the union of K ′ and {(π, x)}.
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Else if Stopping Condition 3 was triggered by a parent-child pair Oi, Oj , then RouteChains chooses such
a pair. It then absorbs Oj into its parent Oi as follows. Operators Oi and Oj cannot be contained in the
same superoperator, since if they were, Oj would have to be the successor of Oi. If Oi and Oj are contained
in superoperators (Oi) and (Oj), each containing no other operators, then absorbing Oj into Oi is simple;
RouteChains deletes the superoperator (Oj), and adds Oj to the end of the superoperator containing Oi, to
form the updated superoperator (Oi, Oj).

Otherwise, if the superoperators containing Oi and Oj contain other operators, let w, z be such that Oi

is in πw and Oj is in πz . Let a, b be such that πw(a) = Oi and πz(b) = Oj . RouteChains splits πw into
two parts, A = (πw(1), . . . , πw(a)) and B = (πw(a + 1), . . . , πw(s)) where s = |πw|. It splits πz into
three parts, C = (πz(1), . . . , πw(b− 1)), D = (πz(b), . . . , πw(c− 1)), and E = (πz(c), . . . , πw(t)), where
t = |πz| and c is the minimum value in {b+1, . . . , t} such that πz(c) is not a member of the same precedence
chain as Oj ; if no such c exists, it sets c to be equal to t + 1 and E to be empty. RouteChains adds D to
the end of A, forming four superoperators AD,B,C,E out of πw and πz . It then forms a new partition P ′

from P by replacing πw in P by AD,B, in that order, and πz by C,E in that order. If any elements of P ′

are empty, RouteChains removes them. Let π′ denote the concatenation of the superoperators in P ′.
Partition P ′ may not satisfy the “can’t saturate” precondition, with respect to residual rate limits. (For

example, in P ′ the precondition might be violated by superoperator B and its successor.) In this case,
RouteChains performs a modified topological sort on P ′. It forms a directed graph G′ whose vertices are
the superoperators in P ′, such that there is a directed edge from one superoperator to a second if there is
an operator Oi in the first superoperator, and an operator Oj in the second, such that Oj is a descendant
of Oi in G. Since π′ obeys the precedence constraints, G′ is a directed acyclic graph. RouteChains then
sorts the superoperators in P ′ by executing the following step until G′ is empty: Let S be the set of vertices
(superoperators) in G′ with no incoming edges. Choose the element of S with highest residual rate limit,
output it, and delete it and its outgoing edges from G′. RouteChains re-sets P ′ to be the superoperators
listed in the order output by the sort, and π′ to be the concatenation of those superoperators.

RouteChains then executes a recursive call, using the initial set of operators, precedence constraints, and
selectivities, setting π = π′, P = P ′ and the rate limits of the operators to be equal to their residual rate
limits. The recursive call returns a set K ′ of flow assignments. RouteChains returns the union of K ′ and
{(π, x)}.

4.3.3 Analysis of the chains algorithm

The correctness of the MTTC algorithm for chains, and the analysis of the algorithm, is stated in the result
below.

Theorem 4.1 Suppose RouteChains is run on inputs having the specified properties, and obeying the “can’t
saturate” precondition. Let I be the MTTC instance whose rate limits, selectivities, and precedence graph
are given by those inputs. Then RouteChains produces a routing that is optimal for I , and would also be
optimal if we removed all precedence constraints from I . RouteChains runs in time O(n2 log n), and
produces a routing that uses at most 4n− 3 distinct permutations.

4.3.4 Example

We illustrate our algorithm using the 4-operator selection ordering query shown in Figure 3 (ii), which has
three chains, and one precedence constraint, between O4 and O5 (Figure 6). We will assume the rate limits
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(i)
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O1 →O2→O3→O4→O56 →O78 
O5 →O6       
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1

O6 →O5      

O1 →O2→O3→O4 →O5 →O6→O78 

O1 →O2→O3→O5→O6 →O4→O78

O1 →O2→O3→O6→O5 →O78→O4

O1 →O3→O2→O6→O5 →O4→O78

(iii)

O1

O3O2

O6O5O4

O8

O7

(ii)

O1

O3O2

O56O4

O78

Figure 7: (i) An example precedence graph; (ii) The forest of chains below operator O3 is replaced by a
single chain to obtain a new problem; (iii) The solution for the new problem and for the operator O56 are
combined together.

of 900 for operators O2, O3 and O4, and a rate limit of 225 for O5. The selectivity of each operator is set to
be 0.5.

• We arbitrarily break the ties, and pick the permutation O4 → O2 → O3 → O5 to start adding flow.

• When 600 units of flow have been added, O2 exactly saturates O4 (stop. cond. 2). We swap-merge
O2 and O4 creating superoperator O24.

• At the same time (after adding 0 units of flow), we find O4 exactly saturates its child O5 (stop. cond.
3). We absorb O5 into its parent, creating superoperator O245. There is no need to re-sort.

• After sending 240 units along O2 → O4 → O5 → O3, we find that O3 saturates O245 (stop. cond.
2). We swap-merge them to get a single super operator O3245.

• We send 720 units along O3 → O2 → O4 → O5, at which point all operators are saturated, and we
achieve optimality (stop. cond. 1).

The value of the final solution is 1560 tuples; the best serial plan would have only been able to process 900
tuples per unit time.

4.4 MTTC Algorithm for General Trees

We now describe the MTTC algorithm for arbitrary tree-structured precedence graphs. Define a “fork” to be
a node in G with at least two children; a chain has no forks. Intuitively, the algorithm works by recursively
eliminating forks from G, bottom-up. Before describing the algorithm, we illustrate it with an example.

4.4.1 Example

We illustrate the execution of one recursive call to the MTTC algorithm. (We actually illustrate a simplified
process to give the intuition; we discuss the actual process below.) Let the input graph be the one shown
in Figure 7 (i). This graph has several forks; let the next fork we eliminate be at node O3 (the choice is
arbitrary). The subtrees under O3 form a forest of three chains. A new set of operators is constructed from
this forest of chains as follows:

• The three chains are made proper.

• RouteChains is used to find an optimal routing K ′ for these three chains. Suppose that {O7, O8} is a
saturated suffix of K ′. Let K78 denote the routing (over O7 and O8) derived from K ′ that saturates O7

and O8.
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• A new operator O78 is constructed corresponding to O7 and O8. Its rate limit is set to be the throughput
achieved by K78, and its selectivity is set to p7p8.

• O7 and O8 are removed from the three chains, and RouteChains is applied again to the operators O5

and O6. Suppose the output routing K56 saturates both operators.

• A new operator O56 is constructed to contain K5 and K6. Its rate limit is set to the throughput of K56

and its selectivity is set to p5p6.

• A new precedence graph is constructed as shown in Figure 7 (ii). Note that K ′ routes flow first through
{O5, O6} (where all but p5p6 of it is eliminated), and then through {O7, O8}. Since K ′ saturates
{O5, O6}, O56 can saturate O78, and the new (sub)chain O56O78 is proper.

Having eliminated a fork from the graph, the resulting problem is recursively solved to obtain a routing K ′′,
which is then combined with K56 and K78 to obtain a routing for the original problem, using a technique
from [8]. We illustrate this with an example (Figure 7 (iii)).

Suppose K ′′, the optimal solution for the reduced problem (Figure 7 (ii)), uses three permutations,
(O1, O2, O3, O4, O56, O78), (O1, O2, O3, O56, O78, O4), and (O1, O2, O3, O56, O4, O78), and let the total
flow be t. Further, suppose the first and third permutations each carry 1

4 t flow, and the second permutation
carries 1

2 t flow. Similarly, suppose the routing K56 for O56 sends half the flow along permutation O5, O6

and half along permutation O6, O5. These two routings are shown graphically in the first two columns of
Figure 7 (iii). In each column, the height of the region allocated to the three permutations indicates the
fraction of flow allocated to that permutation by the associated routing. In the third column we superimpose
the divisions from the first two columns. For each region R in the divided third column, we label it with the
permutation obtained by taking the associated permutation from columns 1, and replacing O56 in it with the
associated permutation from column 2. For example, the second region from the top in the third column is
associated with O1, O2, O3, O56, O4 from column 1 and O5, O6 from column 2, and is labeled by combining
them. Column three represents a division of flow among permutations of all the operators, yielding a final
routing that divides t units of flow proportionally according to this division. The resulting routing allocates
1
4 t flow to each of four permutations. The same approach would be used to incorporate the routing for K78

into the overall routing.

4.4.2 Outline of the MTTC algorithm

We present a summary of the steps in the MTTC algorithm here for convenient reference, and explain the
algorithm more fully in the next section.

1. If G is a forest of chains, make the chains proper (Section 4.3.1), use RouteChains to construct the
optimal solution, and return the solution.

2. Otherwise, let Oi be a node such that no descendant of Oi has more than one child.

3. Let S denote the set of descendants of Oi, and let S denote the induced MTTC instance I restricted to
the operators in S (with the corresponding subgraph of the precedence graph). The precedence graph
GS of IS is a forest of chains.

4. Make the chains in IS proper, and call CombineChains(IS) to get a partition (A1, · · · , Am) of the
operators of IS , and routings KA1 , · · · ,KAm corresponding to the partitions.

5. Create m new operators, A1, · · · ,Am corresponding to the Ai’s. For each Ai, the rate limit of Ai is
defined to be the throughput of KAi , and the selectivity is defined to be the product of the selectivities
of the operators in Ai.
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6. Construct a new instance of the MTTC problem, I ′, by replacing the the chains below Oi with the
single chain (A1, . . . ,Am).

7. Recursively solve I ′. Let the routing returned by the recursive call be K ′.

8. Use CombineRoutings to combine the KAi with K ′. Return the resulting routing.

4.4.3 Algorithm Description

As described above, the MTTC algorithm is a recursive procedure that works by repeatedly eliminating
forks in the precedence graph.

Base Case: The base case is a graph with no forks, i.e. a forest of chains, and it is solved using the algorithm
for chains from Section 4.3.

Eliminating a fork with CombineChains: In the example above, we eliminated a fork by running RouteChains
repeatedly on the chains emanating from that fork, each time removing the operators in a saturated suffix.
The actual MTTC algorithm does something slightly different. It identifies the operators in a saturated suffix
of some optimal routing; it then runs RouteChains just on the operators in that saturated suffix to produce a
routing just for those operators. As in the example, it then removes the operators in the suffix, and repeats.
We call this procedure CombineChains. Before running it, the MTTC algorithm makes the chains proper, if
necessary (using the procedure in Section 4.3.1).

Formally, CombineChains solves the following problem: Given an MTTC instance I whose precedence
graph G is a forest of proper chains, find an ordered partition (A1, . . . , Am) of the operators of I , and
routings K1, . . . ,Km, such that the partition and routings satisfy the following properties:
For each Ai (1) the ancestors in G of the operators in Ai are all contained in

⋃i−1
j=1 Aj , (2) KAi is a routing

for just the operators in Ai that saturates all of them, and (3) if i 6= 1 then the maximum throughput
attainable for just the operators in Ai−1, multiplied by the product of their selectivities, is at least as big as
the maximum throughput attainable for just the operators in Ai.

CombineChains first sorts the operators in I in descending order of their rate limits. It (re)numbers them
O1, . . . , On so that r1 ≥ . . . ≥ rn. This ordering obeys the precedence constraints because the chains of G
are proper.

CombineChains then executes the following recursive procedure on I . It computes the value

F ∗ = minj∈{1,...,n}

∑
i∈Qj

ri(1− pi)

(
∏

k 6∈Qj
pk)(1−

∏
i∈Qj

pi)

It sets Cj∗ to be {Oj∗ , . . . , On}, where j∗ is the largest value of j achieving the minimum value F ∗. It can
be shown (Lemma 9.3 in the appendix and Lemma 4.2) that Cj∗ is a saturated suffix in an optimal routing
of the chains. CombineChains runs the MTTC algorithm for chains from Section 4.3 just on the (sub)chains
of operators in Cj∗ , to produce a routing Kj∗ . (Since the chains are already proper, no rate limits are
reduced in this process.)

CombineChains then removes the operators in Cj∗ from I . It also removes them from the chains; note
that the operators in Cj∗ will always appear at the end of the chains, because of the precedence constraints.
If no operators remain in the chains, CombineChains outputs the one-item list A1 where A1 = Cj∗ , together
with routing K1 = Kj∗ . Otherwise, CombineChains executes a recursive call on the remaining operators to
produce a list of operator subsets D = A1, . . . , Am−1, together with a corresponding list K1, . . . ,Km−1 of
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routings for the operators in each of the Ai. It then sets Am = Cj∗ , appends it to the end of D, appends Kj∗

to the end of the associated list of routings, and outputs the result.

Recursive call on tree with one fewer fork:
After running CombineChains on the chains descending from a fork, there is an ordered partition D =

(A1, . . . , Am) of the operators in those chains, and there are routings KA1 , . . . ,KAm for the subsets Ai. In
precedence graph G, the MTTC algorithm replaces the chains descending from the fork by a single chain
of new operators corresponding to A1, . . . , Am. For each Ai, it sets the rate limit of the corresponding new
operator to be the throughput of the routing corresponding to Ai, and its selectivity to be the product of the
selectivities of the operators in Ai. (It can be shown that the chain of new operators is proper, a fact that we
use in proving the correctness of the MTTC algorithm.)

The MTTC algorithm then recursively finds an optimal routing K ′ for the resulting MTTC instance,
which has a tree with one fewer fork than before. It remains only to combine K ′ with KA1 , . . . ,KAm to
produce an optimal routing for the original operators.

Combining Routings: The MTTC algorithm uses the following procedure (also used in [8]) to combine
the recursively computed routing K ′ with the routings K1, . . . ,Km, into a routing for the operators in the
current call. We call the procedure CombineRoutings. The MTTC algorithm ends by returning the routing
computed by CombineRoutings.

CombineRoutings divides the real interval [0, 1] once for K ′, and once for each KAi . The division for a
routing divides [0, 1] into as many subintervals as there are permutations used in the routing, each of these
permutations is associated with an interval, and the length of each subinterval is equal to the proportion of
flow the routing sends along the corresponding permutation. It then superimposes the divisions to produce
a new division which yields a combined routing for K ′ and the KAi , in a manner analogous to what was
shown in the example. The number of permutations that are used in the combined routing at most the sum
of the number of permutations used in K ′ and the total number of permutations used in the KAi’s.

The combined routing satisfies the following properties, which are needed for its use in the MTTC
algorithm: (1) for each permutation π of the Ai’s, if K ′ sends fraction α of its flow along permutation π,
then K ′′ sends α of its flow along permutations of the Oj’s respecting the ordering π (2) for each permutation
π of the Oj’s in an Ai, if KAi sends a fraction β of its total flow along that permutation, then K ′′ does also.
(3) the throughput of K ′′ is equal to the throughput of K ′.

4.4.4 Analysis

The analysis of the MTTC algorithm is summarized in the following theorem.

Theorem 4.2 When run on an MTTC instance I , the MTTC algorithm runs in time O(n3) and outputs an
optimal routing for I . The output routing uses fewer than 4n distinct permutations.

5 The generalized MTTC problem: selective and non-selective operators

Multi-way join queries may contain non-selective operators with fanouts larger than 1. In this section, we
discuss how the previous algorithm for tree-structured precedence constraints can be extended to handle
such cases. We note that, in such cases, it might be preferable to consider an alternative plan space [26] or a
caching-based approach. We will discuss this in detail in Section 7.
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We define the generalized MTTC problem to be the generalization of the MTTC problem in which
operators may be either selective (0 < pi < 1) or non-selective (pi ≥ 1). We begin by considering the
case in which all operators are non-selective; we then consider the scenario in which there are selective and
non-selective operators.

5.1 All non-selective operators

If all operators are non-selective, then we construct an equivalent problem with only selective operators as
follows:

• The selectivity pi of an operator Oi is replaced by 1/pi.

• All precedence constraints are reversed.

After solving this new problem (which only contains selective operators), we reverse each of the permu-
tations in the resulting routing to obtain a valid routing for the original problem.

Note that the precedence graph for the new problem may be an “inverted tree”. Define an “inverted fork”
to be a node that has more than one parent in the precedence graph.

The MTTC algorithm described in Section 4 can be used to solve such instances in a straightforward
manner. The only difference is that, instead of eliminating forks in a bottom-up order, we instead eliminate
the “inverted forks” in a top-down order. We call this the MTTC-INV algorithm. We can prove an analogous
statement to Theorem 4.2.

Theorem 5.1 When run on an MTTC instance I whose precedence graph is an inverted tree and which
contains only selective operators, the MTTC-INV algorithm runs in time O(n3) and outputs an optimal
routing for I . The output routing uses fewer than 4n distinct permutations.

5.2 Mixture of Selective and Non-Selective Operators

However, if the problem instance contains a mixture of selective and non-selective operators, the problem is
more complex. Next we present an optimal algorithm for the case in which the precedence graph is a forest
of chains (or there are no constraints). The algorithm is based on following lemma.

Lemma 5.1 Given an instance I containing both selective and non-selective operators, there exists an
optimal solution K satisfying the following property: for all Oi, Oj such that pi ≥ 1 and pj < 1:

• (A) If Oi and Oj have no precedence constraint between them, then Oj does not immediately follow
Oi in any permutation used in the routing.

• (B) If Oj is the only child of Oi, then Oj immediately follows Oi in every permutation used in the
routing.

5.2.1 Case: Forest of Chains

Let I denote a problem instance such that the precedence graph is a forest of chains (or there are no prece-
dence constraints). We use the above lemma to solve this case as follows:

• Pre-processing Step: If there is a parent-child pair, Oi, Oj , such that pi ≥ 1 and pj < 1, then replace
the two operators with a new operator Oij with selectivity pipj and rate limit min(ri, rj/pi). From
Lemma 5.1 (B), this does not preclude attainment of the optimal solution.
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Figure 8: Star query experiments: Comparing (i) response times (normalized using the MTTC solution) and
(ii) total work (normalized using the OPT-SEQ solution) for the three algorithms; (iii) With high variance in
the operator costs, benefits of interleaving plans are lower; (iv) Interleaving plans are most beneficial when
selectivities are low.

• Repeat until there are no such pairs. In the resulting problem, I ′, no non-selective operator precedes a
selective operator.

• Split the problem into two problems, I ′s and I ′ns, such that I ′s contains the selective operators (along with
the precedence constraints between the selective operators), and I ′ns contains the non-selective operators
(along with the precedence constraints between them).

• From Lemma 5.1 (B), we can infer that there exists an optimal solution such that in every permutation
used, the selective operators (∈ I ′s) precede the non-selective operators (∈ I ′ns).

• Solve the two problems separately to obtain routings K ′
s and K ′

ns.

• Combine the two routings in a fashion similar to CombineRoutings (Section 4.4).

The correctness follows from Lemma 5.1.

5.2.2 Case: Arbitrary Tree-Structured Precedence Constraints

Given the above algorithm for forests of chains, we can once again apply the procedure described in Section
4.4 to obtain an algorithm for solving instances with tree-structured precedence constraints. We conjecture
that the algorithm returns an optimal routing; however, we have been unable to prove this so far.

6 Experimental Study

In this section, we present an extensive performance evaluation of the algorithms presented in the paper
demonstrating both the benefits of using interleaving plans to reduce the response times and the effectiveness
of our algorithms at finding such plans. We compare three planning algorithms:
• OPT-SEQ [23]: The optimal serial plan for the centralized case, that minimizes the total work done,

found using the rank ordering algorithm (Section 3.3).

• BOTTLENECK [26]: The serial plan that minimizes the response time (bottleneck) using a serial plan,
found using the Bottleneck Algorithm (Section 3.3).

• MTTC: The optimal interleaving plan found by our algorithm presented in Section 4.
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We have implemented the above algorithms in a single-threaded simulation framework (implemented in
Java) that simulates execution of a multi-way join query using pipelined parallelism. To execute a query
with n relations, n− 1 processors are instantiated, with each processor handling one of the driven relations.
We use hash joins for executing the queries. We control the join selectivities by appropriately choosing the
sizes of the driven relations; the join attributes are all set to have a domain of size 1000, and to simulate a
selectivity of p, the corresponding relation is set to have 1000p randomly chosen tuples.

Each plotted data point in our graphs corresponds to 50 random runs. In all but one of the graphs, we
plot the average value of the normalized response time (response time of the plan found using MTTC is used
as the normalizing factor). In one of the graphs (Figure 8 (ii)), we plot the average value of the normalized
total work (total work done by OPT-SEQ is used as the normalizing factor).

The effectiveness of interleaving plans depends heavily on the query graph shape; queries with shallow
precedence graphs can exploit the parallelism more effectively than queries with deep precedence graphs.
To illustrate this, we show results for 3 types of query graphs: (1) star, (2) path, and (3) randomly-generated
query graphs.

Star Queries
For our first set of experiments, we use star queries with the central relation being the driver relation. First,
we compare the normalized response times of the three planning algorithms for a range of query sizes
(Figure 8 (i)). For this experiment, the operator selectivities were chosen randomly between 0 and 1, and
the operator costs were assumed to be identical (which corresponds to the common case of homogeneous
processors). As we can see, the interleaving plans found by the MTTC algorithm perform much better than
any serial plan (in many cases, by a factor of 5 or more). Note that, since all operator costs are identical, the
plan found OPT-SEQ is the optimal serial plan for response time as well.

We next compare the total work done by the plans found by these algorithms (Figure 8 (ii)). As expected,
the interleaving plans do more work than the OPT-SEQ plan (by up to a factor of 2), but the additional work
done is not very high compared to the benefits in the response time that we get by using an interleaving plan.
Interestingly, the BOTTLENECK plans also perform a lot more work than the OPT-SEQ plans, even though
their response times are identical. Since all operator costs (ci’s) are equal, the BOTTLENECK algorithm
essentially picks arbitrary plans (cf. Section 3.3); although optimal for the response time metric, those plans
behave unpredictably with respect to the total work metric.

With the next experiment, we illustrate the effects of heterogeneity in the operator costs. For this exper-
iment, we choose the operator costs randomly between 1 and X , where X ∈ {1, 5, 20, 50}. As we can see
in Figure 8 (iii), with increasing heterogeneity in the operator costs, the benefits of using interleaving plans
go down. This is because the total idle time across the operators, which the interleaving plans exploit, goes
down significantly in such cases.

Finally, we illustrate how operator selectivities affect the performance of the algorithms. Figure 8 (iv)
compares the performance of the three algorithms when the operator selectivities are high (chosen randomly
between 0.9 and 1), and when they are low (chosen randomly between 0 and 0.1). As we can see, the benefits
of interleaving plans are highest when the selectivities are low. This is because low selectivities result in
higher overall idle time across the processors. On the other hand, when the selectivities are very high, the
benefits of using interleaving plans are very low (around 10-20%). We note that star queries where all join
selectivities are 0 form the best-case scenario for interleaving plans.

Path Queries
Next we compare the performance of the three algorithms when the query graph shape is a path (line), and
the relation in the middle of the graph is chosen as the driver. This query essentially results in two long
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Figure 9: Comparing the three planning algorithms for (i) path query graphs and (ii) randomly-generated
query graphs.

precedence chains, and does not offer much parallelism. In fact, it is easy to show that the response time
of the BOTTLENECK algorithm is within a factor of 2 of the best interleaving plan. We compare the three
algorithms for two sets of selectivities. As we can see in Figure 9 (i), the interleaving plans can achieve
close to a factor of 2 when the operator selectivities are low. When the selectivities are drawn randomly
between 0 and 1, the benefits range from about 30% for small query sizes to about 60% for large queries.

Randomly-generated Queries
Finally, we run experiments on random query graphs generated by randomly choosing a parent for each
node in the graph, while ensuring that the resulting graph is a tree. Figure 9 (ii) shows the results for this
set of experiments. As we can see, even for queries with as few as 6 relations, we get significant benefits,
even when the operator selectivities are chosen between 0 and 1. For low selectivity operators and for higher
query sizes, the benefits of using interleaving plans are much higher.

7 Caching-aware Reduction for Non-selective Operators

As discussed in Section 5, the MTTC algorithm can still be applied when there are non-selective operators
(also called proliferative [26]). However, as we illustrate below, non-selective operators lead to redundant
work, and result in more probes into the join operators than minimally required (in fact, this could be true
for selective operators as well). These can be avoided by either using an alternative plan space (as Srivastava
et al. [26] demonstrate), or using a more careful executor. We explore the latter approach in this section.

7.1 Redundancy with Non-selective Operators

We illustrate this using an example. Consider the execution plan shown in Figure 1, and consider a tuple
x0 ∈ R1 that produces 10 tuples after the join with R2, (x0, y0), . . . , (x0, y9). According to the execution
plan, these tuples should next be used to find matches in R3. However, note that the matches with R3 depend
only on the R1 component of these tuples (ie., on x0), and the same matches (or none) will be returned from
the probe into R3 for all of these 10 tuples; such redundant probes should clearly be avoided.

There are two ways to achieve this.
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Figure 10: We can avoid the redundant probes into R3, R4 and R5 using a caching-based execution model.

• Caching: From the engineering perspective, perhaps the easiest way to avoid these redundant probes
is to cache the results of the probes in the join operator temporarily. If an identical probe is made into
the table, then those results can be returned back without probing into the hash table or the index [25].
The duration for which these cached results should be kept depends on the behavior of the router.

For the example shown in Figure 10, the first probe into R3 using (x0, y0) will result in z0 being cached
in the join operator. Each of the subsequent probes will return the same result without executing a
probe (since the probe into R3 is done using x0).

• Independent/parallel probes: Another option is to probe into the join operators independently and
perform a cross-product of the probe results at the end. Several works have explored this for star
queries [3, 4, 5]. Extending this to non-star queries is fairly straightforward.

Although some prior work has considered this issue for certain classes of queries, we are not aware of
any general treatment of caching for query processing. Parallel plans, as explored by Srivastava et al. [26],
behave quite differently from an ideal caching-based or independent probe-based approach; they cannot
eliminate the redundancy entirely.

7.2 Reduction to Selection Ordering

In this section, we will consider how a query being evaluated using an ideal caching-based approach or
the independent probes-based approach may still be reduced to precedence-constrained selection ordering.
Unfortunately, the general case of this problem does not admit a direct reduction to selection ordering.

Before going on, we recap some of the earlier definitions and define the following additional terms.
For a join operator on relation Ri, let ci denote the cost of probing into the corresponding hash table.

Let fanoutRi denote the fanout of the join operator (which would have been used as the selectivity si in the
prior reduction).

Further, let qRi denote the match probability, ie., the probability that a probing tuple finds a match
(Figure 11 (i)). And let mRi denote the number of matches per successful probe. Note that, even if
fanoutRi > 1, we have that qRi ≤ 1. Also, fanoutRi = qRi × mRi . Figure 11 (i) illustrates this
with an example.
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Figure 11: (i) Even though the fanout of the join with S is 2, the match probability is only 0.5; (ii) Smallest
graph for which a direct caching-aware reduction to selection ordering is not possible.

7.2.1 Star Query Graphs

To reduce a star multi-way join query with the center relation being the driver, we create the selection
operators Oi as before, and set the cost to be the probe cost as before. There are no precedence constraints
between the operators. The selectivity of the operator is set to be qRi (instead of fanoutRi). It is easy to
see that this captures the behavior of the ideal caching-based approach.

7.2.2 General Graphs

Unfortunately, aside from this and some additional special cases (a direct reduction also exists if the prece-
dence graph is a forest of chains), arbitrary precedence-constrained trees cannot be directly reduced to
selection ordering. Figure 11 (ii) shows the simplest graph for which a direct reduction to selection ordering
is not possible.

8 Conclusions and Future Work

In this paper, we considered the problem of executing a multi-way join query using pipelined parallelism,
and presented algorithms to optimally exploit the parallelism in the system through use of interleaving
plans for a large class of join queries. Our experimental results demonstrate that the interleaving plans can
effectively exploit the parallelism in the system to minimize query response times, sometimes by orders
of magnitude. Our work so far has opened up a number of interesting future research directions, such as
handling correlated predicates, non-uniform join costs, and multiple driver tables (a scenario common in
data streams), that we are planning to pursue in future.
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9 Appendix

Below we provide proofs of the lemmas and theorems in the body of the paper. We also present additional
lemmas and propositions needed for those proofs. Throughout the appendix, for the convenience of the
reader, we will restate any lemmas or theorems from the body of the paper in addition to giving the proofs.

9.1 Proofs: Fundamental lemmas

We will use the following additional lemma in the proof of Lemma 4.2.

Lemma 9.1 Let F ∗ be the optimal value of the objective function in the MTTC problem. Let Z =
∑n

i=1
ri(1−pi)

(1−
∏n

i=1
pi)

.

If F ∗ = Z, then every optimal routing saturates all the operators. Further, if there exists a routing that satu-
rates all the operators, then that routing is optimal, achives throughput Z, and all optimal routings saturate
all the operators.

Proof. For any operator Oi, since operator Oi has a rate limit of ri, Oi can process at most ri flow
units per unit time. Since Oi has selectivity pi, it discards at most ri(1 − pi) amount of flow per unit time.
Thus under any feasible routing, the total amount of flow discarded by all the processors per unit time is at
most

∑n
i=1 ri(1 − pi); this is the precise amount if all processors are saturated, and is a strict upper bound

otherwise.
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Consider a routing achieving throughput F ∗. Of the F ∗ amount of flow that is sent into the system in
this routing, the amount that successfully travels through all the processors (i.e. is not discarded by any) is
F ∗ ∏n

i=1 pi. Thus the total amount that is discarded by some processor, per unit time, is F ∗(1 −
∏n

i=1 pi).
By the above, F ∗(1−

∏n
i=1 pi) ≤

∑n
i=1 ri(1− pi), with equality iff the processors are all saturated. Since

Z =
∑

i=1n ri(1−pi)

(1−
∏n

i=1
pi)

, F ∗ = Z implies that all operators are saturated.

Finally, given a routing that saturates all the operators, by the above arguments the routing achieves
throughput Z. The lemma follows. 2

Lemma 4.2 Let I be an instance of the MTTC problem in which there are no precedence constraints, and
let the operators in I be numbered so that r1 ≥ r2 . . . ≥ rn. Let

F ∗ = mink∈{1,...,n}

∑n
i=k ri(1− pi)

(
∏k−1

j=1 pj)(1−
∏

i=kn pi)

Then F ∗ is the optimal value of the objective function for instance I . If k′ is the largest value of k achieving
the value F ∗, then there exists an optimal routing for which {Ok′ , Ok′+1, . . . , On} is a saturated suffix. If
the optimal value F ∗ is achieved at k = 1, then every feasible routing K saturates all operators.

Proof of Lemma 4.2: For a, b ∈ {1, . . . , n}, let Sa,b =
∑b

i=a ri(1 − pi), Pa,b =
∏b

i=a pi, and ha,b =
Sa,b

(1−Pa,b)
. Thus F ∗ = mink∈{1,...,n}

1
P1,k−1

hk,n.
By the results of [7, 8], F ∗ is the optimal value of the objective function for the given MTTC instance I ,

and for some k∗ such that F ∗ = 1
P1,k∗−1

hk∗,n, there exists an optimal routing for which {Ok∗ , Ok∗+1, . . . , On}
is a saturated suffix. It remains only to show that what holds for k∗ also holds for k′. If k′ = k∗, then this is
trivially true.

Suppose k′ 6= k∗. Then k′ > k∗. Consider the optimal routing for which {Ok∗ , Ok∗+1, . . . , On} is
a saturated suffix. Call it K. Routing K sends F ∗ amount of flow into the system, with all flow travel-
ing first through the operators in Qpref = {O1, . . . , Ok∗−1} and then through the operators in Qsuff =
{Ok∗ , Ok∗+1, . . . , On}. Of the F ∗ flow sent into the system, P1,k∗−1F

∗ of it reaches Qsuff , and it sat-
urates those operators. Let I1 be the induced MTTC instance created by keeping only the operators in
Qsuff (i.e. by discarding the other operators and removing them from the precedence graph). It follows
from the above that there is a saturating routing for I1 that achieves throughput P1,k∗−1F

∗. By Lemma 9.1,
P1,k∗−1F

∗ = hk∗,n.
We will show that, in fact, there exists a saturating routing K̂ for I1 that has {Ok′ , Ok′+1, . . . , On} as a

saturated suffix. Routing K̂ can be used to construct the following routing for the original MTTC instance
on O1, . . . , On: Send F ∗ flow through Qpref as specified by K, and then send the P1,k∗−1F

∗ surviving (i.e.
not eliminated) flow through Qsuff as specified by K̂. Since {Ok′ , . . . , On} is a saturated suffix of this
routing, this proves the lemma.

It remains to show that K̂ exists. We will use the following claim, which is easily shown by algebraic
manipulation, the definitions of P and h, and the fact that the selectivities pi are strictly between 0 and 1.

Claim: Let a, k, b ∈ {1, . . . , n} where a ≤ k ≤ b.

1
Pa,k−1

hk,b ≤ ha,b
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iff
1

Pa,k−1
hk,b ≤ ha,k−1,

and if one inequality holds strictly, so does the other.

Let I3 be the instance induced from I1 by keeping only the operators in {Ok′ , . . . , On}. By the definition
of k′, for all j such that k′ < j < n, 1

P1,k′−1
hk′,n < 1

P1,j−1
hj,n, and hence hk′,n < 1

Pk′,j−1
hj,n. Therefore,

by the result stated at the start of this proof, there is an optimal routing for I3 for which {Ok′ , . . . , On} is a
saturated suffix, and hence this routing is saturating for I3 and achieves a throughput of hk′,n. Let K3 denote
this routing.

Let I2 be the MTTC instance induced from I1 by keeping only the operators in {Ok∗ , . . . , Ok′−1}. We
show that there is a routing achieving throughput hk∗,k′−1 = hk∗,n on this instance. Assume not. Then by
the properties of F ∗ given at the start of this proof, there exists i such that k∗ < i ≤ k′ and

1
Pk∗,i−1

hi,k′−1 < hk∗,k′−1 (1)

By the definitions of k′ and k∗, 1
P1,k∗−1

hk∗,n = 1
P1,k′−1

hk′,n, and multiplying both sides by P1,k∗−1 we get
that

hk∗,n =
1

Pk∗,k′−1
hk′,n (2)

Applying the claim to Equation 2, we get that

hk∗,k′−1 =
1

Pk∗,k′−1
hk′,n (3)

Combining Equation 3 and Inequality 1, we get

1
Pk∗,i−1

hi,k′−1 <
1

Pk∗,k′−1
hk′,n (4)

Multiplying both sides by Pk∗,i−1, we get that

hi,k′−1 <
1

Pi,k′−1
hk′,n (5)

Applying the claim to Inequality 5 yields

hi,n <
1

Pi,k′−1
hk′,n (6)

Multiplying both sides of the above equation by 1
P1,i−1

, we get that

1
P1,i−1

hi,n <
1

P1,k′−1
hk′,n (7)

But this contradicts the definition of k′ in the statement of the lemma, since in the definition for F ∗, setting
k′ to k must minimize the given expression, and thus setting k to i cannot achieve a smaller value for it. So
hk∗,k′−1 is the value of the maximum throughput for I2, and there is a routing K2 achieving this throughput
on I2. By Lemma 9.1, this routing is saturating for I2.

2
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9.2 Proofs: The MTTC algorithm for chains

For y > 0, we define the residual rate limit of an operator Oi relative to (π, y) to be ri − g(π, y).
We will use the following proposition. Informally, the first part of the proposition says that if an operator

Oj cannot saturate an operator Oi or can only saturate it exactly, but adding z > 0 amount of flow along
permutation π will cause it to be able to over-saturate Oj , then for some 0 ≤ w < z, adding w amount of
flow instead will cause Oj to be able to exactly saturate Oi. The rest of the proposition is similar.

Proposition: For y > 0, let r
(y)
i and r

(y)
j denote the residual rate limits of Oi and Oj respectively, relative

to (π, y). If rjpj ≤ ri and z > 0 is such that r
(z)
j pj > r

(z)
i , then there exists 0 ≤ w < z such that

r
(w)
j pj = r

(w)
i . Similarly if rjpj ≥ ri, and z > 0 is such that r

(z)
j pj <≤ r

(z)
i , then there exists 0 ≤ w < z

such that r
(w)
j pj = r

(w)
i . The analogous proposition holds for superoperators.

The proposition is easily proved, using the observation that a continuous increase in the amount of flow
y sent along permutation π results in a continuous decrease in the residual capacity of each operator.

The correctness of RouteChains relies on the following invariants.

Lemma 9.2 Suppose that RouteChains is called with inputs obeying the properties in the input specification
(RouteChains:Inputs), and the “can’t saturate” pre-condition. Then the same holds for the inputs to the next
recursive call of RouteChains.

Proof: Assume that RouteChains is called with inputs satisfying the conditions of the lemma. Thus in
particular,

(a) Each πi in P is a superoperator,

(b) The ”can’t saturate” precondition holds

(c) π satisfies all precedence constraints of G

(d) The chains in G are proper.
We show that these conditions hold on the next recursive call to RouteChains.
There are two cases, depending on whether a swap-merge or a parent-child absorption is performed

before the next recursive call.
Case 1: Swap-merge

Suppose that just prior to the next recursive call, a swap-merge is performed with superoperators πi−1

and πi.
We first show that Condition (a) holds for the inputs to the next recursive call. Consider any two adjacent

operators Oj−1 and Oj in π. Since they are adjacent, g(π, j − 1)pj−1 = g(π, j). Thus if rj−1pj−1 = rj

then (rj−1 − xg(π, j − 1))pj−1 = rj − xg(π, j). In other words, if Oj−1 can exactly saturate Oj , then
this remains true (with respect to the residual capacity) after x units of flow are sent along permutation π.
It follows that every input superoperator πj not involved in the swap-merge (i.e. j /∈ {i − 1, i}), remains a
superoperator after the addition of x units of flow along permutation π.

Further, after the addition of x units of flow along permutation π, πi can exactly saturate πi−1. Since the
selectivity of πi is the product of the selectivity of its component operators, following the addition of x units
of flow along permutation π, every operator within the merged superoperator πiπi−1 can exactly saturate its
successor in πiπi−1. Thus Condition (a) holds for the next recursive call.

We now show that the inputs to the next recursive call satisfy Condition (b). Suppose not. Then in the
inputs to the next recursive call, some superoperator can over-saturate its predecessor. The superoperators
in the next recursive call are the same as in the current call, except for the merged superoperator πiπi−1. For
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1 < j ≤ m such that j 6∈ {i− 1, i, i + 1}, πj couldn’t over-saturate its predecessor πj−1 at the start of the
current call. If πj can over-saturate its predecessor after the addition of x flow along permutation π, then by
the proposition, there must be 0 ≤ x′ < x such that adding x′ flow along permutation π would cause πj to
be able to exactly saturate πj−1. This contradicts the minimality of x, proving that pij couldn’t over-saturate
πj−1 after the addition of x flow along permutation π.

We now show that in the input to the next call, merged operator πiπi−1 can’t over-saturate πi−2. Let
ρ′i and ρ′i−1 denote the residual rate limits of Oi and Oi−1 relative to (x, π). Then ρ′i−1σ(πi−1) = ρ′i.
By the same argument as in the previous paragraph, since πi−1 couldn’t over-saturate πi−2 at the start of
the current call, it can’t over-saturate πi−2 following the addition of x flow along permutation π. Thus
ρ′i−1σ(πi−1) ≤ ρ′i−2. Since πi and πi−1 were the ones involved in the swap-merge, ρ′iσ(πi) = ρ′i−1. Thus
ρ′iσ(πi−1) ≤ ρ′i−2, and since 0 < σ(πi) < 1, ρ′iσ(πi−1)σ(πi) ≤ ρ′i−2. But since σ(πi−1)σ(πi) is the
selectivity of the merged operator, and ρ′i is its rate limit, it follows that in the input to the next recursive
call, the merged superoperator πiπi−1 cannot saturate its predecessor.

Similarly, defining ρ′i+1 analogously to ρi and ρi−1, one can use the proposition to show that since πi+1

couldn’t over-saturate πi at the start of the current call, it can’t over-saturate πi following the addition of x
flow along permutation π. Since ρ′i is precisely the rate limit of the merged superoperator at the start of the
next recursive call, πi+1 cannot over-saturate its predecessor at the start of the next recursive call.

We now consider Precondition (c). Suppose the inputs to the next recursive call do not satisfy (c). Then
there are operators Ok ∈ πi−1 and Ol ∈ πi such that Ok is an ancestor of Ol in a chain of G. Since
(c) holds at the start of the given recursive call, on the subchain of G from Ok to Ol, there must exist a
parent Ok∗ and child Ol∗ such that Ok∗ is in πi−1 and Ol∗ is in πi. As already shown, after the addition
of x flow along permutation π, each operator in the merged superoperator πiπi−1 can exactly saturate its
successor within that superoperator (if any). Since selectivities are less than one, it follows that r′l∗ > r′k∗
and thus r′k∗pk∗ < r′l∗ . So after the addition of x flow along permutation π, Ok∗ cannot saturate Ol∗ . But
by Condition (d), all chains were proper at the start of the current call, and so Ok∗ could saturate Ol∗ . By
the proposition, for some 0 ≤ x∗ < x, adding x∗ flow along permutation π would have made Ok∗ exactly
saturate Ol∗ , contradicting the minimality of x. Thus (c) is satisfied for the next recursive call.

Finally, consider (d). Let Ok and Ol be such that Ol is the child of Ok in a precedence chain of G. Since
(d) was satisfied at the start of the current call, Ok could saturate Ol. If Ok cannot saturate Ol for the next
recursive call, by the proposition, there exists x∗ < x such that sending x flow along π would cause Ok to
be able to exactly saturate Ol. By the minimality of x, x∗ did not satisfy Stopping Condition 3, despite the
exact saturation, so Ol must have been the successor of Ok in some πj . But then Ok could exactly saturate
Ol both initially and after the addition of x units of flow along permutation x, contradiction. Thus (d) is
satisfied for the next recursive call.
Case 2: Absorbing child into parent

Suppose that just prior to the next recursive call, operator Oj is absorbed into its parent Oi.
The parent-child merge of Oi and Oj leaves most superoperators intact, but does some cutting and

pasting of the superoperators containing Oi and Oj .
We show that Precondition (a) holds for the next call. Since Precondition (a) holds at the start of the

given recursive call, if Ol is the successor of Ok in a superoperator, then Ok can exactly saturate Ol. After
the addition of x amount of flow along π, Ok can still exactly saturate Ol.

In P ′, every superoperator is either equal to a superoperator πz from P , or a prefix or suffix of some
such πz . The one exception is the superoperator AD, where Oi is the last operator in A and Oj is the first
operator in D. Since r′ip

′
i = r′j , Precondition (a) holds for the next recursive call.

As in Case 1, it can be shown that (d) must also hold for the next recursive call, because otherwise a
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parent-child absorption would have been triggered at some x∗ < x.
Conditions (b) and (c) hold for P ′ as a result of the properties of the sort. 2

We are now ready to give the proof of Theorem 4.1, which establishes the correctness and bounds of
RouteChains.

Theorem 4.1 Suppose RouteChains is run on inputs having the specified properties, and obeying the “can’t
saturate” precondition. Let I be the MTTC instance whose rate limits, selectivities, and precedence graph
are given by those inputs. Then RouteChains produces a routing that is optimal for I , and would also
be optimal if we removed all precedence constraints from I . RouteChains runs in time O(n2 log n), and
produces a routing that uses at most 4n− 3 distinct permutations.

Proof of Theorem 4.1: By induction on the number of parent-child absorptions. In the base case, there are
none. The proof for the base case is essentially the same as the correctness proof in [8]. For completeness,
we repeat the argument here. We show that in this case the output routing K has the saturated suffix property
and hence this lemma follows from Lemma 4.1.

For contradiction, assume K does not have the saturated suffix property. Then there are operators Oi

and Oj such that Oi appears before Oj in some permutation used in K, and Oi is saturated by K, but Oj

is not. If Oj precedes Oi in some other permutation used in K, then there must have been a swap-merge
of the superoperators containing Oi and Oj , since we have assumed no parent-child absorptions. But a
swap-merge would put Oi and Oj in the same superoperator, and with no parent-child absorptions, Oi and
Oj would be in the same superoperator in the final recursive call and hence would both be saturated by K,
or both not. Therefore Oi precedes Oj in every permutation used by K.

We now claim that the set of operators saturated in the final recursive call consists of a suffix of the
permutation π used in the final recursive call. Consider any two successive superoperators πk−1 and πk in
P in the final recursive call. If πk−1 is saturated by the flow (π, x) computed in the final recursive call, and
πk isn’t, then the residual capacity of πk−1 relative to (π, x) is 0, while the residual capacity of πk relative
to (π, x) is greater than 0. Thus after x flow is routed along π, πk can over-saturate πk−1. But by the “can’t
saturate” precondition, at the start of the final recursive call, ρ(πk)σk ≤ ρ(πk−1). By the same argument
used in the proof of Lemma 9.2, there is some x∗ < x that would have triggered Stopping Condition 2.
Contradiction. Therefore if πk−1 is saturated by the final (π, x), so is πk, and K saturates a suffix of the π
used in the final recursive call. Since Oi precedes Oj in every permutation in K, this contradicts the original
assumption that Oi is saturated and Oj is not. Thus K obeys the saturated suffix property. This completes
the proof of the base case.

For the induction step, we assume the theorem holds if the number of parent-child absorptions is i ≥ 1,
and show it holds if the number of parent-child absorptions is i + 1.

Suppose the inputs L to RouteChains are such that RouteChains performs exactly i + 1 parent-child
absorptions. Let q be such that the first parent-child absorption occurs in the qth call of the recursive
procedure. Since the q + 1st recursive call results (recursively) in only i absorptions, by induction it outputs
an optimal routing K2 relative to the rate limits specified for the operators at the start of the q + 1st call.

Let L′ be L with the precedence constraints removed. The MTTC instance associated with L is I . Let I ′

be the MTTC instance associated with L′. Compare the execution of RouteChains(L) and RouteChains(L′).
Let K̂ denote the set of flow assignments (π, x) that are computed in the first q recursive calls made by
RouteChains(L′). In the first q− 1 recursive calls, the computed flow assignments (π, x) are the same for
L and L′. The (π, x) computed in the qth call for L and L′ both use the same permutation π; the value of x
may be greater for L′ (since a parent-child absorption was not triggered), but cannot be less. Let J denote
the MTTC instance that is derived from I ′ by taking the rate limits in J to be the residual rate limits of the
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operators in I relative to K̂. Since running RouteChains on L′ is guaranteed to produce an optimal routing
for I ′ (by the correctness of the base case), there is a way to augment K̂ with additional flow to obtain an
optimal routing for I ′. It follows that if K̃ is an optimal routing for J , K̃

⋃
K̂ must be an optimal routing

for I . When running RouteChains on instance I , starting from the q + 1st recursive call, the algorithm is
attempting to solve J , but with precedence constraints. By induction, it finds a routing that is optimal even
without the precedence constraints. It follows that this routing, combined with routing K̂, must be optimal
for both I and I ′.

We now prove the bounds on the runtime analysis and number of permutations used. Each recursive call
adds one (π, x) to the output routing and can easily be implemented to run in time at most O(n log n). Let
r be the number of parent-child absorptions, and t the number of swap-merges. The number of recursive
calls is r + t + 1. Each swap-merge decreases the number of superoperators by 1 and each parent-child
absorption increases it by at most 2. The initial number of superoperators is n, the final number is at least 1,
so n+2r− t ≥ 1. Since an absorbed child always remains with its parent, r ≤ n−1 and hence t ≤ 3n−3.
The stated bounds follow. 2

The correctness of the MTTC algorithm relies on certain properties of the CombineChains algorithm,
which are proved in the following lemma. In the lemma and its proof, for set S of operators, we use σ(S)
to denote the product of the selectivities of the operators in S.

Lemma 9.3 Given an MTTC instance I whose precedence graph G is a forest of proper chains, Com-
bineChains outputs an ordered partition (A1, . . . , Am) of the operators of I , and routings KA1 , . . . ,KAm ,
such that the partition and routings satisfy the following properties:
For each Ai (1) the ancestors in G of the operators in Ai are all contained in

⋃i−1
j=1 Aj , (2) KAi is a routing

for the operators in Ai that saturates all of them, and (3) if i 6= 1 then τ(Ki−1)σ(Ai−1) ≥ τ(Ki), where
τ(Ki−1) and τ(Ki) are the throughputs of Ki−1 and Ki.

Proof: By the observations in the description of CombineChains, Property (1) holds for the output partition.
For (2) and (3), consider the recursive call to CombineChains that produced set Ai of the output partition.
In this call, Ai = Qj∗ . Let IAi denote the induced MTTC instance that keeps only the operators in Ai. Let
I0 denote I with precedence constraints removed, and I0

Ai
denote IAi with precedence constraints removed.

By Lemma 4.2, there is an optimal routing K for I0 for which Ai is a saturated suffix. By taking
the subrouting through saturated suffix Ai, we get a routing for I0

Ai
that saturates all the operators in Ai.

By Lemma 9.1, it follows that all optimal routings for I0
Ai

saturated all the operators in Ai. When Com-
bineChains runs the MTTC algorithm for chains from Section 4.3 on the constrained instance IAi which al-
ready has proper chains, the preprocessing step does not reduce any rate limits. Following the preprocessing
step, CombineChains runs RouteChains, which outputs the routing KAi . By the properties of RouteChains
(Theorem 4.1), KAi is optimal both for IAi and I0

Ai
. It follows by Lemma 9.1 that KAi saturates all operators

in Ai. Thus Property (2) holds for Ai.
Since Ai is a saturated suffix of optimal routing K for I0, K sends all flow first through the operators not

in Ai (these operators will comprise A1, . . . , Ai−1) and then through the operators in Ai, which it saturates.
Let FK denote the throughput of K. Let Q′ denote the operators not in Ai. Thus the amount of flow reaching
suffix Ai in K is σ(Q′)FK . By similar arguments as above, there is an optimal routing K ′ for the operators
in Q′ for which Ai−1 is a saturated suffix.

Let B = Q′ − {Ai−1}. Routing K sends flow first through Q′ and then through suffix Ai. Thus the
max-throughput attainable just on Q′ is at least as big as FK . Since K ′ is optimal for Q′, its throughput is
at least FK . So routing K ′ routes at least FK flow first into B and then B and then into Ai−1, causing at
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least σ(B)FK flow to reach Ai−1 and saturate the operators in it. It follows that τ(KAi−1) ≥≥ σ(B)FK

and hence τ(KAi−1)σ(Ai−1) ≥ σ(B)σ(Ai−1)FK = σ(Q′)FK = τ(KAi). Thus Property (3) holds for Ai.
2

9.3 Proof: The general MTTC algorithm

We are now ready to prove the main theorem in the paper.

Theorem 4.2 When run on an MTTC instance I , the MTTC algorithm runs in time O(n3) and outputs an
optimal routing for I . The output routing uses fewer than 4n distinct permutations.

We break the proof up by proving related lemmas, from which the proof of the theorem follows imme-
diately. First, we present some notation.

Consider a run of the MTTC algorithm on an instance I . Suppose the run includes k recursive calls
(include the initial call). Let I1, I2, . . . , Ik be the MTTC instances in each of these calls (so I1 = I denotes
the initial instance). We will refer to the operators in I1 = I as the original operators.

For 1 ≤ j ≤ k, let Oj
i denote the ith operator in Ij . Let rj

i denote the rate limit of Oj
i in Ij , and let pj

i

denote its selectivity. Let Gj denote the precedence graph in Ij . Let Rj
i denote the rate limit of Oj

i at the
end of the jth call; Rj

i < rj
i if the rate limit of Oj

i was reduced when chains were made proper in the jth
call (immediately prior to running CombineChains), otherwise Rj

i = rj
i . For 2 ≤ j ≤ k, each Oij either

corresponds directly to an operator in Ij−1, or corresponds to a subset of operators from Ij−1 that were
grouped together into a subpartition when CombineChains was run during the processing of instance Ij−1.
Hence each operator Oj

i in Ij corresponds inductively to an original operator or group of original operators.
We view operator Oj

i as “containing” the original operators to which it corresponds and denote by Sj
i the

original operators contained in Oj
i .

Lemma 9.4 Assume the MTTC algorithm is run on an instance I . Let 1 ≤ j ≤ k, where k is the total
number of recursive calls executed (including the initial call). For each operator Oj

i in Ij , there exists a
routing Kj

i for just the operators in Sj
i achieving throughput rj

i , and this routing obeys the rate limits and
precedence constraints of I .

Proof: The proof is by induction on j. It is trivially true for j = 1, since in this case each Sj
i just consists of

a single original operator. Suppose it is true for some 1 ≤ j ≤ k − 1; we will show it is true for j + 1. By
induction, at the beginning of the jth iteration, for each operator Sj

i in Ij , there there exists a routing Kj
i for

the operators Sj
i achieving throughput rj

i (and obeying the necessary constraints). Consider the execution of
the jth iteration, and the resulting instance Ij+1 constructed for the j + 1st iteration. Every operator Oj+1

i

in Ij+1 either corresponds directly to an operator in Ij , or corresponds to a subset Â of operators in Ij that
were grouped together by CombineChains. In the first case, the inductive hypothesis guarantees that there
is a routing for Oj+1

i achieving throughput rj+1
i . In the second case, CombineChains outputs a routing KÂ

for the operators in Â achieving throughput rj+1
i . By induction, for each of the operators Oj

a in Â, there is a
routing Kj

a on the operators in Sj
a achieving throughput rj

a. Applying CombineRoutings to KÂ and the Kj
a

yields a routing for the operators in Sj+1
i achieving throughput rj+1

i (which is the throughput of KÂ) and
obeying the necessary constraints. 2

Lemma 9.5 When run on an MTTC instance I , the MTTC algorithm outputs an optimal routing for I .

30



Proof: Since each recursive call eliminates a fork in the original precedence graph, the algorithm terminates
and the total number of recursive calls is at most n− 1. It is easy to see that the algorithm outputs a routing
that satisfies all the rate constraints and precedence constraints. We now show that it achieves the maximum
possible throughput. We do this by showing that the output routing has the saturated suffix property, not
with respect to I , but with respect to a modified version of I with some reduced rate limits. The trick is to
show that the modified version of I has the same max-throughput value as I itself.

Let Kj
i be as defined in the statement of Lemma 9.4. Let Lj

i be the routing produced from Kj
i by

multiplying the flow along each permutation in Kj
i by a factor of Rj

i /rj
i . (Thus Lj

i is a scaled version of Kj
i

achieving throughput Rj
i ; it is equal to Kj

i if Oj
i ’s rate limit is not changed in the jth call.) For each Sj

i , and
for each original operator Ou in Sj

i , let ξj
u be the amount of flow reaching operator Ou in routing Lj

i . Let
I(j) be the modification of I produced by setting the rate limits of each operator Oi in I to be ξj

u.
Consider the final, kth recursive call. The input Ik to this call consists of a forest of chains. The call

makes these chains proper and runs RouteChains. Let I ′k denote instance Ik with the rate limit of each
operator Ok

i in Ik set to Rk
i , so that it reflects any rate reduction performed while the chains were made

proper. By the analysis of RouteChains, the routing Kk constructed for Ik has the saturated suffix property
with respect to the rate limits of I ′k. The final output routing K of the MTTC algorithm is formed by
recursively combining the routing for I ′k with routings constructed in previous recursive calls. It is not hard
to verify that, for every operator Ok

i of I ′k in the saturated suffix of Kk, routing K sends a total of ξk
u amount

of flow to every original operator Ou in Ok
i . Further, K obeys the rate and precedence constraints of I(k),

and has the saturated suffix property for I(k). Thus K is an optimal routing for I(k). It remains to show
that K is also an optimal routing for I . Recall that I is identical to I(k) except that some of the rate limits
in I(k) are lower. Thus we must consider the ways in which these rate limits are reduced.

The reduction in rate limits from I(1) to I(2) and on to I(k) are caused when chains are made proper
immediately prior to a call to CombineChains. We will show that for any 1 ≤ j ≤ k, each time a chain
is made proper during the jth recursive call, the resulting reductions in rate limits, from I(j − 1) to I(j),
do not change the maximum throughput attainable. From this it follows that the max-throughput of I(k) is
equal to the max-throughput of I , proving the optimality of the routing output by the MTTC algorithm.

The procedure for making a chain proper proceeds downward on the chain. Consider the procedure.
Label each node in the chain according to whether its rate limit was reduced. The labels partition the chain
into maximal contiguous subchains of reduced nodes and unreduced nodes. The reductions in each such
subchain of reduced nodes are due to the node immediately preceding the subchain; this node caused a
reduction in the rate limit of the first node in the subchain which was then propogated through to the last
node in the subchain. If the node preceding the subchain is Oi1 , and the subchain is Oi2 , Oi3 , . . . , Oim , then
the reduced rate limit of each Oil in the subchain is ri1pi1pi2 . . . pil−1

(where the ril and pil are the rate
limits and selectivities of the nodes, prior to the procedure making the chain proper). Let us call the node
preceeding the subchain a “bottleneck” node.

In the execution of the MTTC algorithm, operators are only grouped together through execution of
CombineChains. By the properties of CombineChains (Lemma 9.3), each time a new chain of operators
is formed, the chain is proper, that is, every operator in that chain can saturate its successor. Since every
bottleneck node in the jth iteration cannot saturate its successor, it follows that every bottleneck node in
the iteration corresponds directly to a single original node that was never involved in a CombineChains
operation. Further, since rate limits of operators are reduced only when those operators are about to be
used as input to CombineChains, the rate limits of bottleneck nodes are equal to the initial rate limits of the
corresponding original nodes.

Let I∞(j) denote the modification of I(j) in which, for every reduced operator from the jth iteration,
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the rate limits for the original operators are removed, giving those operators infinite capacity. The max-
throughput of I∞(j) is clearly at least as large as the max-throughput of I∞.

Consider a bottleneck node in Ij and the maximal subchain of reduced nodes after it. Let Oj
i1

denote
the bottleneck node and Oj

i2
, . . . , Oj

im
denote the reduced nodes. Let Ob be the original node corresponding

to Oj
i1

. Let S′ denote the set of all original operators contained in Oj
i2

, . . . , Oj
im

; these are the original
descendants of the node in the precedence graph G = G1. Consider an optimal routing K∞ for I∞. By the
precedence constraints, in every permutation used in the routing, each of these operators in S′ must appear
somewhere after Ob. Without loss of generality, we can assume they appear appear consecutively (in some
order) immediately after Ob; if not, they may be moved forward in the permutation (while keeping the same
relative order between them) to appear in this position, while still maintaining the precedence constraints,
since their rate limits are infinity and moving them forward can only reduce the flow into other nodes. We
can thus consider the operators in S′ to form a “block” in the routing. The amount of flow entering this block
is at most rbpb (the product of the initial rate limit and selectivity of Ob). By an argument above, for each
node Oj

iq
in the reduced subchain (2 ≤ q ≤ m) there is a routing Kj

iq
on the contained original operators

achieving throughput rj
iq

. Since the nodes in the subchain form a maximal subchain of reduced nodes, it

follows that the rate limit rj
i2

of Oj
i2

is rbpb, the rate limit rj
i3

of Oj
i3

is rbpbp
j
i2

, and in general, the rate limit
rj
iq

of Oj
iq

in the reduced subchain is rbpbp
j
i2

pj
i3

. . . pj
iq−1

. Thus in K, the at most rbpb flow entering the block

could be routed instead (if it isn’t already) first through the original operators in Oj
i2

(by scaling Kj
i1

), then
the remaining rbpbp

j
i2

flow could be routed through the original operators in Oj
i3

(by scaling Kj
i2

), and so
on, while still obeying precedence constraints and rate constraints of I∞. Under this routing, each original
operator Oi in a reduced Oj

iq
in the subchain would get a total amount of flow not exceeding Rj

i , the amount

of flow it receives under routing Kj
iq

.
Applying this same argument to all the maximal reduced subchains from iteration (j), we find that

there is an optimal routing for I∞ which does not put more that Rj
i flow through any original operator Oi

contained in a reduced node. It follows that this optimal routing for I∞ is also feasible for I(j). Since the
max-throughput of I∞ is clearly greater than or equal to the max-throughput of I(j), they have the same
max-throughput. Finally, since I(j) differs from I only in its reduced rate limits, the max-throughput of I(j)
is at most the max-throughput of I , which is at most the max-throughput of I∞. Thus the max-throughput
of I(j) equals the max-throughput of I(j − 1), as claimed. 2

Lemma 9.6 The MTTC algorithm runs in time O(n3) and outputs a routing that uses fewer than 4n distinct
permutations.

Proof: We show that the total time spent over all runs of RouteChains is O(n2 log n). All other processing
takes time at most O(n2) per node in G, for a total time of O(n3).

The routing output by the MTTC algorithm is constructed hierarchically, through calls to CombineRout-
ings. We represent this hierarchical construction by a tree T , with each non-leaf node labeled by a routing K
output by a call to CombineRoutings. The children of node K are the nodes labeled by the routings KAi that
were combined together with a routing K ′ to form K. The routing K ′ was formed by a call to RouteChains.
The leaves of the tree correspond to the n operators of I , and each is labeled with the trivial routings for its
corresponding operator. Thus the number of edges in the tree is n− 1.

If a non-leaf node corresponding to routing K in T has m children, then the routing K ′ used in forming
it was produced by a call to RouteChains on m operators, taking time O(m2 log m). If mN denotes the
number of children of node N , then the total time spent running RouteChains is upper bounded by the sum,
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over all non-leaf nodes N in the tree, of cm2
N log mk, for some constant c. Since the sum of the mK’s is the

number of edges in the tree, n − 1, it follows that the total time spent in all calls to RouteChains is upper
bounded by the maximum of c(n2

1 log n1 + n2
2 log n2 + . . . + n2

t log nt) over all (multi)-sets of positive
integers {n1, . . . , nt}, where t is arbitrary, such that n1 + . . . nt = n−1. Since n2

1 + . . .+n2
t < n2, the total

time spent in executing RouteChains is O(n2 log n). The time spent in RouteChains dominates the running
time of the algorithm, which thus is O(n2 log n) as claimed.

To bound the number of permutations used in the output routing, we again consider the tree described
above. Each non-leaf node K in the tree is the result of combining a routing K ′ with routings on K ′

Ai
s.

Call the K ′ an outer routing, and the KAi’s inner routings. The combined routing K uses a number of
permutations that is at most the sum of (the number of permutations in the outer routing) + (the total number
used in the inner routings). But the inner routings are also produced by a call to CombineRoutings that
combines an outer routing with inner routings, except for children that are leaves.

It follows that the total number of routings used is equal to the sum, over all non-leaf nodes, of the num-
ber of permutations used by the associated outer routings, plus any final contribution due to incorporating
the inner routings for the leaf nodes into the outer routings of their parents. But this final contribution is
0, since incorporating the single permutation of a leaf node into the the outer routing of its parent does not
increase the number of permutations used.

By Theorem 4.1, the number of permutations used for the outer routing corresponding to a node N is at
most 4 times the number of its children. The sum, over all non-leaf nodes N , of the number of children of
N , is equal to the total number of edges, n − 1. Hence the total number of permutations used by the outer
routings is at most 4(n− 1). 2

9.4 Proofs: Non-Selective Operators

Theorem 5.1 When run on an MTTC instance I , whose precedence graph is an inverted tree and which
contains only selective operators, the MTTC-INV algorithm algorithm runs in time O(n3) and outputs an
optimal routing for I . The output routing uses fewer than 4n distinct permutations.

Proof: The proof is almost the same as the proof of the analogous theorem for ordinary trees. The only real
difference is in justifying the reductions in rate limits when chains are made proper.

Consider running the MTTC-INV algorithm on an instance I with precedence graph G. Each time
a chain is made proper, it is either done immediately prior to eliminating a fork (i.e. prior to running
CombineChains) or immediately prior to finding a routing on the chains in the final recursive call.

In either case, the chain that is being made proper can easily be shown to consist of a prefix of composite
nodes (possibly empty) produced by a run of CombineChains, followed by a suffix (possibly empty) consist-
ing of original nodes from G. By the analysis of CombineChains, the chain of composite nodes is already
proper. Suppose the suffix is non-empty. We argue that if a rate reduction is performed on the first node in
the suffix, then this rate reduction does not reduce the maximum throughput attainable (for the underlying,
original problem instance I). It follows that any rate reductions to the other original operators in the suffix
will not reduce the maximum throughput attainable, since all flow into these nodes must first pass through
the operators above them in the suffix.

Note first that, from the above, it immediately follows that all rate reductions performed by the algorithm
are performed on original nodes; the rate limits of new, composite operators are never reduced.

Let B1, . . . ,Bm denote the chain of operators in the prefix of the current chain, and let B1, . . . , Bm

denote the underlying sets of original nodes. Let Ofrst denote the first operator in the suffix. Let N =
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⋃m
i=1 Bi. If the rate limit of Ofrst is reduced when the chain is made proper, then it is re-set to be the

product of the rate limit of Bm times its selectivity. We use the following claim.
Claim: In any feasible routing for G, the most flow that could ever reach Ofrst is the product of the
maximum-throughput attainable using just the operators in N , times σ(N).

Recall that σ(N) denotes the product of the selectivities of the operators in N . To prove the claim,
consider a modified instance produced by eliminating the rate constraints for all operators in G other than
Ofrst and the operators in N . Consider a feasible routing KmaxA for this modified instance that maximizes
the total amount of flow into Ofrst. The total amount of flow into A in KmaxA is an upper bound on
the maximum amount of flow into Ofrst that would be attainable under the original constraints. Let S =
{Ofrst}

⋃
N . In routing KmaxA, if there is a permutation in which an operator not in S appears immediately

after an operator in N , the order of these two operators can be switched in the permutation without without
affecting the total amount of flow into Ofrst, and without violating any rate constraints in the modified
instance. Thus we may assume without loss of generality that in routing KmaxA, all permutations begin
with operators not in S, followed by the operators in N , followed immediately by Ofrst. The total amount
of flow that reaches the operators in N , over all these permutations, cannot be more than the maximum
amount of flow that could be routed through just the operators in N . Before reaching Ofrst, this flow is
reduced by σ(N). The claim follows.

By Lemma 4.2 and the description of CombineChains, it can be shown inductively that Bm is a saturated
suffix of an optimal routing through the operators in N (where saturation is defined with respect to any rate
reductions already performed on the operators in N ), and the throughput achieved by this optimal routing
(and hence by any optimal routing) is the rate limit of the composite operator Bm times 1/

∏m−1
i=1 σ(Bi).

It immediately follows from the claim that the maximum total flow into Ofrst in any feasible routing is at
most the rate limit of Bm times σ(Bm). But σ(Bm) is the selectivity of Bm, so this is precisely the value to
which Ofrst’s rate limit was re-set. Since total flow into Ofrst cannot exceed this value, the re-setting does
not reduce the maximum throughput attainable. 2

Lemma 5.1 Given a problem instance I containing both selective and non-selective operators, there exists
an optimal solution K satisfying the following: for all Oi, Oj such that pi ≥ 1 and pj < 1:

• (A) If Oi and Oj have no precedence constraint between them, then Oj does not immediately follow
Oi in any permutation used in the routing.

• (B) If Oj is the only child of Oi, then Oj immediately follows Oi in every permutation used in the
routing.

Proof: We prove this by contradiction.

Part A: Let K be an optimal solution to the problem instance I that minimizes the number of violations of
A. Let π denote a permutation used in the solution, in which, for some Oi and Oj satisfying the properties
listed above, Oj immediately follows Oi. It is easy to see that switching Oj and Oi in this permutation
reduces the amount of flow through Oi and either reduces or keeps constant the amount of flow through Oj .
Thus we can reduce the number of violations by one, contradicting the assumption.

Part B: Let K be an optimal solution to the problem instance I that minimizes the number of violations of
B. Let π denote a permutation used in the solution, in which, for some Oi and Oj satisfying the properties
listed above, Oj does not immediately follow Oi. Note that Oj must follow Oi in π (since Oj is the child
of Oi). Let O′

1, · · · , O′
l denote the operators between Oi and Oj . There can be no precedence constraints

between O′
k and Oi or Oj for any k. This follows from Oj being the only child of Oi.
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Let p′ = p′1 × · · · × p′k denote the combined selectivity of these k operators. We replace the part
(Oi, O

′
1, · · · , O′

k, Oj) of π with:

• O′
1, · · · , O′

k, Oi, Oj , if p′ < 1 (ie., we move Oi to after O′
k).

• Oi, Oj , O
′
1, · · · , O′

k, if p′ ≥ 1 (ie., we move Oj to before O′
1).

It is easy to see that the flow through all of the operators either reduces or remains constant after this
substitution, thus contradicting the assumption made. 2
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