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ABSTRACT
In this paper, we address the problem of transparently scaling out
transactional (OLTP) workloads on relational databases, to support
database-as-a-service in cloud computing environment. The pri-
mary challenges in supporting such workloads include choosing
how to partition the data across a large number of machines, mini-
mizing the number of distributed transactions, providing high data
availability, and tolerating failures gracefully. Capturing and mod-
eling the transactional workload over a period of time, and then
exploiting that information for data placement and replication has
been shown to provide significant benefits in performance, both in
terms of transaction latencies and overall throughput. However,
such workload-aware data placement approaches can incur very
high overheads, and further, may perform worse than naive ap-
proaches if the workload changes.

In this work, we propose SWORD, a scalable workload-aware
data partitioning and placement approach for OLTP workloads, that
incorporates a suite of novel techniques to significantly reduce the
overheads incurred both during the initial placement, and during
query execution at runtime. We model the workload as a hyper-
graph over the data items, and propose using a hypergraph com-
pression technique to reduce the overheads of partitioning. To deal
with workload changes, we propose an incremental data reparti-
tioning technique that modifies data placement in small steps with-
out resorting to complete workload repartitioning. We have built
a workload-aware active replication mechanism in SWORD to in-
crease availability and enable load balancing. We propose the use
of fine-grained quorums defined at the level of groups of tuples to
control the cost of distributed updates, improve throughput, and
provide adaptability to different workloads. To our knowledge,
SWORD is the first system that uses fine-grained quorums in this
context. The results of our experimental evaluation on SWORD de-
ployed on an Amazon EC2 cluster show that our techniques re-
sult in orders-of-magnitude reductions in the partitioning and book-
keeping overheads, and improve tolerance to failures and workload
changes; we also show that choosing quorums based on the query
access patterns enables us to better handle query workloads with
different read and write access patterns.
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1. INTRODUCTION
Horizontal partitioning (sharding) and replication are routinely

used to store, query, and analyze very large datasets, and have be-
come an integral part of any large-scale data management system.
The commonly used techniques for sharding include hash-based
partitioning [8], round robin partitioning, and range partitioning.
A natural consequence of employing sharding and/or replication on
transactional workloads is that transactions or queries may need to
access data from multiple partitions. This is usually not a problem
for analytical workloads where this is, in fact, desired and can be ex-
ploited to parallelize the query execution itself. However, to ensure
transactional semantics, distributed transactions must employ a dis-
tributed consensus protocol (e.g., 2-phase commit or Paxos com-
mit [11]), which can result in high and often unacceptable laten-
cies [12]. During the last decade, this has led to the emergence and
wide use of key-value stores that do not typically support transac-
tional consistency, or often restrict their attention to simple single-
item transactions.

Over the last few years, there has been an increasing realization
that the functionality and guarantees offered by key-value stores are
not sufficient in many cases, and there are many ongoing attempts to
scale out OLTP workloads without compromising the ACID guar-
antees. H-Store [13] is an attempt to rethink OLTP query processing
by using a distributed main memory database, but requires that the
transactions be pre-defined in terms of stored procedures and not
span multiple partitions. Google’s Megastore [3] provides ACID
guarantees within data partitions but limited consistency guaran-
tees across them and has a poor write throughput. Moreover, the
database features provided by Megastore are limited to the seman-
tics that their partitioning scheme can support.

An alternate schema-independent approach, proposed by Curino
et al. [7], is to observe and capture the query and transaction work-
load over a period of time, and utilize this workload information to
achieve a data placement that minimizes the number of distributed
transactions. Their approach, called Schism, models the transac-
tion workload as a graph over the database tuples, where an edge
indicates that the two tuples it connects appear together in a transac-



tion; it then uses a graph partitioning algorithm to find a data place-
ment that minimizes the number of distributed transactions thus in-
creasing throughput significantly over baseline approaches. How-
ever, there are several challenges in employing such a fine-grained
workload-aware data placement approach: (a) the routing tables
that store the tuple-to-partition mappings, required to dispatch the
queries or transactions to appropriate partitions, can become very
large and expensive to consult; (b) the initial cost of partitioning
and the follow-on cost of maintaining the partitions can be very
high, and in fact, it is unlikely that the fine-grained partitioning ap-
proach can scale to really large data volumes; (c) it is not clear how
to handle newly inserted tuples, or tuples that do not appear in the
workload; (d) the performance for such an approach can be worse
than random partitioning if the workload changes significantly; and
(e) random hash-based partitioning schemes often naturally have
better load balancing and better tolerance to failures.

In this paper, we present SWORD, a scalable workload-aware
data partitioning and placement approach for transparently scaling
out standard OLTP workloads with full ACID support, to provide
database-as-a-service in a distributed cloud environment. Like prior
work in this area, we model the workload as a hypergraph1, where
each hyperedge corresponds to a transaction or a query2, and em-
ploy hypergraph partitioning algorithms to guide data placement
decisions. Our key contributions in this work are a suite of novel
techniques to achieve higher scalability, and to increase tolerance
to failures and to workload changes. First, to reduce book-keeping
overhead, we propose using a two-phase approach, where we first
compress the hypergraph using either hash partitioning or an anal-
ogous simple and easy-to-compute function, and then partition the
compressed hypergraph. This results in a substantial reduction in
the sizes of the mapping tables required for dispatching the transac-
tions to appropriate partitions. As we show, this simple hybrid ap-
proach is able to reap most of the benefits of fine-grained partition-
ing at a much lower cost, resulting in significantly higher through-
puts. Our approach also naturally handles both new tuples and tu-
ples that were not accessed in the workload. Further, it is able to
deal with changes in workload more gracefully and is more effec-
tive at tolerating failures.

Second, we propose an incremental repartitioning technique to
deal with workload changes, that monitors the workload to iden-
tify significant changes, and repartitions the data in small steps to
maintain a good overall partitioning. Our approach is based on ef-
ficiently identifying candidate sets of data items whose migration
has the potential to reduce the frequency of distributed transactions
the most, and then performing the migrations during periods of low
load. Third, we propose using fine-grained quorums to alleviate the
cost of distributed updates for active replication and to gracefully
deal with partition failures. Unlike prior work [22, 10] where the
types of quorum are chosen a priori and uniformly for all data items,
we choose the type of quorum independently for groups of tuples
based on their combined read/write access patterns. This allows
us to cater to typical OLTP workloads that have a mix of read and
write queries with varying access patterns for different data items.

Fourth, we propose an aggressive replication mechanism that at-
tempts to disentangle conflicting transactions through replication,
enabling better data placement. Finally, we develop an efficient

1We chose a hypergraph-based representation because we observed
better performance, but we could also use a graph-based represen-
tation instead.
2Hereafter we use the term transaction to denote both an update
transaction or a read-only query.

query routing mechanism to identify which partitions to involve
in a given transaction. Use of aggressive replication and quorums
makes this very challenging, and in fact, the problem of identify-
ing a minimal set of partitions for a given query is a generalization
of the set cover problem (which is not only NP-Hard but also hard
to approximate). We develop a greedy heuristic to solve this prob-
lem. We also develop a compact routing mechanism that minimizes
memory overheads and improves lookup efficiency.

Our experimental evaluation of SWORD deployed on an Ama-
zon EC2 cluster demonstrates that our hypergraph-based workload
representation and use of in-graph replication based on access pat-
terns, lead to a much better quality data placement as compared to
other data placement techniques. We show that our scaling tech-
niques result in orders-of-magnitude reductions in the partitioning
overheads including the workload partitioning time, cost of dis-
tributed transactions, and query routing times for data sets consist-
ing of up to a billion tuples. Our incremental repartitioning tech-
nique effectively deals with the performance degradation caused by
workload changes using minimal data movement. We also show
that our techniques provide graceful tolerance to partition failures
compared to other data placement techniques.

Summarizing, the major contributions of our work are:
• Effective workload modeling and compression that reduces par-

titioning and book-keeping overheads, and enables handling of
both new tuples and those not represented in the workload.
• Incremental repartitioning to mitigate performance degradation

due to workload changes without a complete repartitioning.
• Use of fine-grained quorums to control the cost of distributed

updates, to improve throughput, and to cater to OLTP workloads
with a mix of different access patterns.
• Workload-aware replication mechanism that attempts to disen-

tangle conflicting transactions leading to better data placement.
• Efficient and scalable routing mechanism that minimizes the

number of partitions to involve for a given query and uses com-
pact routing tables to minimize memory requirements.

The remainder of the paper is organized as follows. Section 2 gives
a background on workload modeling, replication, and provides an
overview of SWORD’s architecture. Section 3 provides the details
of our proposed solution for scalable workload-aware data place-
ment. Section 4 discusses the experimental set-up and evaluation
of SWORD, and Section 5 explores the related work in the area.

2. OVERVIEW
We begin with providing a high-level overview of SWORD’s ar-

chitecture. We then briefly present the basic workload-aware ap-
proach that captures a transaction workload as a hypergraph, and
utilizes that workload information to achieve a data placement that
minimizes the number of distributed transactions [7].

2.1 System Architecture
The key components of SWORD are shown in Figure 1, and

can be functionally divided into three groups: data partitioning
and placement, incremental repartitioning, and transaction process-
ing. The data itself is horizontally partitioned (sharded) across a
collection of physical database partitions, i.e., machines that run
a relational resource manager such as a relational DBMS server
(PostgreSQL in our implementation). Data may be replicated (at
the granularity of tuples) to improve availability, performance, and
fault tolerance. We assume that each tuple is associated with a glob-
ally unique primary key, which may consist of more than one at-
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Figure 1: System architecture

tribute. We briefly discuss the key functionality of the different
components next.

Data partitioning and placement: These modules are in charge of
making the initial workload-aware data placement and replication
decisions, and then carrying out those decisions through appropri-
ate data migration and replication. The query workload manager
takes the query workload trace (the set of transactions and the tu-
ples they access (Section 4.1)) as input and generates a compressed
hypergraph representation (Section 3.1) of the query workload. The
compressed hypergraph is then fed to the data partitioner which
does in-graph replication (Section 3.3), and partitions the resulting
hypergraph using the hMetis [1] partitioning tool. The output of the
partitioner is a mapping of the tuples to their physical database par-
titions. These mappings are fed to the data placement sub-module
and the router. The data placement sub-module then uses these
mappings to partition the database across the machines.

Incremental repartitioning: The workload monitoring and statis-
tical module monitors the workload changes and maintains statis-
tics on the workload access patterns. It provides this input to the
incremental repartitioning module (Section 3.2) which identifies
when the current partitioning is sub-optimal and triggers data mi-
gration to deal with workload changes. The data migration is done
in incremental steps through the data placement module during pe-
riods of low activity.

Transaction processing: The users submit transactions, and receive
their results through an interface provided by the transaction pro-
cessing module. The user interface sends the transactions to the
router which parses the SQL statements in the transactions using
an SQL parser that we wrote. The router determines the tuples ac-
cessed by the transaction (more specifically, the primary keys of
the tuples accessed by the transaction), their replicas, and their lo-
cation information using the mappings provided by the data parti-
tioner. The router also determines the appropriate number of repli-
cas that need to be accessed for each tuple to satisfy the quorum
requirements (Section 3.4). The router then uses a set-cover based
algorithm to compute the minimum number of partitions that the
transaction needs to be executed on (referred to as query span in
the rest of the paper), to access all the required tuples and repli-
cas (Section 3.5). This information, along with the transaction, is
passed on to the transaction manager which executes the transac-
tions in parallel on the required database partitions. The transaction
manager uses a 2-phase commit protocol to provide the ACID guar-
antees.

2.2 Workload Modeling
We represent the query workload as a hypergraph, H = (V,E),

where each hyperedge e ∈ E represents a transaction, and the set
of nodes Ve ⊆ V spanned by the hyperedge represent the tuples

accessed by the transaction. Each hyperedge is associated with an
edge weightwe which represents the frequency of such transactions
in the workload.

A k-way balanced min-cut partitioning of this hypergraph would
give us k balanced partitions of the database (i.e., k partitions of
equal size) such that the number of transactions spanning multi-
ple partitions is minimized. This is because every transaction that
spans multiple partitions corresponds to a hyperedge that was cut in
the partitioning. Instead of looking for partitions of equal size, we
may instead assign a weight to each node and ask for a partitioning
such that the total weights of the partitions are identical (or almost
identical). The weights may correspond to the item sizes (in case
of heterogeneous data items) or some combination of the item sizes
and access frequencies. The latter may be used to achieve balanced
loads across the partitions.

The problem of k-way balanced min-cut partitioning general-
izes the graph bisection problem, and is NP-hard. However, due
to the practical importance of this problem, many efficient and ef-
fective hypergraph partitioning packages have been developed over
the years. We use the hMetis package [1] in our implementation.

Figure 2(a) shows an illustrative example where a transactional
query workload is transformed into a hypergraph. The hypergraph
consists of a vertex set V = {a, b, c, e, f, g} and hyperedge set
E = {e1 = {a, b, c}, e2 = {a, g}, e3 = {g, c}, e4 = {a, e}, e5 =
{f, c}} where ei represent the transactions. A 2-way min-cut par-
titioning of this hypergraph gives us 2 distributed transactions, as
compared to a naive round-robin partitioning that would have given
us 4 distributed transactions.

3. SYSTEM DESIGN
In this section, we first present our proposed techniques for scal-

able workload-aware data partitioning, and for incremental repar-
titioning to cater to workload variations. We then discuss our in-
graph replication mechanism, and use of fine-grained quorums to
improve availability. Finally, we present our query routing mecha-
nism to select partitions to involve in a given query or a transaction.

3.1 Hypergraph Compression for Scaling
The major scalability issues involved with workload-aware hy-

pergraph (or graph) partitioning-based techniques are: (1) the mem-
ory and computational requirements of hypergraph storage and pro-
cessing, which directly impact the partitioning and repartitioning
costs, and (2) the large size of the tuple-to-partition mapping pro-
duced by the partitioner that needs to be stored at the router for
routing the queries to appropriate partitions, that makes the router
itself a bottleneck in query processing. Existing hypergraph com-
pression techniques [2] based on coalescing help in effectively re-
ducing the size of the hypergraph, and in some cases [26] even min-
imize the loss of structural information by using additional neigh-
borhood information as input to the coalescing function. However
these techniques do not reduce the sizes of mapping tables required
for routing queries, and thus are not appropriate for our context.

We propose using a simple two-step hypergraph compression
technique instead. We first group the nodes of the hypergraph (i.e.,
database tuples) into a large number of groups using an easy-to-
compute function applied to the primary keys of the tuples, and
we then collapse each group of nodes into a single virtual node.
More specifically, in the first step, we map each node v ∈ V in the
original hypergraph to a virtual node v′ ∈ V ′ in the compressed
hypergraph by computing v′ = f(pkv), where pkv represents the
node v’s primary key. In our current implementation, we use a hash
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function,HF (pkv) = hash(pkv) mod N , whereN is the desired
number of virtual nodes. However, any inexpensive function (e.g., a
range partitioner) could be used instead. Using such a primary key-
based coalescing plays a crucial role in developing an efficient and
scalable routing mechanism with minimum book-keeping; further
details are discussed in Section 3.5.

Let V ′ denote the resulting set of virtual nodes. For a hyperedge
e ⊆ V in the original hypergraph, let e′ ⊆ V ′ denote the set of
virtual nodes to which the vertices in e were mapped. If e′ con-
tains at least two virtual nodes, then we add e′ as a hyperedge to the
compressed graph (denoted H′ = (V ′, E′)). We define the hyper-
graph compression ratio (CR) as the ratio of the number of nodes
|V | in the original hypergraph to the number of virtual nodes |V ′|
in the compressed hypergraph, i.e., CR = |V |

|V ′| . CR = 1 indicates
no compression, whereas CR = |V | indicates that all the original
vertices were mapped onto a single virtual node.

Next, we iterate over each hyperedge e ∈ E of the original hy-
pergraph and replace each node ve ∈ Ve spanned by the hyperedge
e with v′e′ using the mapping generated in the first step. Each hy-
peredge e′ ∈ E′ so generated in the compressed hypergraph is as-
sociated with an edge weightwe′ which represents the frequency of
the hyperedge. Figure 2(b) provides an illustration of compressed
hypergraph generation. The mappings produced by the first step
create virtual nodes v′1 = {a, b}, v′2 = {c, f, g} and v′3 = {e}.
The second step generates the hyperedges e′1 and e′2 and the edge
weights associated with these hyperedges depict the frequency of
transactions accessing the corresponding sets of virtual nodes.

This hybrid coarse-grained approach, although simple, is highly
effective at reaping the benefits of workload-aware partitioning with-
out incurring the high overhead of the fine-grained approach. First,
the hypergraph size is reduced significantly, reducing the overhead
of running the partitioning and repartitioning algorithms. Second, it
naturally handles new inserted tuples and tuples that were not part
of the provided workload. Each such tuple is assigned to a virtual
node based on its primary key and placed on the partition assigned
to the virtual node. Third, it avoids over-fitting the partitioning and
replication to the provided workload, resulting in more robust data
placement. We also need significantly smaller query workloads as
input to make partitioning decisions.

On the other hand, the coarseness introduced by the compres-
sion process may result in larger min-cuts (and thus higher number
of distributed transactions). However, we empirically show in Sec-
tion 4 that the orders-of-magnitude gains in terms of the above men-
tioned benefits far offset the probable increased cost of distributed
transactions as compared to a fine-grained approach.

3.2 Incremental Repartitioning
A workload-driven approach is susceptible to performance degra-

dation if the actual workload (in the future) is significantly different
from the workload used to make the partitioning and replication
decisions. The quantum of performance variance is dependent on
the sensitivity of the data placement technique to workload change.
As we illustrate through our experimental evaluation (Section 4.4),
the coarser representation achieved through hypergraph compres-
sion makes our approach less sensitive to workload changes com-
pared to the fine-grained approach. However, significant workload
changes will result in the initial placement being sub-optimal over
time. In this section, we present an incremental repartitioning tech-
nique that performs data migration in incremental steps without re-
sorting to complete repartitioning.

Our proposed incremental repartitioning technique monitors the
workload changes at regular intervals, and moves a fixed amount of
data items across partitions in incremental steps to mitigate the im-
pact of workload change. The data migration is triggered whenever
the percentage increase in the number of distributed transactions
(4mincut) crosses a certain threshold, c, a system parameter which
can be set as a percentage of the initial min-cut, depending upon the
sensitivity of applications to latency.

At a high level, our algorithm maintains pairs of sets of candidate
virtual nodes that can be swapped to reduce the size of the min-cut.
During lean periods of activity, the algorithm makes a maximum of
k such moves in each step to reduce the min-cut of the data place-
ment as per the current workload. It repeats these steps until the
min-cut reduces below the threshold value. The algorithm thus pro-
vides an incremental approach to adjust the data placement without
resorting to complete data migration.

More specifically, let Hcut = {e1, e2, . . . , et} denote the set
of hyperedges that span multiple partitions, i.e., the set of hyper-
edges in the cut, as per the initial data placement. Let Pcut =
{P1, P2, . . . , Pt} be the set of partition sets, where Pi ∈ Pcut is
the set of partitions spanned by hyperedge ei ∈ Hcut. Further, let
Vi = {v1, v2, . . . , vn} be the set of virtual nodes covered by hyper-
edge ei, and let Vcut = {

⋃
i=1,...,t Vi}, be the union set of nodes

covered by all the hyperedges in the cut. This is the first set of our
candidate nodes for migration. For each virtual node vi ∈ Vcut,
in our first candidate set, we maintain a set of partitions Pvi that
contain the node or its replicas, such that {vi ∈ pj , ∀pj ∈ Pvi}.
Let nhij be the sum of the weights of hyperedges incident on node
vi in partition pj . So each vertex vi is associated with a set NHi

where nhij ∈ NHi and pj ∈ Pvi .
Let VS be the set of virtual nodes that are covered only by hyper-

edges that are not cut. In other words, if we move a virtual node in



VS to a different partition, it would not change the min-cut value.
This set of virtual nodes forms our second set of candidate nodes.

Let the contribution of each hyperedge e ∈ Hcut towards total
number of distributed transactions seen so far be

Ce =
ndte∑

i=1,...,t ndtei

and let C = {Ce|e ∈ Hcut}. The numerator ndte is the weight
of the hyperedge e in the cut, whereas the denominator is the sum
of the weights of the hyperedges in the cut. We maintain a prior-
ity queue, PQ of hyperedges e ∈ Hcut. Each element in PQ is
ordered by Ce and thus the largest element represents the hyper-
edge with the highest value of Ce. We choose to consider only
those hyperedges that span two partitions which guarantees that a
single swap of virtual nodes between two partitions would reduce
the min-cut3.

Swapping gain (SG): Consider a hyperedge ei ∈ Hcut span-
ning two partitions pa ∈ Pi and pb ∈ Pi where Pi ∈ Pcut. Let
Sa = {pa

⋂
Vi}, Sb = {pb

⋂
Vi}, be the set of virtual nodes

covered by ei in the partitions pa and pb respectively. Let S̄a =
{{pa − Vi}

⋂
VS}, S̄b = {{pb − Vi}

⋂
VS}. The swapping

of all the virtual nodes in Sb with a set of virtual nodes {I ⊆
S̄a | Iw ' Sbw} where Iw and Sbw is the sum of node weights
in I and Sb respectively (to maintain a load balance), would result
in two things. Firstly ei would be removed from Hcut decreasing
the min-cut by ndte. Secondly, the set of hyperedges other than
ei which are incident on the nodes in Sb might probably become
distributed increasing the min-cut by (

∑
i∈Sb

nhib − ndte) in the
worst case. Thus the minimum swapping gain SG is given by:

SG = ndte − (
∑
i∈Sb

nhib − ndte) = 2× ndte −
∑
i∈Sb

nhib

Algorithm 1 Incremental repartitioning algorithm
Require: Initial min-cut Mc, PQ, threshold c, CN = ∅.
1: while4mincut > c% of Mc do
2: while |CN | < k do
3: e = PQ.peek()
4: SG1 = 2× ndte −

∑
i∈Sa

nhia

5: SG2 = 2× ndte −
∑

i∈Sb
nhib

6: if SG1 ≥ SG2 and SG1 > 0 then
7: Identify {I ⊆ Sb | Iw ' Saw}
8: CN = CN ← (I, Sa)
9: PQ.remove(e)

10: else if SG2 ≥ SG1 and SG2 > 0 then
11: Identify {I ⊆ Sa | Iw ' Sbw}
12: CN = CN ← (I, Sb)
13: PQ.remove(e)
14: end if
15: end while
16: Swap the k sets of virtual nodes
17: UpdateHcut,4mincut, PQ
18: end while

Algorithm 1 provides the details of our proposed incremental
partitioning technique. A background process monitors the work-
load and populates PQ. The algorithm is triggered when4mincut

exceeds a given threshold value c. The algorithm (lines 2-9) iden-
tifies at most k pairs of sets of virtual nodes for swapping which
would maximize the total SG and stores them in CN as candidates
to be swapped. It executes the k swaps (line 10) at a lean period

3A majority of hyperedges in the cut of our compressed hypergraph
representing TPC-C, a typical OLTP workload, span two partitions.

of activity. It then updates Hcut, 4mincut to reflect the changes
caused by the swaps. It repeats the steps until the current min-cut
falls below the set threshold value.

3.3 Workload-aware Replication
Active and aggressive replication has the potential to provide bet-

ter load balancing, improved availability in presence of failures, and
a reduction in the number of distributed read transactions. How-
ever, providing strict transactional semantics with ACID properties
becomes a challenge in presence of active replication [10].

We propose an aggressive workload-aware replication technique
that provides data availability proportional to the workload require-
ment. We exploit tuple-level access pattern statistics to ascertain
the number of replicas for each data item. We argue that the draw-
backs of replicating items that are heavily updated are offset by
several considerations: (1) for availability, it is desired that each
data item be replicated at least once; (2) items that are heavily up-
dated are typically also heavily read and replicating those items
can reduce the total number of read-only distributed transactions;
(3) through use of appropriate quorums, we can balance the writes
across a larger number of partitions. A key feature of our replica-
tion technique is the notion of disentangling transactions to afford
better min-cuts. We discuss this further below.

Replica generation: We have developed a statistical module that
uses the transactional logs (Section 4.1) to compute the read and
write statistics for each virtual node. Each node v′i in the com-
pressed hypergraph H represents a set of tuples Ti. Each tuple
tij ∈ Ti has a read frequency (frij) and a write frequency(fwij).
To compute each node’s replication factor we compute the size
compensated average of reads and writes per virtual node as fol-
lows:

Avg(v′i)w =

∑
j fwij

logS(v′i)
, Avg(v′i)r =

∑
j frij

logS(v′i)
, R =

Avg(v′i)w
Avg(v′i)r

whereAvg(v′i)w andAvg(v′i)r are average read and write frequen-
cies of node v′i, logS(v′i) is the log of the size of node v′i. R is the
average write-to-read ratio.

Based on the access pattern statistics generated, if the ratio Ṙ ≥
δ (where 0 < δ < 1) the virtual node is replicated only once to con-
trol the cost of distributed updates. For all other nodes, the number
of replicas generated is a linear function of Avgr(i). δ serves as
a threshold value for controlling the number of replicas for heavily
written tuples and can be chosen based on the workload require-
ments and the level of fault tolerance required. We use the log of
the sizes of virtual nodes to compensate for the skew in the size
of the virtual nodes; this helps in limiting the number of replicas
created for heavily accessed large virtual nodes.

In-graph replication: Once we have chosen the number of replicas
for a virtual node, we modify the compressed hypergraph by adding
as many copies of the virtual node as required. One key issue then is
assigning these virtual node replicas to the hyperedges in the graph.
We observe that by doing this cleverly, we can disentangle some of
the transactions that share data items and construct a graph with a
better min-cut. Let Rv′ be the set of replicas for the virtual node
v′. The replica assignment algorithm computes a set of distinct
hyperedges Ev′ incident on v′ and for each e′ ∈ Ev′ its associated
edge weight we′ . There are two possibilities:
Case 1: |Ev′ | ≥ |Rv′ |: We reduce this case to a simple multi-
processor scheduling problem. Each replica r ∈ Rv′ is associated
with a processor br . Each hyperedge e′ ∈ Ev′ is assigned to one
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of these processors, increasing the current load on the processor
by the corresponding hyperedge weight we′ . Minimizing the maxi-
mum load across the processors is equivalent to finding an equitable
assignment of the replicas to the hyperedges. Since the scheduling
problem is NP-Hard, we use a greedy approach which considers
the hyperedges in the decreasing order by weight, and assigns the
next hyperedge to the processor with the current minimum load.
Finally all the hyperedges assigned to a particular processor br are
allocated the replica r associated with the processor.

Figure 3(a) gives an example showing the assignment of a virtual
node d and its replica d′ to the incident hyperedges e′1, e′2 and e′3
with edge weights 2, 6 and 7 respectively. The algorithm creates
two processors representing d and its replica d

′
and assigns hyper-

edges to these processors greedily.
Case 2: |Ev′ | < |Rv′ | : The insertion algorithm splits the hyper-
edge e′ with the highest weight we′max

into two hyperedges with

weights d
we′max

2
e, b

we′max
2
c respectively. It repeats this procedure

until the number of hyperedges is equal to |Rv′ | and then allocates
one replica to each hyperedge.

Figure 3(b) gives an example for case 2 showing the assignment
of a virtual node d and its replicas d′, d′′ to the incident hyperedges
e′1 and e′2 with edge weights we′1

= 20 and we′1
= 10 respectively.

The algorithm chooses e′1 since it has the highest weight and splits
it into two hyperedges e′11 and e′12 each with a weight of 10.

3.4 Fine-grained Quorums
Aggressive active replication comes at the cost of distributed

update transactions which hurt performance. Quorums [23] have
been extensively used to control the overheads associated with dis-
tributed updates for maintaining active replica consistency [22, 10].
In addition to this, quorums also help in improving fault tolerance
by gracefully dealing with partition failures.

Let S = {S1, S2, · · · , } denote the set of partitions on which
a data item is stored. A quorum system Q (for that data item) is
defined to be a set of subsets of S with pair-wise non-empty inter-
sections [24]. Each element of Q is called a quorum. A simple
example of a quorum system is the Majority quorum, where every
majority of the partitions forms a quorum. Defining read and write
quorums separately, a quorum system is valid if: (a) every read quo-
rum (rq) overlaps with every write quorum (wq), and (b) every two
write quorums have an overlap. Another quorum system is ROWA
(read-one-write-all), where a read can go to any of the partitions,
but a write must go to all the partitions. Quorums allow us to sys-
tematically reduce the number of partitions that must be involved in
a query, without compromising correctness.

Depending on the nature of the workload, the choice of the quo-
rum system plays a significant role in determining its effectiveness

in improving performance. For example, ROWA quorum would
perform well for read intensive workloads and Majority quorum
would help in controlling the cost of distributed updates for write
intensive workloads. However different transactional workloads
might have different mixes of read and write queries. Also, dif-
ferent data items in a given workload may have different read-write
access patterns. Choosing a fixed quorum for the all the data items
in the system a priori may significantly hurt the performance.

In this paper, we propose using fine-grained quorums, which are
defined at the virtual node level (a group of tuples). We focus on
two quorum systems, ROWA and Majority. Given a workload,
the type of quorum for each virtual node is decided based on its
read/write access pattern, as monitored by the statistical module.
We compute R, the write-to-read ratio (Section 3.3) for each vir-
tual node. The quorum for each virtual node is then decided based
on the value ofR. IfR > γ, where (0 < γ < 1), then we chooses
Majority quorum else ROWA quorum. The value of γ is a sys-
tem parameter, which can be adjusted based on the nature of the
query workload. We experimented with different values for γ and
observed that as γ increases from 0.5 and tends towards 1, the sys-
tem chooses ROWA for most data items incurring a high penalty
for writes thereby reducing performance. On the other hand, as γ
decreases from 0.5 and tends towards 0, the system chooses Ma-
jority quorum for most data items incurring a higher overhead for
reads. Our experiments showed that γ = 0.5 was able to achieve a
fine balance between the benefits of ROWA quorum for reads and
Majority quorum for reducing the number of copies to be updated
and gave the best performance for the TPC-C benchmark.

Quorums defined at the virtual node level specify the number of
copies of each data item that need to be accessed in order to meet
the quorum requirement. For each virtual node v′ having a set of
available copies Cv′ , a read quorum |cr|, cr ⊂ Cv′ and a write
quorum |cw|, cw ⊂ Cv′ defines the number of copies of v′ required
for either a read or write query. These read and write quorums
values are defined based on the types of quorum. For example, a
majority quorum requires that |cr| + |cw| > |Cv′ | and 2 ∗ |cw| >
|Cv′ |, while ROWA requires |cr| = 1 and |cw| = |Cv′ |.

The choice of quorum at the level of each virtual node makes
the system adaptive to a given workload and improves the effec-
tiveness of quorums in reducing the costs of distributed updates
significantly. We have conducted extensive experiments to study
the use of different quorums for a number of query workloads with
different mixes of read and writes. Our results show that fine-
grained quorums provide significant benefits in terms of reducing
the average query span and improving the transaction throughput
for different types of workloads. This feature is especially useful
for database-as-a-service in a cloud computing environment.

3.5 Query Routing
The use of graph based partitioning and replication schemes re-

quires that the mappings of tuples to partitions be stored at the
router to direct transactions to appropriate partitions. This is a ma-
jor scalability challenge since the size of these mappings can be-
come very large, and they may not fit fully in the main memory
leading to increased lookup times. The problem is further aggra-
vated with tuple-level replication which only adds to the size of
these mappings. Existing techniques for dealing with this issue [25]
use compute-intensive look-up table compression techniques cou-
pled with a scaled-up router architecture to fit the lookup tables in
memory, which may not be cost effective.

We propose a routing mechanism that requires minimum book-
keeping as a natural consequence of our hypergraph compression



technique. The size of the mapping tables is reduced by a factor of
CR (the hypergraph compression ratio). Depending on the router’s
compute and memory capacity, a suitable CR could be chosen to
optimize overall performance. In addition to this, we incorporate
two additional features to reduce the query span and the cost of dis-
tributed updates: fine-grained quorums (as described in Section 3.4)
that determine the number of copies of each data item required, and
a set-cover algorithm that determines the minimum number of par-
titions required to satisfy the query and meet the quorum require-
ments.

Minimum set-cover algorithm: The minimum set-cover problem
to minimize the query span can be defined as follows: given a trans-
action e′, a set of virtual nodes V ′

e′ accessed by e′ and their replicas
Re′ ; a set of partitions {P e′

RV ′ | V ′
e′ ∪ Re′ ⊆ P e′

RV ′}; a universe
Ue′ = {v′ → c | v′ ∈ V ′

e′ , c ∈ Ce′} where c is the number of
copies required for v′ as per the quorum requirement; a set-cover
map Se′ = {v′ → c | v′ ∈ V ′

e′ , c ∈ Ce′} where the initial count
c of each element is set to 0; determine the minimum number of
partitions S ⊆ P e′

RV ′ that cover the universe Ue′ . The minimum
set-cover is an NP-Complete problem and we use a greedy heuris-
tic to solve the same. In each iteration the algorithm determines
the partition Pi which covers the maximum uncovered elements
UCe′ in the universe Ue′ given by max({Ue′ − Se′} ∩ Pi), where
{Ue′ − Se′} denotes the operation wherein the counts of the ele-
ments in the universe Ue′ are decremented by the count of the cor-
responding elements in Se′ . The set-cover S is updated with the
partition Pi, i.e., S = S ∪ Pi, Se′ = Se′ + Pi which increases
the count of common elements in the set-cover map by one. The
uncovered elements are updated by UCe′ = Ue′ − Se′ which re-
duces the counts of common elements in Ue′ by the counts of the
corresponding elements in Se′ . The algorithm terminates when the
counts of all elements in UCe′ = 0 and outputs S. The algorithm
for computing the set-cover is shown in Algorithm 2.

To give an example: consider a transaction e′ = {2, 3, 5, 9, 12, 14}
where the numbers in the set indicate the IDs of the virtual nodes ac-
cessed by e′, Ce′ = {2, 1, 1, 2, 1, 1} which denotes the number of
copies required for corresponding elements in e′ to satisfy the quo-
rum requirements. Consider a set of partitions P1 = {2, 9}, P2 =
{2, 3c, 5c, 14}, P3 = {9c, 5c, 12}, and P4 = {12c, 14c} where
the element n ∈ V ′

e′ and nc ∈ RV ′
e′

. In the first iteration the al-
gorithm chooses P2, updates S = {P2}, then computes the uncov-
ered elements UCe′ = e′ − P2 updating Ce′ = {1, 0, 0, 2, 1, 0}.
In the second iteration it chooses P3, updates S = {P2, P3} and
Ce′ = {1, 0, 0, 1, 0, 0}. In the third iteration the algorithm chooses
P1, updates S = {P2, P3, P1} and Ce′ = {0, 0, 0, 0, 0, 0} and the
algorithm terminates as all elements in the universe are covered. S
constitutes the minimum number of partitions that the transaction
needs to be routed to.

Algorithm 2 Set-cover Algorithm
Require: H′, e′ ∈ E′, Pi ∈ PRV ,Ue′ = {v′ → c | v′ ∈ Ve′ , c ∈

Ce′}, Se′ = {v′ → c | v′ ∈ Ve′ , c ∈ Ce′}
1: while UCe′ 6= 0 do
2: pindex =argmaxi({Ue′ − Se′} ∩ Pi)
3: S ∪ = Ppindex

4: Se′ + = Ppindex

5: UCe′ = Ue′ − Se′

6: end while
7: return S

Generation of mapping tables: We use a hash table-based lookup
mechanism to determine the virtual nodes accessed by a query. We
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Figure 4: Routing architecture
create a set of hashmaps for each relation REi in the partitioned
database. Using the hash function HFpkv used for graph compres-
sion to map tuples to virtual nodes, for each relationREi, we create
one hashmap Mk per primary key attribute k ∈ Ki where Ki is
the set of attributes which form the primary key for relation REi.
These hash tables map the distinct values of k ∈ Ki to a set of
virtual nodes that contain tuples with corresponding values of k.
Further, we create union mapsMi = ∪Mk, ∀k ∈ Ki which es-
sentially contain all virtual nodes containing tuples of relationREi.
These mapping tables generated at the virtual node level need to
be updated or regenerated only at the time of data repartitioning,
a relatively infrequent process for stable workloads. New tuples in
the database are automatically mapped to existing virtual nodes and
hence do not require any updates to the mapping tables at the router.

We see a drastic reduction in memory requirement compared to
the fine-grained scheme. This can be attributed to two factors. First,
the tables are maintained at the level of virtual nodes and hence
provide a reduction in size by a factor of CR. Second, we maintain
hash maps per primary key attribute. The number of distinct values
per primary key attribute is much smaller than the total number of
distinct primary key values4, making the hash tables very compact.
Table 1 shows the effectiveness of our proposed routing mechanism
by comparing the size of the router mapping tables for a workload
of 1 Billion tuples.

Routing mechanism: Figure 4 illustrates the flow of our routing
mechanism. The routing interface provided by the query process-
ing module takes a query as input and parses it to determine the
relation Ri and the set of primary keys QPi in the query predi-
cate. It then deals with three cases. First, if QPi = Ki, it simply
hashes the key values and obtains the virtual node which the query
needs to access. This process requires no lookup and is the most
efficient case. Second, if QPi ⊂ Ki the routing module returns
∩Mk, ∀k ∈ QPi which would give the set of all virtual nodes
that contain tuples with the corresponding primary key values. The
lookup and intersection operations are quite efficient as the size of
these tables is small and the operations can be done in memory.
Third, if QPi = null, i.e., the query predicates do not contain
any primary key attributes, the union setMi of the corresponding
relation Ri is returned. Here no computation is involved as the
pre-computed union set is returned. In the next step, the router de-
termines the virtual node replicas, and their location information
using the mappings obtained from the data partitioner. It gives this
information as input to the set-cover algorithm which computes the
minimum partition set that meets the quorum requirement on which
4The Cartesian product of the full set of attributes forming the pri-
mary key.



Table 1: Router memory requirements
Scheme Fine-grained CR=3 CR=6 CR=11 CR=28

Mappings size 20 GB 8GB 4GB 2.2GB 857MB

the transaction needs to be executed.

4. EXPERIMENTAL EVALUATION
In this section, we present the results of the experimental eval-

uation of our system. We first provide some details of our system
implementation in Section 4.1 followed by our experimental setup
in Section 4.2. We then provide an experimental analysis of our
hypergraph compression technique, and discuss the effects of our
techniques on router efficiency and system throughput. We then
evaluate our fine-grained quorum technique and its effect on the
end-to-end system performance.

4.1 System Implementation
We have used PostgreSQL 8.4.8 as the relational DBMS system

and Java-6-OpenJDK SE platform for developing and testing our
framework. For hypergraph generation we follow an approach sim-
ilar to that of Schism [7] wherein we use the PostgreSQL logs to
determine the queries run by the benchmark. We have developed
a query transformation module that transforms each query into an
equivalent SELECT SQL query, from which we can extract the pri-
mary keys of the tuples accessed by the query to build the hyper-
graph. For executing the transactions the transaction manager uses
the Java transaction API’s (JTA) XAResource interface to interact
with the DBMS resource managers running on the individual parti-
tions and executes transactions as per the 2-phase commit protocol.

4.2 Experimental Setup
This section provides the details of our system configuration,

workloads, datasets and the baselines used.

4.2.1 System configuration
Our system deployment on Amazon EC2 consists of one router

cum transaction manager and 10 database partitions each running
an instance of a PostgreSQL 8.4.8 server running with a read com-
mitted isolation level. The router configuration consists of 7.5 GB
memory, 4 EC2 Compute Units, 850 GB storage, and a 64-bit plat-
form with Fedora Core-8. The 10 database partitions are run on
separate EC2 instances each with a configuration of 1.7 GB mem-
ory, 1 EC2 compute unit, 160 GB instance storage, 32-bit platform
with Fedora Core-8.

4.2.2 Workloads and datasets
We have used the TPC-C benchmark for our experimental evalu-

ation which contains a variety of queries: 48% write queries (update
and insert), 47% read queries (select), and 5% aggregate queries
(sum and count). The database was horizontally partitioned into
ten partitions according to different partitioning schemes for the
purposes of experimental evaluation. In order to experiment with
a variety of different configurations, we used a dataset containing
1.5 Billion tuples, and different transactional workloads consisting
of up to 10 million transactions. We have varied the percentage
of read and write transactions to simulate different types of trans-
actional workloads. In particular, we created three different mixes
from the TPC-C workload: Mix-1 consisting of 75% of read-only
transactions and 25% write transactions, Mix-2 consisting of 50%
each of read and write transactions, and Mix-3 consisting of 25%
read and 75% write transactions.
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4.2.3 Baselines
In our experiments we compare the performance of our approach

of using compressed hypergraphs (referred to as compressed) with
two partitioning strategies as baselines: Random (hash-based) with
3-way replication, and fine-grained tuple-level hypergraph parti-
tioning approach.

Random: We use tuple-level random partitioning with 3-way repli-
cation as our baseline. This approach is essentially the same as hash
partitioning. We place the tuples using a hash function (specifically,
by overriding the hashcode() function in java to a hash function of
choice, MD5 in our case) with range {1, ..., P} (P = number of
partitions), and the resulting placement is nearly random. The 3-
way replication is achieved using 3 different hash functions, with
a post-processing step to ensure no two replicas land on the same
partition.

We note here that the TPC-C benchmark includes a large number
of queries that access a small number of tuples, and a few queries
that access a large number of tuples. In particular, we need to be
able to handle queries where only a portion of the primary key of
a table is specified. An example of such a query is:

select count (c_id) from customer where c_d_id = 3
and c_last = ’OUGTHCALLYPRES’ and c_w_id =1.

The predicates of this query specify a partial primary key set and
the query accesses more than one tuple. Therefore, in spite of us-
ing hash functions to map the tuples and their replicas to physical
partitions, we still need tuple-level mapping tables to determine the
locations of all tuples that are accessed by such queries.

Fine-grained: Fine-grained partitioning is obtained by first con-
structing a tuple-level hypergraph where each hyperedge represents
a transaction and nodes spanned by the hyperedge represent tuples
accessed by the transaction. We use tuple-level read-write access
patterns to determine the number to replicas for each tuple and use
in-graph replication which approximates an average 3-way replica-
tion for each tuple, and partition the hypergraph using hMetis to
obtain a fine-grained partitioning.

Compressed: We generated compressed hypergraphs for different
compression ratios and selected six different CRs (3, 6, 11, 28, 56,
112) as candidates for comparing our proposed technique with ran-
dom and fine-grained partitioning schemes for our initial experi-
ments in Section 4.3. Based on the results obtained we use a subset
of these CRs (6, 11 and 28) for our experiments in the subsequent
sections. Although our workload-aware replication scheme gener-
ates different number of replicas for each virtual node based on its
access patterns, our scheme approximates an average 3-way repli-
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Figure 6: (a) Fine-grained approach is more sensitive to workload changes than the compressed approach; (b) Our approach needs
to move significantly smaller amount of data to maintain an effective partitioning compared to a baseline that does complete reparti-
tioning; (c) Number of iterations required to bring down the increased min-cut under the threshold value.

cation in terms of the total number of replicas produced to provide
a fair comparison with the other two techniques.

4.3 Hypergraph Compression Analysis
We explored the trade-off between the partitioning quality (min-

cut) and the partitioning time for different compression ratios (CRs)
and compared the same with our baselines (Figure 5). The num-
ber of distributed transactions is highest for the random partition-
ing scheme (26244) since it does not take into account the nature
of the query workload at all. The min-cut for fine-grained is the
minimum (4860) as it accurately represents the query workload at
the tuple-level. The min-cuts for the compressed graphs lie in be-
tween random and fine-grained, and their magnitudes vary closely
in accordance with the compression ratio of the hypergraph, rang-
ing from 10944 for a compression ratio of 112, to 7740 for a com-
pression ratio of 3. On the other hand, the hypergraph partitioning
time is highest for the fine-grained and decreases significantly with
the increase in the CR of the hypergraph. The partitioning time for
random is 0 since it does not involve hypergraph partitioning and
places the tuples randomly on different partitions.

There is a clear trade-off between the partitioning time and the
min-cut. On one hand, a decrease in min-cut represents a reduction
in the number of distributed transactions while a reduction in the
partitioning time plays a crucial role in reducing the overall costs
associated with partitioning and repartitioning the database. An
interesting thing to note here is that there is little variation in the
min-cut as the compression ratio is increased from 3 to 56 which
gives us the flexibility of compressing the graph without paying too
much penalty in terms of the increase in the number of distributed
transactions and at the same time making the system more scalable
and efficient in terms of handling larger query workloads. Based
on these results we have chosen CRs 6, 11, 28, as potential sweet
spots which have a reasonable min-cut and a substantially lower
partitioning time for our further experiments. We advocate using
an analogous analysis phase to choose the CR for other scenarios.

4.4 Effect of Workload Change
To ascertain the sensitivity of our approach to workload change

and its impact on system performance, we conducted an experi-
ment (Figure 6(a)) to evaluate the percentage change in the num-
ber of distributed transactions against the variation in the work-
load. For the purpose of the experiment, data was partitioned as
per different partitioning strategies (fine-grained, our compressed
hypergraph scheme with CRs 6, 11 and 28) for a given workload.
Thereafter, the workload was varied by removing some old transac-

tions and adding some new transactions. The variation in the num-
ber of distributed transactions was observed against the percentage
change in workload. As can be seen, fine-grained partitioning was
the most sensitive to workload change and the compressed hyper-
graph schemes were able to absorb the effect of workload change to
a much greater extent with a smaller change in the number of dis-
tributed transactions for the same percentage change in workload.

Experimental evaluation of our incremental partitioning module
highlights its effectiveness in dealing with the performance varia-
tion due to workload change. Figure 6(b) shows the number of data
items that need to be moved in terms of percentage of the total num-
ber of data items placed as the workload changes. We see that our
scheme can handle up to a 90% change in workload by migrating
up to a maximum of 20% of data items as compared to the base-
line which represents the amount of data required to be migrated
when performing a complete repartitioning of the database. Fig-
ure 6(c) shows the number of incremental steps required to bring
the increased min-cut (due to workload change) to a value below
the required threshold value. We see that the number of iterations
required to bring the variation (or increase) in min-cut below the
threshold value increases as the % change in workload increases.
We compute the % change of workload in terms of the fraction of
hyperedges (transactions) affected by the workload change. The
number of steps would vary with the value of k, the number of
swaps that can be done in one iteration. The results shown are for
k = 10.

4.5 Routing Efficiency and Quality
We measure the router efficiency in terms of the query routing

time (comprising of query pre-processing time, and set-cover com-
putation time) and routing quality in terms of the query span. The
query pre-processing time includes the time for query parsing, de-
termining the tuples accessed by the query, their replicas and their
locations. We study the variation of router efficiency and quality
with the variation in the min-cut of the hypergraph. All plots in
this section show average quantities per query over 350K TPC-C
queries.

Query routing time: Figure 7(a) shows the comparison of query
routing times for different partitioning schemes on the log scale.
Random and fine-grained partitioning have much higher query pre-
processing times since they require lookups into large tuple-level
routing tables, whereas, the average query pre-processing time for
the compressed hypergraph reduces with the increase in the com-
pression ratio and is substantially smaller than the other two par-



 0.1

 1

 10

 100

 1000

 10000

Pre-process Set-cover Routing

T
im

e 
(m

se
cs

)
(l

o
g

 s
ca

le
)

Query routing time comparison

Random

Compressed (CR: 28)

Compressed (CR: 11)

Compressed (CR: 6)

Fine grained

(a)

 1.5

 2

 2.5

 3

 3.5

R
andom

C
R
:28

C
R
:11

C
R
:6

Fine-grained

 0

 10

 20

 30

 40

 50

Q
u

er
y

 s
p

an

T
ra

n
sa

ct
io

n
 d

is
p

at
ch

 t
im

e 
(m

se
cs

)Query span analysis

Query span
Transaction dispatch time

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

R
andom

C
R
:28

C
R
:11

C
R
:6

Fine-grained

 0

 200

 400

 600

 800

 1000

 1200

T
o

ta
l 

en
d

-t
o

-e
n

d
 t

im
e 

(m
se

cs
)

T
h

ro
u

g
h

p
u

t 
(t

x
s/

se
c)

End-to-end time system testing

Total time
Throughput

(c)

Figure 7: (a) Effect of hypergraph compression in minimizing the query pre-processing time and the set-cover computation time
(note that the y-axis is in log scale); (b) The transaction dispatch time is directly dependent on the query span. (c) End-to-end system
performance in terms of the end-to-end transaction time and the throughput for the compared schemes.
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to the high query routing costs, the fine-grained approach is not
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titioning schemes. This can be attributed to lookups into much
smaller hash tables making the system scalable for handling large
query workloads.

The set-cover computation time is dependent on the size of the
partition-wise list of data items accessed by the query. For tuple-
level partitioning schemes, this partition-wise list is in terms of indi-
vidual tuples and for the compressed graph partitioning schemes it
is in terms of virtual nodes . Consequently, random and fine-grained
partitioning have a much higher set-cover computation time . The
set cover time decreases with increase in CR and compressed graph
partitioning with the highest compression ratio (CR:28) having the
lowest set-cover computation time.

Query span analysis: Figure 7(b) gives a comparison of the av-
erage query span for different partitioning schemes and compares
its effect on the transaction dispatch time which is the time taken
by the transaction manager for executing transactions on the dis-
tributed database partitions5. The query span is a measure of the
quality of data placement achieved. Random partitioning has the
highest query span and the fine-grained partitioning has the low-
est , while the query spans of the compressed hypergraphs for dif-
ferent CRs fall between those two. The transaction dispatch time
closely follows the distribution of the average query spans, wherein
a higher query span results in a higher transaction dispatch time. It
is pertinent to note here that the reduction in transaction dispatch
time achieved using fine-grained partitioning as compared to com-
pressed hypergraph is not as significant as the orders of magnitude
reduction in routing time achieved through graph compression and
an efficient routing mechanism.

5It does not include the query routing time.

End-to-end system testing: Figure 7(c) shows the comparison of
the end-to-end transaction times and throughput measurements on
10 partitions for different partitioning schemes on the log-scale.
We see a substantial reduction in the total end-to-end transaction
time and a high throughput for the compressed graph partitioning
scheme with different CRs as compared to random and fine-grained
partitioning. This can be attributed to the substantial reduction in
routing time due to hypergraph compression and a reasonably good
data placement as compared to fine-grained. Fine-grained does bet-
ter than random due to better data placement and consequently a re-
duced transaction dispatch time and improved transaction through-
put.

Throughput scalability: In order to test the end-to-end scalability
of our system, we partitioned the workload using different parti-
tioning schemes onto 1, 2, 4, and 8 partitions and used the TPC-C
workload to ascertain the throughput as compared to an ideal lin-
ear speed-up for an embarrassingly parallel system. The results
(Figure 8) indicate that the compressed graph scheme starts with a
throughput of 165 transactions per second and achieves a through-
put of 904 transactions per second for 8 partitions which is sub-
stantially higher than that achieved by the fine-grained partitioning
scheme which can be attributed to its large query processing time.
The non-linear speed-up is due to contention inherent in the TPC-C
workload.

4.6 Fine-grained Quorum Evaluation
To ascertain the suitability of different types of quorums for dif-

ferent transactional workloads, we used different proportions of
reads and writes to generate different workload mixes. For this
set of experiments, we used Mix-1, Mix-2, and Mix-3 data sets, a
CR of 11 for the compressed graph, and compared its performance
with random and fine-grained for different types of quorums.

We studied the variation of query span and total transaction time
for ROWA (read-one-write-all) and Majority quorum for different
query workload mixes. Our results (Figure 9) validate that for read-
heavy transactional workloads, ROWA gives the minimum query
spans and end-to-end transaction times, while the Majority quorum
performs better for write heavy loads as they reduce the cost of dis-
tributed updates. Thus the experiments demonstrate that the choice
of quorum depending on the query workload significantly impacts
performance.

Figures 9(d) and 9(e) show the effect of fine-grained quorums on
average query span and system throughput respectively. We exper-
imented with different values of γ, the threshold value of R used
by the router for deciding the type of quorum for a given node. We
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Figure 9: (a)-(c) The impact of the choice of quorum on the performance for different transactional workload mixes. The different
query workload mixes shown are: Mix-1 {75% read, 25%write}, Mix-2 {50% read, 50% write}, Mix-3 {25% read, 75%write}. (d)-(e)
The impact of fine-grained quorums on query span and system throughput. (f) The effect of data placement on fault tolerance.

show the plots for γ = 0.5 which provided the best results for the
TPC-C workload. Use of fine-grained quorums reduces the average
query span and increases throughput for all the partitioning strate-
gies considered as compared to a fixed choice of ROWA or Majority
for all data items, making the system adaptable to different work-
loads.
4.7 Dealing with Failures

We evaluate the effect of quorums and data placement on the
ability of the system to deal with failures for the TPC-C workload.
Figure 9(f) shows the percentage of query failures as a function of
the number of partition failures. We randomly fail a given number
of partitions for a given run and see its effect on the query failures.
Each point on the plot is an average of 10 runs. The results show
the effectiveness of our proposed technique in terms of fault tol-
erance and indicate that fine-grained partitioning schemes may not
perform well in presence of faults, due to a very high degree of data
co-location. Our compression scheme does a relatively modest co-
location of data, thereby naturally maintaining a balance between
minimizing distributed transactions and providing better fault toler-
ance. Our experimental results show that fault tolerance improves
as the CR increases. Random with ROWA provides us with a base-
line to see the quantum of improvement for different data placement
strategies using read one write all available (ROWA-A), which ex-
cludes the copies on failed partitions.

5. RELATED WORK
As distributed databases have grown in scale, partitioning and

data replication to minimize overheads and improve scalability has
received a lot of interest. Nehme et al. [20] have developed a sys-
tem to automatically partition the database based on the expected
workload. Their approach is tightly integrated with the query opti-
mizer which relies on database statistics. However their approach
ignores the structural and access correlations between queries that

we consider by modeling the query workload as a hypergraph.
The partitioning strategies in cloud/NoSQL systems [18, 6] pri-

marily aim for scalability by compromising the consistency guaran-
tees. Moreover, the partitioning in [18] cannot be changed without
reloading the entire dataset. On the other hand, we endeavor to scale
OLTP workloads while maintaining transactional ACID properties
and provide an incremental repartitioning mechanism to deal with
workload changes.

Workload-aware approaches have also been used in the past (e.g.,
AutoAdmin project [4]) for tuning the physical database design,
i.e., identifying the physical design structures such as indexes for a
given database and workload. Kumar et al. [17] propose a workload-
aware approach for data placement and co-location for read-only
analytical workloads. The solutions proposed in that paper focus on
optimizing the energy and resource consumption, unlike our work
that deals with data placement for minimizing distributed transac-
tions for OLTP workloads. Pavlo et al. [21] propose a workload-
aware approach for automatic database partitioning for OLTP appli-
cations. However, their approach does not provide an incremental
mechanism to deal with workload changes once data is partitioned.

Among workload-aware data placement approaches, Schism [7],
is closest to our work, although there are significant differences in
handling the critical issues of scalability, availability, fault-tolerance
and dealing with workload changes. Schism does not provide any
mechanism to deal with workload changes. Another difference be-
tween our framework and Schism is the use of aggressive repli-
cation. Schism trades-off performance for fault tolerance by not
replicating data items with a high write/update frequency. This
might compromise the availability of these data items in presence
of failure and affect the ability to do load balancing across multiple
machines. We instead replicate each tuple at least once, and possi-
bly more times depending on the access frequencies. The replicas
are kept strongly consistent. We also empirically show that our ap-



proach is more fault-tolerant than tuple-level fine-grained partition-
ing techniques. In a recent follow-up work to Schism, Tatarowicz et
al. [25] use a powerful router with high memory and computational
resources and employ compression to scale up the lookup tables.
However, that approach suffers from the same issues as a scaled-up
architecture and may not be cost effective because it needs large
memory and computation resources. In our work, we minimize the
lookup table sizes significantly by using a compressed representa-
tion of the workload.

Although there has been a significant amount of work on graph
compression techniques, e.g., for community detection [9], graph
summarization [19], compressing web graphs [14], finding commu-
nities and coalescing nodes in same community [5], these are not
appropriate in our settings of scaling out OLTP workloads as they
cannot be used to minimize the cost of query execution. Moreover,
the use of these techniques that preserve graph structural informa-
tion would require the router to store additional metadata to route
the queries to appropriate partitions, which is an additional over-
head and not conducive to scalability.

Replication has been widely used in distributed databases for
availability, load balancing and fault tolerance [16, 15, 24]. In this
paper, we focus on active replication as it provides increased avail-
ability and load balancing. Gray et al. [10] showed that replica-
tion in distributed databases can result in performance bottlenecks
and can limit their scalability. We address the performance issues
related to replication by using a workload-aware replication tech-
nique which further minimizes distributed transactions with the use
of in-graph replication and control update costs using fine-grained
quorums. Although quorums have been used to alleviate the cost of
replica updates [22], we have shown that a static choice of quorums
for all data items is not sufficient to handle different workloads with
varying access patterns.

6. CONCLUSION
In this paper, we presented SWORD, a scalable framework for

data placement and replication for supporting OLTP workloads in
a cloud-based environment, that exploits available workload infor-
mation. We presented a suite of techniques to reduce the cost and
maintenance overheads of graph partitioning-based data placement
techniques and to minimize the number of distributed transactions,
while catering for fault tolerance, increased availability, and load
balancing using active replication. We proposed an effective in-
cremental repartitioning technique to maintain a good partition-
ing in presence of workload changes. We also explored the use
of fine-grained quorums to reduce the query spans and thus im-
prove throughputs. The use of fine-grained quorums provides our
framework with the ability to seamlessly handle different work-
loads, an essential requirement for cloud-based environments. We
have carried out an exhaustive experimental study to investigate
the trade-offs between routing efficiency, partitioning time, and the
quality of partitioning. Our framework provides a flexible mech-
anism for determining a sweet spot in terms of the compression
ratio of the hypergraph, that gives a reasonably good quality of par-
tition, improves routing efficiency, and reduces partitioning costs
substantially. We have shown experimentally that our incremental
repartitioning technique mitigates the impact of workload change
with minimal data movement and that our proposed data placement
scheme naturally improves resilience to failures.
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