
Predictive Modeling-Based Data Collection in Wireless
Sensor Networks�

Lidan Wang and Amol Deshpande

Computer Science Department, University of Maryland,
A.V. Williams Building, College Park, MD 20742, USA

{lidan,amol}@cs.umd.edu

Abstract. We address the problem of designing practical, energy-efficient pro-
tocols for data collection in wireless sensor networks using predictive model-
ing. Prior work has suggested several approaches to capture and exploit the rich
spatio-temporal correlations prevalent in WSNs during data collection. Although
shown to be effective in reducing the data collection cost, those approaches use
simplistic corelation models and further, ignore many idiosyncrasies of WSNs,
in particular the broadcast nature of communication. Our proposed approach is
based on approximating the joint probability distribution over the sensors using
undirected graphical models, ideally suited to exploit both the spatial correlations
and the broadcast nature of communication. We present algorithms for optimally
using such a model for data collection under different communication models,
and for identifying an appropriate model to use for a given sensor network. Ex-
periments over synthetic and real-world datasets show that our approach signifi-
cantly reduces the data collection cost.

1 Introduction

Wireless sensor networks (WSNs), comprising of tiny, radio-enabled sensing devices
open up new opportunities to observe and interact with the physical world, and have
been applied in domains ranging from patient health monitoring through the use of
biomedical sensors to military applications such as battlefield surveillance [1]. In this
paper, we address the problem of designing energy-efficient protocols for collecting all
data observed by the sensor nodes in a wireless sensor network at an Internet-connected
base station at a specified frequency [2,25,22,4]. The key issue in designing such data
collection protocols is modeling and exploiting the strong spatio-temporal correlations
present in most sensor networks (see Figure 1). In most sensor network deployments,
especially in environmental monitoring applications, the data generated by the sensor
nodes is highly correlated both in time (future values are correlated with current val-
ues) and in space (two co-located sensors are strongly correlated). Naive data collection
protocols tend to be significantly suboptimal in the presence of such correlations. These
correlations can usually be captured quite easily by constructing predictive models
using either prior domain knowledge or historical data traces. However, because of the
distributed nature of data generation in sensor networks, and the resource-constrained

� This work was supported by NSF Grants CNS-0509220 and IIS-0546136.

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 34–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 35

nature of sensor nodes, traditional data compression techniques cannot be easily adapted
to exploit such correlations.

The distributed nature of data generation has been well-studied in the literature under
the name of Distributed Source Coding [26,30,31,27]. In their seminal work, Slepian
and Wolf [26] prove that it is theoretically possible to encode the correlated informa-
tion generated by distributed data sources (in our case, the sensor nodes) at the rate of
their joint entropy even if the data sources do not communicate with each other. How-
ever this result is non-constructive, and constructive techniques are known only for a
few specific distributions [23]. More importantly, these techniques require precise and
perfect knowledge of the correlations. This may not be acceptable in practical sensor
networks where deviations from the modeled correlations must be captured accurately
(we use DSC to provide a lower bound on the data collection cost; see Section 2.2).
Pattem et al. [22] and Chu et al. [4], among others, propose practical data collection
protocols that exploit the spatio-temporal correlations while guaranteeing correctness;
however, these protocols may exploit only a subset of the correlations, and further re-
quire the sensor nodes to communicate with each other (increasing the overall cost).

Sensor networks, especially wireless sensor networks, exhibit other significant pe-
culiarities that make the data collection problem challenging. First, sensor nodes are
typically computationally constrained and have limited memories. Hence, it may not be
feasible to run sophisticated data compression algorithms on them. Second, the com-
munication in wireless sensor networks is typically done in a broadcast manner – when
a node transmits a message, all nodes within the radio range can receive the message.
As we will see later, this enables many optimizations that would not be possible in a
one-to-one communication model.

In this paper, we present an approach to exploit all the spatial correlations in the
data by approximating the joint probability distributions using a subclass of undirected
graphical models called decomposable models. We develop algorithms for perform-
ing data collection using such a model, and for choosing an appropriate decomposable
model for a given sensor network. Our data collection protocols are also naturally able
to exploit the broadcast nature of communication among wireless sensors. Finally, we
present an extensive experimental study over several synthetic and real-world datasets,
and demonstrate that the expressiveness of our data collection model leads to a signifi-
cant reduction in the total transmission cost.

2 Background

We begin with presenting preliminary background on data compression in sensor net-
works, and discuss the prior approaches. We then present an overview of the class of
decomposable models.

2.1 Notation and Preliminaries

We are given a sensor network with n nodes that continuously monitors a set of dis-
tributed attributes X = {X1, · · · , Xn}, and generates a discrete data value vector

36 L. Wang and A. Deshpande

0 2000 4000 6000 8000 10000
10

20

30

40

50

60

H
u
m

id
it
y
 (

%
)

0 2000 4000 6000 8000 10000

15

20

25

30

35

Minutes since initial deployment

T
e
m

p
e
ra

tu
re

 (
 o

C
)

Fig. 1. A plot of several traces from the In-
tel Lab Dataset [18] shows the strong spatio-
temporal correlations in the data

X Sink

Suppression-based, num-messages metric
Predicted Value at Sink: 3
Observed = 3 No message
Observed ≠ 3 One message
Expected No. of Messages = 1 - p(X = 3) = 0.5

Entropy-based, bit-hop metric
(using Huffman Coding)
Observed = 0 Send "110"
Observed = 1 Send "10"
Observed = 2 Send "111"
Observed = 3 Send "0"
Expected No. of bits = H(X) = 1.75 bits

1/23
1/82
1/41

0 1/8
pr(x)x

1/23
1/82
1/41

0 1/8
pr(x)x

Fig. 2. Two extremes in the spectrum of communi-
cation model and data encoding options

xt = {xt
1, · · · , xt

n} at every time instance t1. Each attribute, Xi, may be an environ-
mental property being sensed by the node (e.g., temperature), or it may be the result of
an operation on the sensed values (e.g., in an anomaly-detection application, the sensor
node may continuously evaluate a filter such as “temperature > 100” on the observed
values). If the sensed attributes are continuous, we assume that an error threshold ε is
provided and the readings are binned into intervals of size 2ε to discretize them. In this
paper, we focus on optimal exploitation of spatial correlations at any given time t and
drop the superscript in the rest of the paper; however we note that our ideas can be
easily generalized to handle temporal correlations as well.

Predictive modeling-based approaches to data compression begin by building a pre-
dictive model over the sensor network attributes that is used to obtain a joint probability
distribution (pdf) over the attributes. We denote this pdf by p(X1, ..., Xn).

We denote the communication graph of the sensor network by GC = (X , E), where
E consists of the pairs of vertices that are within communication radius of each other.
We denote by d(X, Y) the minimum distance between X and Y in terms of number of
hops. For simplicity, we assume all communication links to be perfect and identical2,
and consider two alternatives for computing communication costs:

(1) bit-hop metric: The total cost of sending a message containing n bits from X
to Y is given by n∗d(X, Y). In practice, this can be approximated reasonably
well by batching multiple messages together (at the cost of increasing latency).

(2) num-messages metric: The total cost of sending a message (that can contain at
most 32 bytes) from X to Y is given simply by d(X, Y). In other words, we
only count the number of messages that are transmitted.

In many practical sensor network deployments, the cost of receiving a message at
the sensor node can be quite high (sometimes as high as the transmission cost). For

1 The time instances at which data is acquired depends on the application-specified frequency
of data collection.

2 Both these assumptions can be relaxed by assigning appropriate weights to the communication
links and adjusting the cost metric formulas accordingly.

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 37

simplicity, in our analysis and algorithm descriptions, we assume that the cost of re-
ceiving a message at a sensor node is zero; we however present several experiments
where we account for receiving cost as well.

The choice of cost metric is closely tied with how the data is encoded during data
collection. We consider two extremes in the spectrum of possibilities:

Joint Entropy-Based Data Collection (bit-hop metric): Assuming that it is possible
to compress the data optimally according to the joint pdf (e.g. using Huffman coding),
the number of bits that need to be transmitted from a sensor node X (also called source)
to the base station (called sink) is given by the information entropy of the distribution:

Hp(X) = Σx − p(x) log(p(x))

where p(X) denotes the probability distribution (pdf) over the attribute X .
If an approximation, q(X), is used instead to compress, the number of bits transmit-

ted is given by H(p) + D(p||q), where D(p||q), called relative entropy, is given by:
D(p||q) = Σ − p(x) log(p(x)/q(x)).

Suppression-Based Data Collection (num-messages metric): Full-scale data com-
pression may not be feasible in a sensor network; hence prior work in this area has
typically considered a suppression-based approach [21,25,4], where the base station
uses the pdf to predict a value for the attribute X . The sensor node, which has access to
the same distribution, also predicts the same value and only sends a message if the pre-
dicted value is different from the actual observed value. We denote the expected number
of messages by Mp(), and note that:

Mp(X) = 1 − maxx p(x)
Note that we assume here that only a single message is needed to update the base station
with the correct values.

Figure 2 illustrates these two approaches for an example distribution. Our algorithms
are invariant to the approach used for compression. However, we assume the ability to
compute an analogous function to Hp() or Mp() for any distribution p. We use the
former metric when analyzing the problem and for experiments on synthetic datasets,
but use the latter, more practical, metric for our experiments on real datasets.

2.2 Predictive Modeling-Based Data Compression in Sensor Networks

Given a joint pdf over the sensor network attributes, the key problem in using it for data
compression is the distributed nature of data generation. The natural way to use the joint
pdf, p(X1, . . . , Xn), would be to gather the sensed values at a central sensor node, and
compress the data there. The data gathering cost, however, would typically dwarf any
advantages gained by doing joint compression.

The prior research in this area has suggested several approaches that utilize a sub-
set of correlations instead. One approach, called Independent (IND), is to ignore the
spatial correlations and to compress the data from each sensor node independently of
the others (Figure 3 (i)). In other words, an approximate distribution q1(X1, ..., Xn) =
p(X1)p(X2)...p(Xn) is used for compression (where p(Xi) denotes the marginal prob-
ability distribution of Xi, computed by summing over the remaining variables in X).

38 L. Wang and A. Deshpande

The second approach, that we call Clustering (CLSTR) [22,4], is to group the sensor
nodes into clusters, and to compress the data from the nodes in each cluster jointly.
Figure 3 (ii) shows an example of this using three clusters {X1}, {X2, X5}, {X3, X4},
which corresponds to using the distribution q2(X1, ..., X5) = p(X1)p(X2, X5)p(X3,
X4). In this approach, the intra-cluster spatial correlations are exploited during com-
pression; however, the correlations across clusters are not utilized.

Several other approaches based on routing driven compression [22,24,6] have also
been suggested. However, these approaches typically require joint compression and
decompression of large numbers of data sources inside the network, and hence are not
suited for resource-constrained sensor networks. We leave a detailed comparison of
these approaches with our proposed approach to future work.

Distributed source coding (DSC), although not feasible in this setting for the reasons
discussed earlier, can be used to obtain a lower bound on total communication cost
as follows [7,6,27]. Let the sensor nodes be numbered in the increasing order of their
distances from the base station (i.e., for all i, d(Xi, sink) < d(Xi+1, sink)). Then, the
optimal scheme for using DSC is as follows: X1 is compressed according to p(X1),
and transmitted directly to the sink (incurring a total cost of d(X1, sink) × H(X1)).
X2 is compressed according to p(X2|X1) (since the sink already has the value of X1,
it is able to decode according this distribution). Note that, according to the distributed
source coding theorem [26], sensor node X2 does not need to know the actual value of
X1. Similarly, Xi is compressed according to p(Xi|X1 . . . Xi−1) and so on. The total
communication cost incurred by this scheme is given by:

DSC(p) = Σn
i=1d(Xi, sink) × Hp(Xi|X1, . . . , Xi−1)

Figure 3 (iii) shows this for our running example (note that X5 is closer to sink than X3

or X4).
As we can see in Figure 3, if the spatial correlation is high, both IND and CLSTR

would incur much higher communication costs than DSC. As an example, if H(Xi) =
h, ∀i, and if H(Xi|Xj) ≈ 0, ∀i, j (ie., if the spatial correlations are almost perfect), the
total communication costs of IND, CLSTR(as shown in the figure), and DSC would be
8h, 6h, and h respectively.

2.3 Discussion: Factors Affecting Data Compression Quality

The difference between the data compression ratios achieved by DSC and other tech-
niques can be attributed to two factors.

Approximation Loss: If a data collection scheme only uses a subset of the correlations,
then even if the scheme was optimal (ie., was able to compress as well as DSC), more
bits would have to be communicated than minimally needed. For the example setup
in Figure 3, since IND assumes independence between the sensor nodes, the node X2

must transmit H(X2) bits to the sink compared to H(X2|X1) that DSC transmits; in
fact, the difference between IND and DSC (8h− h = 7h), can be attributed entirely to
Approximation Loss. Although CLSTR is able to exploit some of the spatial correla-
tions, it does not exploit inter-cluster correlations. Since the clusters are typically small
(for reasons discussed below), the Approximation Loss can be quite high for CLSTR as

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 39

H(X
4)

H(X
1)

X4

X2

X1

X3

X5

Base Station

H(X
5)

H(X2X5)

H(X3X4) H(X
1)

X4

X2

X1

X3

X5

Base Station

H(X2|X1)

H(X3|X1X2X5)

H(X5|X1X2)

H(X4|X1X2X3X5)

H(X
1)

X4

X2

X1

X3

X5

Base Station

H(X2)

H(X3)

H(X5)

H(X4)

(iii) DSC(i) IND (ii) CLSTR

Cost = H(X1) + H(X2) + 2 * H(X3) +

 2 * H(X4) + 2 * H(X5)

 = h + h + 2 * h + 2 * h + 2 * h = 8h

Cost = H(X1) + H(X2|X5) + 2 * H(X3|X4) +

 3 * H(X4) + 2 * H(X5)

 = h + 0 + 2 * 0 + 3 * h + 2 * h = 6h

Cost = H(X1) + H(X2|X1) + 2 * H(X3|X1X2X5) +

 2 * H(X4|X1X2X3X5) + 2 * H(X5|X1X2)

 = h + 0 + 2 * 0 + 2 * 0 + 2 * 0 = h

Fig. 3. Illustration of three prior approaches to data commpression for a 5-node network (CLSTR
uses 3 clusters {X1}, {X2, X5}, {X3, X4}). If spatial correlations are perfect, total communi-
cation costs (using the bit-hop metric) for IND and CLSTR can be very high compared to the
theoretical optimal DSC.

well. Of the 5h difference between CLSTR and DSC in Figure 3, 3h can be attributed
to Approximation Loss.

Formally, let p denote the joint pdf that captures all spatial correlations in the net-
work, and let q denote an approximation to p that captures a subset of those correlations.
Let DSC(p) denote the cost incurred by DSC when compressing according to the pdf
p. Then the Approximation Loss for a data collection scheme that only exploits the
correlations in q is given by: DSC(q) − DSC(p).

Intra-source Communication: If two or more nodes are compressed jointly to exploit
the spatial correlation, then the data from these nodes must be gathered at a single loca-
tion. For the example shown in Figure 3, CLSTR communicates X4 to X3 to compress
them jointly. We call this Intra-source Communication cost (the remaining 2h difference
between CLSTR and DSC in Figure 3 can be attributed to intra-source communication).

By increasing the expressive power of the model used and thus capturing larger sub-
sets of spatial correlations (for example, by increasing the cluster sizes), we can reduce
the Approximation Loss, but the increase in the Intra-source Communication cost will
typically outweigh the benefits (e.g. in Ken [4], the optimal cluster sizes were found to
be < 4).

2.4 Decomposable Models and Junction Trees

In this paper, we propose using a subclass of undirected probabilistic graphical
models [10], called decomposable models [8], to capture the spatial correlations and
to perform data compression in a sensor network. Decomposable models capture and
exploit the conditional independences in the data to compactly represent joint pdfs over
a large number of variables. Two random variables X1 and X2 are conditionally inde-
pendent of each other given X3 iff:

p(X1, X2|X3) = p(X1|X3)p(X2|X3)

40 L. Wang and A. Deshpande

Even though any two sensor nodes in a sensor network may be highly correlated with
each other in isolation, given the values of other nodes in the network, many of these
correlations almost entirely disappear. For instance, in an environmental monitoring ap-
plication, a sensor node is typically independent of its non-neighbors given the values
of its neighbors. Hence, by using an appropriate decomposable model to approximate
the joint pdf, we can exploit most of the spatial correlations in a typical sensor net-
work while keeping the Intra-source Communication cost low. As we will see in the
next section, these models can also naturally utilize the broadcast nature of communi-
cation to further reduce the Intra-source Communication cost. Next, we provide a brief
introduction to the class of decomposable models.

Given a set of variables, X , a decomposable model, denoted M, uses a graph, GM,
over X to encode the conditional independences among the variables. More precisely,
a decomposable model satisfies the global Markov property with respect to GM [28]:

If two node sets A and B are separated by a third node set C, i.e., if removing the
nodes in C and all the edges attached to the nodes in C results in the node sets A
and B getting disconnected, then A and B are conditionally independent given C.

Further, the graph GM must be decomposable (also called chordal or triangulated):
every cycle of length greater than 3 must posses a chord – an edge joining two non-
consecutive vertices of the cycle. Figure 4 shows two examples of decomposable graphs
over 5 nodes. In the first graph, removing X1 will separate the remaining vertices from
each other; thus, we can say that X2, X3, X4, X5 are all conditionally independent of
each other given X1. In the second graph, if the edge (X1, X5) were missing, then it
would not be chordal (since the 4-cycle (X1, X2, X5, X4, X1) would have no chord).

X4

X2

X1

X3

X5

Base Station

X4

X2

X1

X3

X5

Base Station X1X2

X1

X1X3

X1

X1X4

X1

X1X5

X1X2X5

X1

X1X3

X1 X5

X1X4X5(i) (ii)

(iv)

(iii)

Fig. 4. (i, ii) Two example decomposable graphs superimposed on the communication network.
Solid lines are network edges; dashed lines are model edges. (iii, iv) Junction trees for the two
models rooted at cliques X1X2 and X1X2X5, respectively.

A compact and particularly useful representation of decomposable graphs is pro-
vided by junction trees (also known as clique trees) [3,16]. Briefly, given a decompos-
able graph GM, a rooted junction tree JC(GM) is a tree whose vertex set consists of the
maximal cliques of GM, and whose root is the clique C. The edges in a junction tree
are required to satisfy the following clique-intersection property:

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 41

For every pair Ci and Cj of cliques in GM, the set Ci ∩ Cj is contained in every
clique on the path connecting Ci and Cj in J(GM).

We denote by C the set of all maximal cliques of GM. Without loss of generality, we
will assume that C1 denotes the root of the junction tree. For a clique C, let parent(C)
denote the parent of the C, and let SC = C ∩ parent(C) be the separator between the
node and its parent (it is easy to see that SC separates the vertex sets parent(C) \ SC

and C \ SC .). We denote by S the set of all separators. Although junction trees are not
unique, all junction trees of a decomposable graph have the same set of separators.

Figure 4 shows one junction tree each for the two example decomposable graphs.

Approximating a Joint PDF Using a Decomposable Model: A decomposable graph,
GM, can be used to approximate a joint probability distribution, p(X1, . . . , Xn), as
follows. For a set of variables, C ⊂ X , let p(C) denote the the marginal probability
distribution over the variables in C (computed by summing over the remaining vari-
ables in X). Let qGM(X1, . . . , Xn) be the probability distribution computed using the
decomposable graph as follows:

qGM(X1, . . . , Xn) =
ΠC∈Cp(C)
ΠS∈Sp(S)

= ΠC∈Cp((C − SC)|SC) (Equation(1))

For example, for the junction tree shown in Figure 4 (iii), we get that:

q1(X1, . . . , X5) = p(X1X2)p(X3|X1)p(X4|X1)p(X5|X1) (Equation(2))

We note that existence of such a closed form expression is perhaps the biggest advantage
of using a decomposable graph over an arbitrary graph. Further, for any clique C ∈ C,
it is easy to see that q satisfies the following property: qGM(C) = p(C). In other words,
qGM and p agree on the marginal distributions over the maximal cliques of GM.

If the approximation quality was the sole concern, we would like to use a
decomposable model that minimizes the relative entropy between qGM and p, given by:
D(p||qGM) = (ΣC∈CH(C) − ΣS∈SH(S)) − H(X). This is also the commonly used
metric in probabilistic modeling [8], and further will result in low Approximation Loss.
However, as we will see in next section, when using such a model for data compression,
we also need to be cognizant of the communication topology.

3 Using Decomposable Models for Data Collection in WSNs

A decomposable model typically captures a subset of the correlations present in the sen-
sor network. In this section, we first consider the problem of designing data collection
protocols for optimally exploiting those correlations for a given decomposable model.
We then address the problem of choosing a decomposable model for a given sensor
network.

3.1 Data Collection Using a Decomposable Model

Example. We begin with the example decomposable model shown in Figure 4 (i) and
the corresponding junction tree (Figure 4 (iii)). For this model, Equation (2) provides
us with the way to fully exploit the captured correlations as follows:

42 L. Wang and A. Deshpande

– For each of the cliques in the model, {X1, X2}, {X1, X3}, {X1, X4}, {X1, X5},
gather the values of the attributes in the clique at some sensor node (this can be
different for each clique).

– Use the marginal probability distribution p(X1X2) to jointly compress X1 and X2

(the clique at the root), and send them to the sink.
– Let the observed value of X1 be x1. Use the distribution p(X3|X1 = x1) to com-

press and transmit the observed value of X3. Since X1 = x1 is already known to
the sink, it can decompress using the appropriate distribution.

– Similarly, use the distributions p(X4|X1 = x1) and p(X5|X1 = x1) to transmit
the values of X4 and X5 respectively.

The total number of bits received by the sink can be shown to be exactly:

H(p) + D(p||q1) = H(X1X2) + H(X3|X1) + H(X4|X1) + H(X5|X1)
However, to be able to compute the total communication cost incurred during this pro-
tocol, we need to “place” the cliques at the sensor nodes (ie., decide which sensor nodes

H(X2|X1)
H(X1)

H(X 1
)

H(X1)

H(X
1)

X4

X2

X1

X3

X5

Base Station

H(X4|X1))

X4

X2

X1

X3

X5

Base Station

H(X
5 |X

1))

H(X3|X1)

H(X
1)

Cost = H(X1) + H(X2|X1) + 2 * H(X3|X1) + 3 * H(X4|X1) + 2 * H(X5|X1)

 = h + 0 + 2 * 0 + 3 * 0 + 2 * 0 = h

Fig. 5. Data compression using the example decomposable
model from Figure 4 (i)

to collect the data for each
clique at). Figure 5 shows
an example placement that
optimally exploits the broad-
cast nature of the commu-
nication. In this case, we
place the clique (XaX1) at
the sensor node Xa for a ∈
{2...5}. With one broadcast
from node X1 (at a cost of
H(X1)), the value of X1 =
x1 will be known to each
of the remaining nodes (in-
cluding the sink).

The total communication cost in the second step after this broadcast is given by:

H(X2|X1) + 2H(X3|X1) + 2H(X4|X1) + 2H(X5|X1)

For the case of perfect correlations considered in Figure 3, the total cost for this model
can be seen to be h as well (same as DSC). However, the cost would be higher if the
receiving costs were non-zero (whereas the cost for DSC would remain h).

Given an arbitrary decomposable model M and a rooted junction tree for it, the data
collection is done as follows:

– Place the cliques of M on to the sensor network nodes (Section 3.2).
– For each node Xi, let DXi denote the sensor nodes which have been assigned a

clique that contains Xi.
– Find a broadcast tree to communicate Xi to the nodes in DXi (we use a breadth-

first search algorithm for this in our implementation).
– At the sensor node that has been assigned a clique C, compress the values of the

sensor nodes in (C − SC) according to the distribution p((C − SC)|SC).

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 43

3.2 Clique Placement Algorithms

We first present an optimal algorithm for the case when the decomposable model graph
(GM) is a subgraph of the communication graph (GC). We then consider the more gen-
eral case, and show that it is NP-Hard. We then present an efficient heuristic that we use
in our experimental study.

CASE: GM is a subgraph of GC . In most sensor networks, geographically co-located
sensors tend to exhibit stronger spatial correlations than sensors that are far away from
each other. As a result, in many cases, the decomposable model graph may only contain
the edges between neighboring sensor nodes. We present an optimal algorithm to solve
this case below.

Consider a clique Ci in M. Since we must gather together all sensor nodes in Ci

at one location, we can either (1) transmit some |Ci| − 1 of these nodes to the remain-
ing node, or (2) transmit all of them to another node not in Ci (combined |Ci| + 1
alternatives). However, all the nodes in Ci are within communication radius of each
other (since the decomposable model graph is a subgraph of the communication graph).
Hence, each of the sensor nodes whose value needs to transmitted only needs to broad-
cast its value once. In other words, multi-hop transmissions are not needed to get the
values in Ci together at one location. Thus, we only need to make binary decisions
for each node (whether to broadcast, or not)3. Given these decisions, the placement of
cliques follows (assuming sufficient nodes broadcast their values).

Our dynamic programming-based algorithm uses the following observation: once
the broadcast decisions for the nodes in a separator Si are made, the decisions for
the nodes in the subtree below Si can be made independently of the decisions for
the remaining nodes in the graph. Algorithm 1 shows the pseudo-code for the main
recursive procedure. Briefly, the algorithm starts at the root of the junction tree C1

(ComputeOptimalCost(C1, φ)), and tries each of the |C1|+ 1 alternatives, recursing
down the junction tree for each of the alternatives. It is easy to see that the algorithm
runs in time O(n3).

If the receiving costs are non-zero, then the number of different possible decisions
for a separator Si is O(|Si|2|Si|) (since we not only have to decide which of the nodes
in Si will broadcast, but we also must decide which of the nodes in Si will receive
those values). Overall the complexity of the algorithm increases to O(n32s), where s
denotes the maximum separator size. Although it is exponential in the worst case, in
practice, we expect the value of s to be quite small (< 3), and hence this algorithm is
quite feasible even in that case.

CASE: GM is not a subgraph of GC

Theorem 3.1. The general case of the clique placement problem is NP-Hard.

Proof Sketch: We reduce a variant of the minimum connected dominating set problem
to the clique placement problem. Given a graph G = (V, E) and a set of nodes S ⊂ V ,
we construct a clique placement problem as follows. The communication graph over

3 Note that we assume here that only the transmission costs are counted, and that the cost of
receiving a message is zero.

44 L. Wang and A. Deshpande

Algorithm 1. Procedure ComputeOptimalCost(Ci, bc)
Input: Ci: A clique in M; bc[Xj] = true if Xj ∈ SCi is broadcast
Let key = (Ci, bc);
if key exists in cache return cached cost;
Let D1, . . . , Dk denote the children of Ci;
if there exists X ∈ SCi such that bc[X] = false then

/* All nodes in Ci − Si must be broadcast */
c = ΣY ∈Ci−SiH(Y) + H(Ci|Si) × d(X, sink);
for j = 1, . . . , k do

Construct a bit-vector bcj of size |SDj | and set all entries to true;
if X ∈ Dj then set bcj [X] = false;
c = c + ComputeOptimalCost(Dj, bcj);

end
Insert 〈key, cost〉 into cache;
return c;

else
/* We must try all possible placements for Ci. */
for X ∈ Ci − SCi do

Let cX denote the total cost assuming all nodes in Ci except X are broadcast;
Compute cX as above;

end
Compute call = the cost assuming all nodes in Ci are broadcast (Ci may be placed at a
node /∈ Ci);
Insert 〈key,min(minX(cX), call)〉 into cache;
return cmin

end

the sensor network is set to be G. For a node X /∈ S, we set H(X) = 0. For X ∈ S,
we set H(X) = c for some constant c, and for each pair (X, Y), X ∈ S, Y ∈ S, we
set H(X |Y) = 0. In other words, all nodes in S are perfectly correlated with each
other. Further, we choose a node A ∈ S, and use a decomposable model with cliques
(A, X), X �= A, X ∈ S, and further choose an arbitrary junction tree for this model. It
is easy to see that, for any junction tree, the optimal solution involves broadcasting A to
all the other nodes in S. The problem of constructing the broadcast tree is identical to
the problem of computing the Steiner connected dominating set for S, a problem that is
known to be NP-Hard [11]. 	

We next present an efficient greedy heuristic that we use for solving the clique place-
ment problem (Algorithm 2). Intuitively, Algorithm 2 starts off by placing all cliques as
close to the sink as possible. Then, starting with the node closest to the sink, it makes lo-
cal, cost-based decisions about whether to broadcast the value of each node away from
the sink, into the sensor network (in effect, moving the cliques away from the sink).

Example. In our running example (Figure 4 (i) and (iii)), the four cliques {X1, X2},
{X1, X3}, {X1, X4}, {X1, X5} would initially be placed at node X1. The algorithm
then checks if it would be beneficial to broadcast X1 instead, which would result in
placement of cliques as shown in Figure 5. After making the decision for X1 (which
is not changed afterwards), the algorithm then checks to see if X2 should be set to
broadcast and so on.

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 45

Algorithm 2. Heuristic Clique Placement Algorithm
Input: A decomposable model M; a rooted junction tree of M
Output: An assignment of cliques to the nodes in GC

Let bc denote current broadcast decisions (bc[X] = true =⇒ X is broadcast);
Initialize bc[X] = unknown for all nodes;
for C ∈ M do

if ∃X ∈ C such that bc[X] �= true then
Let Xr ∈ C be the node closest to the sink such that bc[Xr] �= true;

else
Let Xr ∈ C be the node farthest away from sink;

Place C at Xr;
end
Let c denote the cost of the above clique placement;
Let Xi be the ith closest node to the sink;
for i = 1, . . . , n do

Set bc[Xi] = true and re-assign each clique currently placed at Xi as above;
Let ci be the new total cost;
if ci < c then set c = ci; else set bc[Xi] = false;

end

3.3 Choosing a Decomposable Model

The problem of finding an optimal decomposable model for a given data sample to
minimize an error metric such as Chi-squared error, is known to be intractable [10], and
heuristic algorithms are typically used for this purpose [8]. Although our metric (which
accounts for the communication topology) is quite different from the Chi-squared error
metric, we adapt a similar heuristic search procedure in our system. More specifically,
we use a forward stepwise selection [8] algorithm to find an appropriate decomposable
model. The algorithm starts with an empty decomposable model, i.e., a model with no
edges. It then incrementally adds eligible edges in the order of their benefits until there
is no improvement in the total expected communication cost. (An edge is said to be
eligible if the model remains decomposable after adding it.) Algorithm 2 is used as
a subroutine for evaluating the total expected communication cost of the model after
adding a candidate edge in the incremental step.

To make the search problem tractable, we observe that disconnected components of
the decomposable model do not influence the placement or junction tree decisions of
each other. Hence, when a new edge is added, only the costs of the connected com-
ponents that are affected by the addition need to be re-evaluated using Algorithm 2;
a connected component is affected if the new candidate edge is incident on a vertex
(or two vertices) in the component. We also memoize (cache) the total costs of all
connected components encountered during search, as computed by Algorithm 2. Em-
ploying these two optimizations results in significantly reduced total execution time for
the selection process. Due to space constraints, we omit a more detailed description of
the algorithm.

46 L. Wang and A. Deshpande

4 Experiments

We conducted a comprehensive experimental study over several synthetic and real-
world sensor network datasets. In this section, we present the results of that study.

Data Sets: Our first synthetic dataset (SYNTH-1, a 30-node network) is generated us-
ing a multivariate Gaussian distribution; each variable follows the standard normal dis-
tribution (with variance 1), and the covariance between attributes Xi and Xj is set to
be a function of the distance between them, cd(Xi,Xj) (where c (0 ≤ c ≤ 1) denotes
the correlation strength). The sensor nodes are placed randomly in a 20x20 square and
have an average hop count of 8.5 to the sink (placed at (0, 0)).

For the second and third synthetic data sets (SYNTH-2 and SYNTH-3 , two 72-node
networks), we use an analytical expression for computing the entropy for a precipita-
tion data model (presented and used by Pattem et al. [22] in their study). The network
topologies are generated by placing the nodes randomly within a 66x66 square and a
3x24 rectangle respectively, with average hop counts of 6.5 and 13.5 to the sink.

The first real-world data set, Lab [18], contains traces from 49 sensors deployed in
the Intel Research Lab at Berkeley. The data contains roughly 23 days of recordings
on light, humidity, temperature and voltage. We use the temperature readings between
9pm to 3am for our experiments. The data from first 15 days is used for training (for
constructing the model and the pdfs), and the data from next 8 days is used for testing.
Our second real-world data set, Precipitation, contains precipitation data in the states of
Washington and Oregon collected during 1949-1994 [29]. Fifty stations are randomly
selected from the deployment. We discretize the observed values into three categories:
light rain, medium rain, and heavy rain. The initial two thirds of the data is selected as
the training set, and the remaining data is used for testing.

Comparison Systems:
We compare the following data collection methods.

– NAIVE: No compression is done while collecting the data.
– IND (Section 2.2): Each node compresses its data independently of the others.
– CLSTR (Section 2.2): The clusters are chosen using the greedy algorithm presented

in Chu et al. [4].
– KEN [4]: This is similar to above, except that no compression is performed while

collecting the data for each cluster at the cluster-head (this will always perform
worse than CLSTR).

– DECOMP: An appropriate decomposable model is chosen using the algorithms
presented in Section 3, and is used for data collection.

– DSC: Where applicable, the theoretical lower bound is plotted (Section 2.2).

Methodology: We investigate the performance under different data and network char-
acteristics including correlation, error threshold ε (for SYNTH-1 and Lab), network
topology, and the sensor receiving costs. Unless otherwise mentioned, we set ε = 0.5.
To avoid model over-fitting, we limit the clique/cluster size S ≤ 3 for DECOMP, KEN,
and CLSTR. For the synthetic datasets, we restrict the models learned by DECOMP to
be subgraphs of the communication network since the spatial correlations are strongest
for neighboring nodes. We remove this restriction for the real-world data sets. For the

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 47

0.75 0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

T
ot

al
 C

om
m

. C
os

t (
bi

t−
ho

p)

Correlation

DSC
UB

DECOMP
DECOMP

OPT

CLSTR
KEN
IND

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

T
ot

al
 C

om
m

. C
os

t (
bi

t−
ho

p)

Correlation

DSC DECOMP CLSTR KEN IND

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

T
ot

al
 C

om
m

. C
os

t (
bi

t−
ho

p)

Correlation

 DSC DECOMP CLSTR KEN IND

(i) (ii) (iii)

Fig. 6. Total data collection costs for (i) SYNTH-1, (ii) SYNTH-2, and (iii) SYNTH-3

synthetic datasets, we use the joint-entropy based data collection – for SYNTH-1, we
estimate the entropy using the training dataset, whereas for SYNTH-2 and SYNTH-3,
we use the analytical expressions presented in Pattem et al. [22]. For real-world datasets,
we use suppression-based data collection.

Results: Synthetic Datasets. Figure 6 compares the effectiveness of the different
schemes at reducing the total transmission cost on the three synthetic datasets for vary-
ing correlation characteristics. We also plot an estimate of the cost of DSC; for SYNTH-
1, we can only compute an upper bound since accurate estimation of entropy over large
sets of variables is not feasible. For SYNTH-1, we plot two graphs for DECOMP, one
where we use the optimal clique placement algorithm and the other using the heuristic
algorithm (Section 3.2). There is however almost no difference in the total transmission
cost, and the two graphs overlap entirely. We use the heuristic algorithm in the rest of
the section as it is much more efficient than the optimal algorithm.

Several facts become clear from these figures. At low correlations, the techniques
perform fairly similarly; the intra-source communication cost outweighs the benefits
of joint compression, and hence all techniques degenerate to IND. As the correlation
strength increases, the total costs of the techniques that exploit the correlations decrease
rapidly, with DECOMP performing much better than CLSTR or KEN. In fact, the total
cost for DECOMP is very close to that of DSC; not only is the Approximation Loss
of DECOMP very low, but, because it exploits broadcast communication, the Intra-
source communication cost of DECOMP is also very low. We again note that, if the
receiving costs are factored in, the performance of DECOMP is noticeably worse than
DSC, although it is still much superior to CLSTR or KEN (see below).

Another interesting aspect is how network topologies affect the qualitative behaviors
of the schemes. Comparing Figure 6(iii) with Figure 6(ii), we see that it is more ex-
pensive to transmit data in the deep network (Figure 6(iii)) since the average hop count
is larger. Forming spatial cliques for doing in-network compressions becomes more at-
tractive in such a network; if correlations are ignored, the Approximation Loss in such
networks can be very high.

Figure 7(i) presents the effects of varying the user-defined error threshold ε (for the
SYNTH-1 dataset, with correlation c = 0.9). As expected, the total cost decreases when
ε is increased for all techniques. We note that the performance of DECOMP remains
close to the upper bound on DSC for a wide range of error thresholds.

48 L. Wang and A. Deshpande

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

T
ot

al
 C

om
m

. C
os

t (
bi

t−
ho

p)

Epsilon

DSC
UB

DECOMP
CLSTR
KEN
IND

0.75 0.8 0.85 0.9 0.95 1
0

200

400

600

800

1000

1200

T
ot

al
 C

om
m

. C
os

t (
bi

t−
ho

p)

Correlation

DSC
UB

DECOMP
CLSTR
KEN
IND

0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

x 10
4

T
ot

al
 C

om
m

. C
os

t (
M

es
sa

ge
)

Correlation

DECOMP
CLSTR
KEN
IND

(i) (ii) (iii)

Fig. 7. (i) Effects of ε on the total cost for SYNTH-1, (ii) Impact of receiving cost for SYNTH-1,
(iii) Total message-based transmission cost for SYNTH-1

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

T
ot

al
 C

om
m

. C
os

t (
M

es
sa

ge
)

DECOMP
CLSTR
KEN
IND
NAIVE

Epsilon = 1.5 Epsilon = 0.5
0

1

2

3

4

5

6

7
x 10

5

T
ot

al
 C

om
m

. C
os

t (
M

es
sa

ge
)

DECOMP
CLSTR
KEN
IND
NAIVE

Epsilon = 1.5 Epsilon = 0.5
0

2

4

6

8

10

12

14
x 10

5

T
ot

al
 C

om
m

. C
os

t (
M

es
sa

ge
s)

DECOMP
CLSTR
KEN
IND
NAIVE

(i) (ii) (iii)

Fig. 8. The total communication costs for: (i) Lab dataset (over ≈ 1300 runs), (ii) Lab dataset
including receiving costs, (iii) Precipitation dataset (over 5600 runs)

We next present the results from an experiment where the receiving cost was set to
be the same as the transmission cost (as is common in many deployments). Figure 7(ii)
shows the total communication cost with the receiving cost included for SYNTH-1.
Similarly to Figure 6(i), both DECOMP and the clustering based methods stay at their
upper bound, IND, till c = 0.754. As we can see, the relative performance of DE-
COMP, IND and CLSTR remains essentially unchanged; however, the relative cost
of DECOMP increases slightly compared to DSC. This is because DECOMP exploits
broadcast communication, which gets penalized when receiving costs are non-zero.

Finally, Figure 7(iii) presents the total cost in terms of the message-based metric
for 500 test tuples in SYNTH-1. Messages, instead of bits, are used to quantify the
communication costs. We note that the graph shows similar trends as the entropy-based
metric (Figure 6(i)), with DECOMP resulting in much fewer total messages transmitted
than the alternatives.

Results: Real-World Datasets. Figure 8(i) present the results for Lab’s test traces
when receiving costs are not considered. The results are for ε = 0.5 and ε = 1.5.
DECOMP achieves the best performance in both cases. A small value of ε (i.e. ε = 0.5)
results in higher entropy and the total cost of all techniques increases. The increase in ε

4 Although c = 0.75 might seem large, we note that the 30-node network resides in a 20 × 20
square, resulting in large pairwise node distances.

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 49

results in sharp drops in communication costs: DECOMP achieves a 41% drop in total
cost, CLSTR has a 29% drop, and KEN has a 25% drop. More subtle, a small value of ε
introduces higher variances in the quantized data, and hence the correlations across sen-
sors are weaker. As a result, the relative performance of all modeling-based techniques,
relative to IND, is slightly worse for small values of ε.

Introducing receiving costs (Figure 8(ii)) results in a higher total communication cost
for all schemes. DECOMP continues to outperform the other methods, and the amount
of performance differences for all modeling-based methods with respect to NAIVE
stays relatively unchanged.

Finally, Figure 8(iii) plots the results of exact data collection for the precipitation data
(i.e. ε = 0). The spatial correlations in this data are not high, but as Figure 8(iii) shows,
the modeling-based approaches significantly outperform Naive, and DECOMP achieves
the lowest total communication cost among all four modeling-based approaches.

5 Related Work

Wireless sensor networks have been a very active area of research in recent years
(see [1] for a survey). Due to space constraints, we only discuss some of the most
closely related work on data collection in sensor networks here. Directed diffusion [15],
Cougar [32], TAG [19], TinyDB [20], LEACH [14] are few of the general purpose data
collection mechanisms that have been proposed in the literature. The focus of that work
has been on designing protocols and/or declarative interfaces to collect data, and not
on optimizing continuous data collection. Aside from the work by Pattem et al. [22]
and Chu et al. [4], the BBQ system [9] also uses a predictive modeling-based approach
to collect data from a sensor network. However, the BBQ system only provides prob-
abilistic, approximates answers to queries, without any guarantees on the correctness.
Scaglione and Servetto [24] also consider the interdependence of routing and data com-
pression, but the problem they focus on (getting all data to all nodes) is different from
the problem we address. Cristescu et al. [6] consider the problem of finding a near-
optimal tree-based communication structure to minimize the total transmission cost;
their approach is similar to routing driven compression (RDC) [24,22] and may require
repeated compression and decompression over large numbers of data sources at the sen-
sor nodes, which may make it unsuitable for resource-constrained sensor networks. In
a seminal work, Gupta and Kumar [13] proved that the transport capacity of a random
wireless network scales only as O(

√
n), where n is the number of sensor nodes. Al-

though this seriously limits the scalability of sensor networks in some domains, in the
kinds of applications we are looking at, the bandwidth or the rate is rarely the limiting
factor; to be able to last a long time, the sensor nodes are typically almost always in
sleep mode.

Several approaches not based on predictive modeling have also been proposed for
data collection in sensor networks or distributed environments. Kotidis [17] and Gupta
et al. [12] consider approaches based on using a representative set of sensor nodes
to approximate the data distribution over the entire network. Constraint chaining [25]
is a suppression-based exact data collection approach that monitors a minimal set of
node and edge constraints to ensure correct recovery of the values at the base station.

50 L. Wang and A. Deshpande

More recently, Cormode et al. [5] have proposed a similar approach of using replicated
predictive models to solve the problem of maintaining accurate quantile summaries over
distributed data sources.

6 Conclusions

In this paper, we presented an approach that uses a subclass of undirected graphical
models called decomposable models for continuous sensor data collection with ac-
curacy guarantees. Compared to previous predictive modeling-based approaches, our
approach is more effective at exploiting the spatial correlations in the data, and thus
reducing the total communication cost incurred during the process. Our proposed ap-
proach also naturally exploits the broadcast nature of communication in sensor net-
works. An extensive experimental study using both synthetic and real-world data sets
demonstrates the effectiveness of our approach.

There are several directions of future work that we are planning to pursue. We are
developing more efficient algorithms that can scale to very large sensor networks, and
that can efficiently exploit both spatial and temporal correlations. So far we have as-
sumed that the sensor nodes do not fail; extending our protocols to function correctly
in presence of such faults remains a challenge. Finally, although our approach performs
very well compared to the lower bound provided by DSC, understanding the fundamen-
tal reasons behind the gap between the two and how we can bridge that gap remains an
open question.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a
survey. Computer Networks 38 (2002)

2. Arici, T., Gedik, B., Altunbasak, Y., Liu, L.: PINCO: A pipelined in-network compression
scheme for data collection in wireless sensor networks. In: IEEE Intl. Conf. on Computer
Communications and Networks (2003)

3. Jean, R.S.: Blair and Barry Peyton. An Introduction to Chordal Graphs and Clique Trees. In:
Graph Theory and Sparse Matrix Computation, pp. 1–29. Springer, New York (1993)

4. Chu, D., Deshpande, A., Hellerstein, J., Hong, W.: Approximate data collection in sensor
networks using probabilistic models. In: ICDE. Proceedings of the International Conference
on Data Engineering (2006)

5. Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi, R.: Holistic aggregates in a net-
worked world: Distributed tracking of approximate quantiles. In: SIGMOD (2005)

6. Cristescu, R., Beferull-Lozano, B., Vetterli, M., Wattenhofer, R.: Network correlated data
gathering with explicit communication: Np-completeness and algorithms. IEEE/ACM Trans-
actions on Networking 14(1), 41–54 (2006)

7. Cristescu, R., Beferull-Lozano, B., Vetterli, M.: Networked slepian-wolf: Theory and algo-
rithms. In: EWSN, pp. 44–59 (2004)

8. Deshpande, A., Garofalakis, M., Jordan, M.: Efficient stepwise selection in decomposable
models. In: UAI (2001)

9. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven data ac-
quisition in sensor networks. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases,
Information Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, Springer, Heidelberg
(2004)

Predictive Modeling-Based Data Collection in Wireless Sensor Networks 51

10. Edwards, D.: Introduction to Graphical Modeling. Springer, New York (1995)
11. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorith-

mica 20(4), 374–387 (1998)
12. Gupta, H., Navda, V., Das, S., Chowdhary, V.: Efficient gathering of correlated data in sensor

networks. In: MobiHoc (2005)
13. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on Information

Theory 46, 388–404 (2000)
14. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication pro-

tocol for wireless microsensor networks. In: HICSS 2000: Proceedings of the 33rd Hawaii
International Conference on System Sciences, vol. 8, p. 8020 (2000)

15. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust com-
munication paradigm for sensor networks. In: ACM MobiCOM (2000)

16. Jensen, F.V., Jensen, F.: Optimal Junction Trees. In: Proceedings of the Tenth Annual Con-
ference on Uncertainty in Artificial Intelligence, Seattle, Washington (July 1994)

17. Kotidis, Y.: Snapshot queries: Towards data-centric sensor networks. In: ICDE (2005)
18. Madden, S.: Intel lab data (2003),

http://db.csail.mit.edu/labdata/labdata.html
19. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A tiny aggregation service for

ad-hoc sensor networks. In: OSDI (2002)
20. Madden, S., Hong, W., Hellerstein, J., Franklin, M.: TinyDB web page,

http://telegraph.cs.berkeley.edu/tinydb
21. Olston, C., Loo, B., Widom, J.: Adaptive precision setting for cached approximate values.

In: SIGMOD (2001)
22. Pattem, S., Krishnamachari, B., Govindan, R.: The impact of spatial correlation on routing

with compression in wireless sensor networks. In: IPSN (2004)
23. Pradhan, S., Ramchandran, K.: Distributed source coding using syndromes (DISCUS): De-

sign and construction. IEEE Trans. Information Theory (2003)
24. Scaglione, A., Servetto, S.: On the interdependence of routing and data compression in multi-

hop sensor networks. In: Mobicom (2002)
25. Silberstein, A., Braynard, R., Yang, J.: Constraint-chaining: On energy-efficient continuous

monitoring in sensor networks. In: SIGMOD (2006)
26. Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Transactions

on Information Theory 19(4) (1973)
27. Su, X.: A combinatorial algorithmic approach to energy efficient information collection in

wireless sensor networks. ACM Trans. Sen. Netw. 3(1), 6 (2007)
28. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Probability and Mathe-

matical Statistics. Wiley, Chichester (1990)
29. Widmann, M., Bretherton, C.: 50 km resolution daily precipitation for the pacific northwest

(2003), http://www.jisao.washington.edu/data sets/widmann
30. Wyner, A.D., Ziv, J.: The rate-distortion function for source coding with side information at

the decoder. IEEE Transactions on Information Theory (1976)
31. Xiong, Z., Liveris, A.D., Cheng, S.: Distributed source coding for sensor networks. IEEE

Signal Processing Magazine 21, 80–94 (2004)
32. Yao, Y., Gehrke, J.: Query processing in sensor networks. In: CIDR (2003)

http://db.csail.mit.edu/labdata/labdata.html
http://telegraph.cs.berkeley.edu/tinydb
http://www.jisao.washington.edu/data_sets/widmann

	Introduction
	Background
	Notation and Preliminaries
	Predictive Modeling-Based Data Compression in Sensor Networks
	Discussion: Factors Affecting Data Compression Quality
	Decomposable Models and Junction Trees

	Using Decomposable Models for Data Collection in WSNs
	Data Collection Using a Decomposable Model
	Clique Placement Algorithms
	Choosing a Decomposable Model

	Experiments
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

