
Exploiting Correlated Attributes in
Acquisitional Query Processing

Amol Deshpande Carlos Guestrin Wei Hong Samuel Madden
amol@cs.umd.edu guestrin@cs.cmu.edu wei.hong@intel.com madden@csail.mit.edu

University of Maryland CMU Intel Research Berkeley MIT

Abstract
Sensor networks and other distributed information systems
(such as the Web) must frequently access data that has a high
per-attributeacquisition cost, in terms of energy, latency, or
computational resources. When executing queries that contain
several predicates over such expensive attributes, we observe
that it can be beneficial to use correlations to automatically intro-
duce low-cost attributes whose observation will allow the query
processor to better estimate the selectivity of these expensive
predicates. In particular, we show how to buildconditional
plans that branch into one or more sub-plans, each with a dif-
ferent ordering for the expensive query predicates, based on the
runtime observation of low-cost attributes. We frame the prob-
lem of constructing the optimal conditional plan for a given user
query and set of candidate low-cost attributes as an optimization
problem. We describe an exponential time algorithm for finding
such optimal plans, and describe a polynomial-time heuristic
for identifying conditional plans that perform well in practice.
We also show how to compactly model conditional probabil-
ity distributions needed to identify correlations and build these
plans. We evaluate our algorithms against several real-world
sensor-network data sets, showing several-times performance
increases for a variety of queries versus traditional optimization
techniques.

1. Introduction
The past decade has seen the emergence of a number of

massive-scale distributed systems, including the Web, the Grid,
sensor networks [22], and PlanetLab [1]. Unlike many earlier
distributed systems that consisted of a few tens of locally con-
nected nodes, these networks are characterized by their large
size, broad geographic distribution, high-latency, and ability to
interface users to huge amounts of remote data.

One of the novel challenges associated with query processing
in such environments is managing the high cost associated with
obtaining the data to be processed. While traditional disk-based
DBMSes work very hard to reduce the number of disk I/Os, the
high costs of disk access are usually amortized by reading or
writing pages that contain many records each. In contrast, in
this new class of distributed systems, the cost of fetching a sin-
gle field of a single tuple is frequently measured in seconds and
this effort usually cannot be spread across several fields. For
example, in a sensor network, the time to acquire a single read-
ing from a calibrated digital sensor can be as long as 1.3 sec-
onds [21]. Following the nomenclature of Madden et al. [19], we
refer to such systems asacquisitional, to reflect the high costs
of accessing data and the fact that it must be actively captured
when a query is issued rather than being available on disk at the
time of query execution.

In this paper, we explore a class of techniques aimed at mit-
igating the costs of capturing data in acquisitional systems.
These techniques are based on the observation that, in such sys-
tems, locally available information with a low cost of acquisition

is often highly correlated with much more expensive informa-
tion. If these correlations are perfect (i.e., there exists a one-to-
one mapping from cheap attribute values to expensive attribute
values), then a cheap attribute can simply be used in place of an
expensive one. However, even in the absence of perfect corre-
lation, a cheap attribute can provide information that can aid in
selectivity estimation in query optimization.

For example, Figure 1

0 5 10 15 20 25
0

100

200

300

400

500

600
Hour of Day vs. Light Reading, Lab Sensor Deployment

Hour of Day

Li
gh

t(
Lu

x)

Figure 1: Scatter-plot of hour of day vs.

light values at a single sensor within the au-

thors’ lab.

shows a scatter-plot of
light values1, versus
time of day from a
single sensor in sensor
network deployed in
our lab. In this network,
light is an expensive
attribute, requiring the
processor to be on for
almost a second to
acquire each sample.
However, time of day is
readily available in just
a few microseconds. Furthermore, looking at this figure, it is
clear that light and time of day are correlated: given a time of
day, light values can be bound to within a fairly narrow band,
especially at night (e.g., during hours 0-5 and 16-24).

We focus on using correlations of this sort to assist in
cost-estimation and query processing for multi-predicate range
queries, of the form:

SELECT a1, a2, ... , an (1)
WHEREl1 ≤ a1 ≤ r1 (P1)
AND ...
AND lk ≤ ak ≤ rk (Pk)

Wherek ≤ n andPn is shorthand for the range predicate in the
associatedWHEREclause. We are particularly interested in such
queries in acquisitional systems where the cost of acquiring
some of the attributes is non-negligible and where correlations
exist between one or more attributes. In this paper, we illustrate
many examples of such correlations in a variety of real world
data sets. A simple way to account for such correlations is
to generate a multi-dimensional probability distribution over
attribute values and exhaustively search for a single predicate
order that will minimize the expected cost. Unfortunately, due
to the presence of correlations, expected case performance is
far from optimal. For example, given Figure 1, the selectivity
of a predicate like light < 100 Lux is substantially
lower during the day than at night. Thus, if the user issues a
multi-predicate query with one such predicate over light, the
optimal order of the predicates may vary depending on the time
of day. To take advantage of this insight, a query optimizer can
conditionon the time and choose a different plan depending on
whether it is night or day.

This observation may seem counter-intuitive: query evalua-
tion can become cheaper by observing additional attributes. If,
however, such additional observations are low-cost and allow
1Lux is a measure of light received perm2 of surface area.
100,000 Lux corresponds to full sunlight; 500 - 1000 Lux are
typical of a well-lit room; a rural moonlight night is 1-2 Lux.

the query processor to determine with high confidence that a
query predicate,P , will reject a particular tuple, this can offer
substantial performance gains. The query processor can imme-
diately applyP , avoiding the cost of acquiring unnecessary and
expensive attributes. In this paper, we show how to identify such
correlations in data, and search for query plans that take advan-
tage of those correlations. We demonstrate that the benefit of
this technique can be substantial, offering a several-times per-
formance speedup for a wide range of queries and query work-
loads.Our approach isadaptive, allowing a different query plan
to be selected on a per-tuple basis, depending on the values
of these conditioning attributes. To avoid the overhead of re-
running the optimizer on every tuple, we pre-compute these con-
ditional plans based on correlations observed before the query
was initiated.

Throughout this paper, we use examples and data sets from
sensor networks, though the techniques are general enough to
apply to many different acquisitional environments; we return
to a discussion of such environments in Section 7.

In summary, the contributions of this paper are:
• We show that correlations are prevalent in sensor network

data, and that they can be exploited in multi-predicate
range queries by introducing observations over inexpen-
sive attributes correlated with query predicates.

• We introduce the notion of usingconditional plansfor
query optimization with correlated attributes.

• We present an optimal, exponential-time algorithm for
finding the best possible conditional plan given a multi-
dimensional probability distribution over a set of at-
tributes.

• We present a polynomial-time heuristic algorithm for re-
ducing the running time of this algorithm and bounding
the size of the generated plans.

• We present efficient ways of computing conditional prob-
abilities over a set of predicates that allow us to avoid the
exponential cost of representing an n-dimensional distri-
bution over query variables.

• We evaluate the performance of our algorithms on several
real-world data sets, showing substantial benefits over a
large class of range queries.

2. Correlated attributes and conditional
plans

In this section, we describe the problem we are seeking to
address with our correlation-based techniques and the architec-
ture of our query processing system. Though we use examples
from the sensor network query processing system that we are
building, the discussion in this section and the algorithms we
develop in the later sections are equally applicable to other sce-
narios such as web querying, and even traditional query process-
ing (Section 7).

2.1 Problem statement
We are concerned with the problem of generating an execu-

tion plan that will minimize the expected execution cost of a
user-supplied range query of the form shown in query (1) above.
Here, we assume that there aren attributes in the query table,
X1, . . . , Xn, and that the firstm of them,X1, . . . , Xm are ref-
erenced in the query (som ≤ n). We assume that each at-
tribute Xi takes on a valuexi ∈ {1, . . . , Ki}. Note that this
definition requires real-valued attributes to be discretized appro-
priately (Cf. Section 4.3). In sensor networks, for example, this

Light <
100 Lux

Temp >
20° C

Temp >
20°C

Light <
100 Lux

Traditional Plans

Light <
100 Lux

Temp >
20° C

Temp >
20°C

Light <
100 Lux

Time in
[6am, 6pm]

T

F

A Conditional Plan

SELECT * FROM sensors
WHERE light < 100 Lux AND temp > 20° C

Figure 2: A conditional query plan that uses different ordering of query pred-

icates depending on the time of day.

discretization is natural, as the resolution of the sensors is lim-
ited (e.g., to 10 bits when using the internal analog-to-digital
(ADC) on the Berkeley Motes [7, 15].) We use the tuplex to
denote a particular assignment to all the attributesX1 . . . Xn.
Each attribute is also associated with anacquisition cost, where
Ci denotes the cost of acquiring the value ofXi. In a sensor
network, this cost ranges from a few microjoules to tens of milli-
joules [21]; according to Madden et al. [19] the cost of acquiring
a sensor reading once per second on a mote can be comparable
to the cost of running the processor.

We denote the predicates in the query by{φ1, . . . , φp}, and
the logicalwhere clause byϕ. For simplicity, we useϕ(x) to
denote the truth value ofϕ for the tuplex. Our goal is, thus,
to find a minimum expected cost plan for determining whether
ϕ(x) is true or false, where the expectation is taken over the
possible assignments to the tuplex.

Given such a query, a traditional query processor will
choose an ordering of the query predicates,φi1 , . . . , φip , where
i1, . . . , ip is a permutation of1, . . . , p (possibly based on the
statistics that it maintains). This plan will then be evaluated,
with attributed acquired as dictated by the plan.

We observe that, because of the natural correlations in the
data, in many cases, such a rigid ordering of predicates might
be highly inefficient compared to a more sophisticated execution
plan that uses the observations acquired during query processing
to change how it executes the rest of the plan. We illustrate this
through an example.

Consider an example query containing two predicatestemp
> 20o C, and light < 100 Lux . Let theapriori selec-
tivities of these two predicates be1

2
and 1

2
respectively, and let

the costs of acquiring the attributes be equal to 1 unit each. In
that case, either of the two plans a traditional query processor
might choose has expected cost equal to 1.5 units (Figure 2).
However, we might observe that the selectivities of these two
predicates vary considerably depending on whether the query
is being evaluated during the day or at night. For instance, in
Berkeley, during Summer, the predicate ontemp is very likely
to be false during the night, whereas the predicate onlight is
very likely to be false during the day. This observation suggests
that using different plans depending upon the time of the day
might be much more efficient. Figure 2 shows theconditional
plan for this query that first checks the time of the day (condi-
tionson the time of day), and evaluates the two query predicates
in different order depending on the time. If we assume that the
selectivity of thetemp predicate drops down to1

10
at night, and

the selectivity of thelight predicate is1
10

during day, then the
expected cost of this plan will be 1.1 units, a savings of almost
40%.

In this paper, we focus our conditional plansP on simple
binary decision trees2, where each interior nodenj specifies a
binaryconditioning predicate, Tj(Xi ≥ xi), that splits the plan

2Our approach can, of course, be extended to more general de-
cision trees, as discussed in Section 7.

into two alternate conditional plans,PTj(x)=T andPTj(x)=F,
whereTj(x) is the truth value ofTj on the tuplex. At nodenj ,
the query processor will evaluate the predicateTj(x) and choose
to execute one of these two subplans depending on the value of
the predicate. Each conditioning predicate depends only on the
value of a single attribute.

2.2 Plan evaluation cost
During execution of a planP, we simply traverse the binary

tree defined byP, acquiring any attributes we need to evaluate
the conditioning predicates. For a particular tuplex, i.e., an as-
signment to all attributes, our plan will traverse a single path to
a leaf of the binary treeP, which is labeled withT or F indicat-
ing the truth value ofϕ(x). The cost of this traversal is the sum
of the cost of the attributes that are acquired by planP in this
traversal. Specifically, at each nodenj in this traversal, if the
attribute in the predicateTj has already been acquired, then this
node has zeroatomic cost. However, if the attributeXi in Tj has
not yet been acquired, then the atomic cost of this node isCi.
For simplicity, we annotate each nodenj of our plan with this
atomic costC(nj). Note that the atomic cost of a leaf is0, as no
attributes are acquired at this point. We can now formally define
the traversal costC(P,x) of applying planP to the tuplex of
the plan recursively by:

C(P,x) =

0 if |P| = 1,

C(Root (P)) + C(PTj(x),x), otherwise,
(1)

where Root (P) is the root node of the tree for planP,
C(Root (P)) is the atomic cost of this root node as defined
above, and the cost is 0 when we have reached a leaf,i.e., when
|P| = 1.

Optimal planning is an optimization problem that involves
searching the space of available conditional plans that satisfy
the user’s query for the planP∗ with minimal expected cost:

P∗ = arg min
P

C(P),

= arg min
P

Ex [C(P,x)] ,

= arg min
P

X
x

P (x)C(P,x). (2)

Using the recursive definition of the costC(P,x) of evalu-
ating a tuplex in Equation (1), we can similarly specify a re-
cursive definition of the expected costC(P) of a plan. For this
recursion, we must specify, at each nodenj of the plan, the con-
ditional probability that the associated predicateTj will be true
or false, given the predicates evaluated thus far in the plan. We
uset to denote an assignment to this set of predicates. Using
this notation, the expected plan cost is given by:

C(P, t) =

8><>:
0 if |P| = 1,

C(Root (P))+
P (Tj | t)C(PTj , t ∧ Tj)+
P (¬Tj | t)C(P¬Tj , t ∧ ¬Tj),

otherwise,

(3)
whereC(P, t) is the expected cost of the (sub)planP starting
from its root nodeRoot (P), given that the predicatest have
been observed. At this point, the expected cost depends on the
value of the new predicateTj . With probabilityP (Tj | t), Tj

will be true and we must solve the subproblemC(PTj , t ∧ Tj),
i.e., the subplanPTj after observing the original predicate val-
uest and the new predicate valueTj = T. Similarly, with prob-
ability P (¬Tj | t) = 1 − P (Tj | t), Tj will be false and we
must solveC(P¬Tj , t ∧ ¬Tj), i.e., the subplanP¬Tj after ob-
servingt and theTj = F. As before, when we reach a leaf
(|P| = 1), the cost is 0. Now the expected cost of a planP is
defined using Equation (3) byC(P, ∅).

Figure 3: Set of possible plans for the two predicate queryX1 = 1∧X2 = 1,

with three attributes, X1, X2, and X3 available for use in the query. The

labels in the nodes indicate the attribute acquired at that point, and the labels

on the edges denote the probability of the outcome along that edge. Each

Pi expands into the conditional probability expansion given at the bottom of

the figure. Terminal points in the tree are labeled with their outcome: Tis

the tuple passes the query orF if it fails. Grayed out regions do not need to

be explored because a predicate fails or all predicates are satisfied before are

reached.

We present several search algorithms for finding minimal cost
plans in Section 3. In the remainder of this section, we illus-
trate the concepts presented thus far by considering thenäıve
generate-and-test algorithm that enumerates all possible condi-
tional plans over a set of attributes.
Example:
Consider the simple example of exhaustively enumerating the
plans for three attributes,{X1, X2, X3}, each with binary do-
main {1, 2}. Our query in this example is simplyϕ =
(X1 = 1 ∧X2 = 1). Figure 3 shows three possible plans in this
enumeration; there are 12 total possible plans in this case. Each
node in this figure is labeled with the attribute acquired at that
node, and thePi values denote the conditional probability of the
outcome along each edge occurring, given the outcomes already
specified in the plan branch. Terminal outcomes are denoted as
T or F, indicating that a tuple that reaches this node is output or
rejected.

Note that, if at some branch of the plan we can prove the
truth value ofϕ we do not need to further expand the tree. For
example, in Figure 3, the grayed-out regions represent branches
of the plan that do not need to be evaluated since a predicate has
failed. The outlined box at the top of Plan (1) indicates that all
query predicates have been evaluated on this branch, soX3 does
not need to be acquired.

Given the plans in Figure 3, it is straightforward to read off
the expected cost as defined in Equation (3). For example, for
Plan (11) the cost is:

C(Plan (11)) = C3+
P (X3 ≤ 1)(C2 + P (X2 ≤ 1 | X3 ≤ 1)C1)+
P (X3 ≥ 2)(C1 + P (X1 ≤ 1 | X3 ≥ 2)C2),

where, for example, when branching onX2, we do not need to
consider the branch for the assignmentX2 = 2 as this assign-
ment makesϕ false and we replace the grayed-out box by a leaf
with valueF.

At this point, the observation from the introduction bears re-
peating: the cheapest possible plan is not always the one that
immediately acquire the query predicates. In our example, plan
(12) could be cheaper than plan (1), if observingX3 has low
cost and dramatically skews the probabilities of the attributes
X1 andX2. In particular, ifX3 = 1 increases the probability of

X2 = 2, then observingX3 may allow us to select the particu-
lar attribute that is more likely to determine ifϕ = F. Thus, if
X3 = 1, the query processor may avoid acquiringX1, which it
does first in plan (1).

2.3 Estimating event probabilities
We now look at the question of determining the values of the

conditional probabilities on the edges of a planP. The problem
is to determine the probability that a predicateTj of the form
Tj(Xi ≥ xi) will be satisfied, given a set of conditioning pred-
icates, ora priori conditions,t. We can write this probability
asP (Tj | t) = P (Tj |t0, . . . , t|t|), whereti is the truth assign-
ment to a predicateTi that appears int. Bayes rule tell us that
this quantity is equal to:

P (Tj , t0, . . . , t|t|)

P (t0, . . . , t|t|)
.

Given this definition, anäıvemethod for computing such prob-
abilities is to scan the historical data, computing the rowsr that
satisfy the predicates int, and the subset ofr, rsat, that satisfies
Tj = T. The probabilityP (Tj = T | t) is simply|rsat|/|r|.

The disadvantage of this approach is that it requires a linear
scan of the entire data set for each probability computation (al-
though the space requirements are small, as it is trivial to com-
pute the sizes ofr andrsat without actually materializing the
rows.) As we will see, our algorithms can require tens of thou-
sands of such computations, so linear scans can be costly, espe-
cially for large data sets. Furthermore, if the number of predi-
cates int is large, then the number of records that satisfy these
predicates may be very small. In such cases, our estimate of
P (Tj = T | t) will have very high variance. We describe more
efficient (and potentially more accurate) techniques for estimat-
ing conditional probabilities in Section 5 below.

2.4 Revisiting the cost model
The cost model that we described in the earlier section fo-

cuses only on the acquisition costs of the attributes. There may
be scenarios where other factors may be equally important. One
of our targeted applications for the techniques developed in this
paper is sensor networks query processing. In that setting, the
communication cost incurred in transmitting the plan to the indi-
vidual sensor nodes also needs to be taken into account. Larger
conditional plans with more branches require more communica-
tion and the overheads of transmitting them could outweigh the
benefits of using conditional plans. The plan size also important
due to the limited storage available in sensor nodes.

A simple approach is to bound the plan size to be under some
fixed size, where that size can be selected to easily fit into device
RAM. Alternatively, we can modify our optimization problem
to include both the cost of acquiring predicates and the cost of
communicating the plan. In this case, the optimization becomes:

arg min
P

(C(P) + αζ(P)) ,

whereζ(P) denotes size in bytes ofP, andα is a scaling fac-

tor equal to cost to transmit a byte
tuples processed in query lifetimethat allows us

to capture the intuition that, as the running time of a continuous
query gets large, the time spent in query execution will domi-
nate the cost of sending the plan. We focus our presentation on
limiting plan sizes, though this joint optimization problem could
be addressed with an extension of our approach.

2.5 Architecture

SQL Query +
Distribution→

Conditional Plan

Conditional
PlanHistorical Data

{Nodeid = 10, Hour = 1, Light = 225, ...}
{Nodeid = 11, Hour = 1, Light = 314, ...}
{Nodeid = 12, Hour = 1, Light = 256, ...}
{Nodeid = 10, Hour = 2, Light = 342, ...}
{Nodeid = 11, Hour = 2, Light = 333, ...}
{Nodeid = 13, Hour = 2, Light = 234, ...}
{Nodeid = 11, Hour = 3, Light = 227, ...}
{Nodeid = 14, Hour = 3, Light = 276, ...}
{Nodeid = 10, Hour = 4, Light = 345, ...}
{Nodeid = 11, Hour = 4, Light = 229, ...}

Pr(A0 = k0,

 A1 = k1,

 A2 = k2, ...)

Multidimensional Probability
Distribution

Per-tuple
application of
conditional plan

Query
Results

Centralized Desktop "Basestation" Sensor Network

Key

Figure 4: Query processing architecture. Conditional plans are generated

from multi-dimensional probability distributions on the basestation and sent

into the network. Sensors execute the plans locally, producing results which

are routed back to the basestation for display.

Before detailing our algorithms for plan generation, we
briefly discuss the architecture in which queries are executed.
Current sensor network hardware [7], with 4K of RAM and a
4Mhz processor does not have sufficient power to run our opti-
mization algorithms. However, once the plan is generated, the
online plan execution step (i.e., a simple traversal of a binary
tree) requires minimal computational power. As a result, we
build the conditional plans offline, on a well-provisionedbases-
tation, using historical readings collected over time. Once gen-
erated, these plans are distributed to the sensors (or other query
processing nodes) for execution. Just as optimizer statistics are
periodically collected and re-analyzed in a traditional DBMS,
we envision that conditional plans may be re-generated at the
user’s request, or when the query processor detects substantial
changes in the correlations.

Figure 4 illustrates the major components of our architec-
ture. The basestation collects historical data, computes condi-
tional probabilities over that data, using either a multidimen-
sional probability distribution or by repeatedly scanning the data
(as described above), and uses those probabilities plus the user’s
query to generate a conditional plan. This plan is sent into the
network, executed by the sensors, and the results are transmitted
back to the basestation.

3. Optimal solution
This section focuses on obtaining the minimal cost plan for

determining the truth value of a logical clauseϕ as defined in
Equation (2). We first determine the complexity class of this
problem, and then present an exhaustive algorithm that can com-
pute such optimal plan.

3.1 Problem complexity
The optimization problem outlined in the previous section

is an instance of the generalminimum cost resolution strategy
problem (MRSP)[12], which seeks to find a minimum cost strat-
egy for evaluating a boolean formulaϕ. The complexity of
MRSP has been analyzed for various special cases. In this sec-
tion, we analyze a case that is particularly relevant for our query
optimization task. We focus on simple boolean formulasϕ that
are formed by the conjunction of unary predicates over a sub-
setX1, . . . , Xm of ourn correlated attributes. This simple case
includes our example Query (1), and, of course, if we were to
include disjunctions the complexity will usually not decrease.
For this problem class, we prove that:

THEOREM 3.1. Let X1, . . . , Xn be a set of attributes, and
let ϕ be a conjunction of unary predicates onX1, . . . , Xm,
wherem ≤ n, then:

1. even if we have an oracle that instantaneously computes
the conditional probabilitiesP (Tj | t), for any predicate
Tj and any assignment to any set of predicatest, then, for
some costK, the problem of deciding whether a plan for

determining the truth value ofϕ with expected cost lower
thanK exists is #P-hard3.

2. if D is a set ofd tuples, and the expected cost of a planP
is approximated by:

C(P) = Ex [C(P,x)] ≈ 1

d

X
x∈D

C(P,x), (4)

then, for some costK, the problem of deciding whether
a plan for determining the truth value ofϕ with approxi-
mate expected cost (as defined in Equation (4)) lower than
K exists is NP-complete.

Item 1 addresses a very general exact optimization case. Here,
we decouple the problem of optimizing the plan from that of
computing the conditional probabilities required to evaluate a
plan, by adding an instantaneous oracle that can provide these
probabilities. Even with this oracle, the complexity of the prob-
lem we would like to solve is still #P-hard (reduction from #3-
SAT), indicating that efficient solution algorithms are unlikely
to exist. Alternatively, as addressed in Item 2, we may wish to
optimize our plan with respect to a particular datasetD. This is a
simpler case, as we only need to consider the tuples inD, allow-
ing us to ignore exponentially-many possible tuples in the opti-
mization that are not inD. Unfortunately, this simpler problem
is still NP-complete (reduction from the complexity of binary
decision trees [16]).

3.2 Exhaustive algorithm
The hardness results in the previous section indicate that a

polynomial time algorithm for obtaining an optimal planP∗ is
unlikely to exist. In this section, we describe an optimal depth-
first search algorithm that includes caching and pruning tech-
niques to attempt to findP∗. Even with caching and pruning,
the worst case complexity of this algorithm is still exponential
in the number of attributes. However, as we are computing our
plans off-line, and then downloading these plans onto the sensor
nodes, we expect that, for query tables over a small number of
attributes, this exhaustive algorithm should be sufficient. These
methods are then compared in Section 6.

Our dynamic programming algorithm (Figure 5) is based on
the observation that once a predicate is used to split the condi-
tional plan, it sub-divides the original problem into two indepen-
dent subproblems. Each subproblem covers a disjoint subspace
of the attribute-domain space covered by the original problem,
and as such, can be solved independently of the other subprob-
lem. A subproblem is thus defined by the attribute-domain space
covered by it, or, specifically, by the ranges of the values that the
attributes can take given the conditioning predicates used before
this subproblem was generated.

We will denote a subproblem where each attributeXi can
take values in the rangeRi = [ai, bi] by Subproblem(ϕ,R1 =
[a1, b1], . . . , Rn = [an, bn]). Our initial problem is denoted
by Subproblem(ϕ,R1 = [1, K1], . . . , Rn = [1, Kn]). We will
specify the dynamic programming algorithm by defining the ex-
pected completion cost of a problem in terms of the costs of its
subproblems. Here, we denote the cost of the optimal plan for
Subproblem(ϕ,R1, . . . , Rn) by J(ϕ,R1, . . . , Rn).

The subproblems that are formed from a particular prob-
lem are defined by the predicate used to split this problem.
The potential predicates that can be used to further divide
Subproblem(ϕ,R1, . . . , Rn) are of the formT (ai ≤ Xi < xi)
andT (xi ≤ Xi ≤ bi). That is, the rangeRi = [ai, bi] of Xi is
divided into[ai, xi − 1] and[xi, bi]. Our goal is to choose the
3#P is a complexity class containing counting problems associ-
ated with decision problems in NP, e.g.,counting the numberof
satisfiable assignments of a SAT formula is #P-complete.

EXHAUSTIVEPLAN (ϕ,R1, . . . , Rn ,C)
// If ranges can determine truth value, or this subproblem has been cached, this

branch is complete.
I F THE RANGESR1, . . . , Rn ARE SUFFICIENT TO DETERMINE TRUTH OF

ϕ, OR ALL QUERY ATTRIBUTES HAVE BEEN OBSERVED:
RETURN [0, ∅],

I F SUBPROBLEMR1, . . . , Rn HAS BEEN CACHED:
RETURN CACHED RESULT.

// Find the optimal attribute to observe here, and, recursively, the optimal plan
for the current ranges.C is a bound that lets us avoid unnecessary search in
high cost branches.

L ET Cmin ← C , AND P ← ∅.
FOR i← 1 TO n:

// If the ith attribute has not been observed yet, pay its observation cost.
I F Ri IS [1, Ki] , THEN :

L ET C′ ← Ci .
ELSE:

L ET C′ ← 0.
I F C′ < Cmin , THEN :

// Iterate through each value of theith attribute, computing the expected
cost recursively according to Equation 5.

FOR xi ← a + 1 TO b, WHERE Ri = [a, b]:
L ET

ˆ
C<xi

,P<xi

˜
← EXHAUSTIVEPLAN (ϕ,

R1, . . . , [a, xi − 1], . . . , Rn ,Cmin − C′).
L ET P<xi

← P (Xi ∈ [a, xi − 1] | R1, . . . , Rn).
L ET C′ ← C′ + P<xi

C<xi
.

I F C′ < Cmin , THEN :
L ET

ˆ
C≥xi

,P≥xi

˜
← EXHAUSTIVEPLAN (ϕ,

R1, . . . , [xi, b], . . . , Rn ,Cmin − C′).
L ET P≥xi

←
`
1− P<xi

´
.

L ET C′ ← C′ + P≥xi
C≥xi

.
// If a lower cost split is found, the plan is modified to include new

split.
I F C′ < Cmin , THEN :

L ET Cmin ← C′ .

L ET P ←

T (Xi < xi)→ P<xi
,

T (Xi ≥ xi)→ P≥xi

ff
.

// Only cache results if an optimal plan is obtained, rather than early stopping
by pruning.

I F Cmin < C , THEN :
CACHE [Cmin,P] AS THE OPTIMAL PLAN FORR1, . . . , Rn .

RETURN [Cmin,P].

Figure 5: Exhaustive planning algorithm.

optimal splitting attributeXi and the optimal assignment from
the range[ai, bi].

The expected cost of a problem can now be defined recur-
sively by the sum of three terms: the cost of acquiring the split-
ting attribute, plus the cost of each subproblem weighted by the
probability that the observed attribute value will lead to this par-
ticular subproblem. Specifically, if we choose to split on at-
tributeXi, we must first pay the cost of acquiringXi, which we
now denote byC′

i. If the original problem has not yet acquired
this attribute,i.e., if the rangeRi of Xi still spans all possible
values (Ri = [1, Ki]), then we must pay the acquisition cost
C′

i = Ci. However, ifXi has already been acquired (in which
case,[ai, bi] will be a strict subset of[1, Ki]), thenC′

i = 0.
Now, we must consider the recursive cost of the subprob-

lems. The particular choice of subproblem depends on the ac-
tual observed value ofXi. Thus, the probability we will need
to solve Subproblem(ϕ,R1, . . . , [ai, xi − 1], . . . , Rn) depends
on the probability thatXi will take on a value in[ai, xi − 1]
given the rangesR1, . . . , Rn observed thus far,i.e., P (Xi ∈
[ai, xi − 1] | R1, . . . , Rn). The optimal choice of splitting at-
tribute and value is now the one that minimizes the expected cost
of the resulting subproblems.

J(ϕ, R1, . . . , Rn) = min
i

min
xi∈[ai+1,bi]

C
′
i+

P (Xi ∈ [ai, xi − 1] | R1, . . . , Rn)×
J(ϕ, R1, . . . , [ai, xi − 1], . . . , Rn) +

P (Xi ∈ [xi, bi] | R1, . . . , Rn)×
J(ϕ, R1, . . . , [xi, bi], . . . , Rn). (5)

To complete this recursion, we must define the base cases.

First, if all of the attributes inϕ have already been observed,
then the cost is0. Specifically,J(ϕ, R1, . . . , Rn) = 0, if each
Ri = [ai, bi] is a strict subset of[1, Ki], for each query at-
tribute i = 1, . . . , m. Similarly, we may reach a point where
the rangesR1, . . . , Rn are sufficient to evaluate the truth value
of ϕ. For example, ifϕ is a conjunctive query and thejth pred-
icate in the query isφj(Xi ≥ 10), and we reach a subproblem
J(ϕ, R1, . . . , Rn) whereRi = [1, 9], then the cost of this sub-
problem is0. These base cases now complete the recursion.
The optimal plan is obtained by caching, for each subproblem
J(ϕ, R1, . . . , Rn), the attributeXi and the assignmentxi that
minimizes Equation (5).

Figure 5 shows the pseudo-code of our dynamic programming
algorithm based on this recursion, that searches the plan space in
a depth-first manner. Other than the caching optimization inher-
ent in dynamic programming, we also use pruning to cut down
on the search space explored. Our pruning strategy is simple:
when exploring possible splitting attribute values, we store the
cost of the best plan explored thus far (C), if the current branch
exceeds this cost, we no longer need to explore. More elaborate
pruning techniques, such as branch-and-bound,could potentially
be effective in this problem.
Complexity: The complexity of EXHAUSTIVEPLAN de-
pends on the total number of subproblems that may be
generated during the execution. This number is bounded
by

Qn
i=1

Ki×(Ki−1)
2

, i.e., the number of possible ranges
R1, . . . , Rn. For each subproblem, we have to consider (1) each
possible splitting attribute and assignment, in the worst case,Pn

i=1(Ki − 1), and (2) compute the conditional probabilities
required by the algorithm. Hence the running complexity of
this algorithm in the worst case (when pruning does not help
in reducing the search space) isO(nKK2n + KpK2n), where
K = maxi Ki is the maximum number of possible assignments
for an attribute, andKp denotes the complexity of computing the
conditional probabilities — we will discuss this in detail in Sec-
tion 5; thus, this optimal algorithm is only feasible for a small
number of attributes, each with a small number of assignments.

4. Heuristic solutions
The complexity of the exhaustive algorithm described in the

last section is prohibitive except for the simplest of problems.
In this section, we present several heuristics for finding good
conditional plans; we compare these algorithms in Section 6.

4.1 Sequential Plans
A sequential planis defined to be a plan that does not use

any conditioning predicates tosplit the plan, choosing instead
a sequential order on predicates that is followed regardless of
the observed values, until a stopping condition is reached. As
we will see later, sequential plans form the building blocks of
our heuristic conditional planning algorithm. We consider three
algorithms for choosing sequential plans.

4.1.1 Näıve Algorithm
For conjunctive queries,Näıvealgorithm, used by most tradi-

tional query optimizers [18, 13, 3], simply orders predicates by
cost

1−selectivity
, where selectivity is the marginal probability that

the predicate does not output a tuple as computed from the his-
torical data. Because this algorithm does not take into account
data correlations, we expect it to perform poorly over correlated
data sets. We are not aware of any extensions of this algorithm
for arbitrary queries.

4.1.2 Optimal Sequential Plan (OptSeq)

Interestingly, the exhaustive algorithm described in Sec-
tion 3 can be used to compute the optimal sequen-
tial plan for a conjunctive query. We will usebP =
OPTSEQUENTIAL(ϕ, R1, . . . , Rn) to define the optimal se-
quential planbP given that we have already observed the ranges
R1, . . . , Rn to the attributesX1, . . . , Xn. Note that any con-
junctive queryϕ over X1, . . . , Xm can be written asϕ =Vm

i=1 φi(li ≤ Xi ≤ ri). If we observe the value of some query
attributeXi, then eitherϕ is proven to be false, or we need to
observe other query attributes. In general, the choice of next
query attribute will depend on the particular observed value of
Xi, yielding a complex conditional plan. However, we can rede-
fine our optimization problem to restrict potential conditioning
predicates to be only the query predicatesφi(li ≤ Xi ≤ ri). If
φi is observed to be false, we can terminate the search as above.
Otherwise, we continue by choosing another predicateφj , and
thus observing attributeXj . If φj is false, we have proven that
ϕ is false, otherwise we simply recurse. Clearly, this procedure
will lead to a sequential order over attributes. The same opti-
mal dynamic programming algorithm presented in the previous
section can be applied in this redefined version of the problem
to obtain this optimal sequential plan. This redefined problem is
specified as follows:

• We redefine each query attributeXi byX ′
i ∈ [0, 1], where

X ′
i = 1 if Xi ∈ [li, ri] andX ′

i = 0 otherwise. Non-query
attributesXm+1, . . . , Xn are removed.

• In terms of these new attributes, our query now becomes
ϕ′ =

Vm
i=1 φ′i(X

′
i = 1). Note thatϕ is true if and only if

ϕ′ is true.
We can view this redefinition of the problem as a rediscretiza-
tion of the possible values of the attributes into2 bins, i.e.,
Xi ∈ [li, ri] andXi 6∈ [li, ri]. We must also define the cost
and probabilities in this redefined problem, which, of course,
depend on the input rangesR1, . . . , Rn of OPTSEQUENTIAL:

• As in the original problem, the cost for acquiring eachX ′
i

is equal toCi, if Ri = [1, Ki], and0 otherwise.

• The joint probability for the new attributesX ′
1, . . . , X

′
m

P (X ′
1, . . . , X

′
m) is initialized to be the joint probability

of the truth value of the query predicates, given the input
ranges:P (X ′

1, . . . , X
′
m | R1, . . . , Rm).

Due to lack of space, we defer the development of an algo-
rithm for finding optimal sequential plans for arbitrary queries
to the full version of the paper [8].

4.1.3 Greedy Sequential Plan (GreedySeq)
This heuristic was initially proposed by Munagala et al. [20].

The running time complexity of finding the optimal sequential
plan isO(m2m), which makes it impractical for queries with
large number of predicates (the problem of finding optimal se-
quential plan for conjunctive queries is NP-Hard [20]). For
queries with large number of predicates, we can instead use the
greedy heuristic proposed by [20]. Briefly, this heuristic pro-
ceeds by choosing the predicates to be applied in order:

1. Let Pa be the set of predicates that have already been cho-
sen (set to be empty at the beginning).

2. For each of the predicatesφi, 1 ≤ i ≤ m, let pi be the
probability that the predicate is satisfiedgiventhat all the
predicates inPa have already been satisfied.

3. Choose the predicateφj that minimizes
Cj

1−pj
to be evalu-

ated, whereCj is the cost of acquiring the corresponding
attribute.

4. Add φj to Pa.

5. Repeat Step 2 until all predicates have been chosen.
This algorithm can be shown to be 4-approximate [20], and

as demonstrated in [20], it outperformsNäıvesince it takes into
account correlations in the data.

4.2 Greedy conditional planning algorithm
Next we present our greedy conditional planning algorithm

that chooses conditioning predicates greedily, by making locally
optimal decisions.

4.2.1 Greedy binary splits
Recall that the exhaustive algorithm described in Section 3

finds the optimal split point for each problem, by consider-
ing the optimal values of each resulting subproblem. Instead,
we focus on locally optimal greedy splits. The choice of this
greedy split point depends on several factors, including the con-
ditional probability distribution after the split, the cost of at-
tributes, and, most importantly, the query at hand. Thus, it is
insufficient to use decision tree or histogram building heuristics
that simply consider the distribution when making this choice;
we must formulate the expected decrease in cost more pre-
cisely. In particular, we define thelocally optimal binary split
to be the split point that results in maximumimmediate benefit
over the optimal sequential plan. More formally, for a problem
Subproblem(ϕ, R1, . . . , Rn), the locally optimal binary split,
GREEDYSPLIT(ϕ, R1, . . . , Rn) is defined as a greedy version
of Equation (5):

GREEDYSPLIT(ϕ, R1, . . . , Rn) = min
i

min
xi∈[ai+1,bi]

C
′
i +

P (Xi ∈ [ai, xi − 1] | R1, . . . , Rn)×bJ(R1, . . . , [ai, xi − 1], . . . , Rn) +

P (Xi ∈ [xi, bi] | R1, . . . , Rn)×bJ(R1, . . . , [xi, bi], . . . , Rn), (6)

where bJ(R1, . . . , Rn) is the expected cost of the optimal
sequential plan starting from the rangesR1, . . . , Rn. Fig-
ure 6 shows the complete pseudo-code of the algorithm that
finds the locally optimally split point, given a sub-routine
OPTSEQUENTIAL that computes the optimal sequential plan for
a subproblem.

Note that instead of usingOptSeqalgorithm to generate the
base plans, we could instead use theGreedySeqalgorithm, or
any other sequential planning algorithm, for that purpose. Con-
sidering thatOptSeqis exponential in the number of predicates,
this may be required for queries with large number of predicates.

4.2.2 Greedy planning algorithm
Our greedy planning algorithm uses the greedy splits de-

scribed above to efficiently find a good conditional plan for the
query. The algorithm maintains a current decision list planP,
which is initially defined to be just a leaf with the root node.
Each leafni in the current plan stores an optimal sequential planbP for its subproblem, and the optimal greedy split plan defined
by Equation (6). The benefit of applying the greedy binary split
at ni over the optimal sequential plan is given by the expected
cost of the sequential plan,C(bP) minus the expected cost of the
optimal greedy splitC computed by Equation (6). We maintain
a priority queue over leaves of the current plan. A particular leaf
ni, whose subproblem isR1, . . . , Rn, is inserted in the queue
with a priority given by the differenceC(bP) − C weighed by
the probability that our plan will reach the subproblem in leaf

GREEDYSPLIT(ϕ,R1, . . . , Rn)
// Greedily find the best attribute to split on, assuming that the optimal sequen-

tial plan is used after this split.
L ET Cmin ←∞.
FOR i← 1 TO n:

// If the ith attribute has not been observed yet, pay its observation cost.
I F RANGE OFXi IS [1, Ki] , THEN :

L ET C′ ← Ci .
ELSE:

L ET C′ ← 0.
I F C′ < Cmin , THEN :

// Iterate through each value of theith attribute, computing the expected
cost according to Equation 6.

FOR xi ← a + 1 TO b, WHERE Ri = [a, b]:

L ET
h bC<xi

, bP<xi

i
← OPTSEQUENTIAL(ϕ,

R1, . . . , [a, xi − 1], . . . , Rn).
L ET P<xi

← P (Xi ∈ [a, xi − 1] | R1, . . . , Rn).

L ET C′ ← C′ + P<xi
bC<xi

.
I F C′ < Cmin , THEN :

L ET
h bC≥xi

, bP≥xi

i
← OPTSEQUENTIAL(ϕ,

R1, . . . , [xi, b], . . . , Rn).
L ET P≥xi

←
`
1− P<xi

´
.

L ET C′ ← C′ + P≥xi
bC≥xi

.
// If a lower cost split is found, the plan is modified to include new

split.
I F C′ < Cmin , THEN :

L ET Cmin ← C′ .
L ET T ← T (Xi ≥ xi), bP< ← bP<xi

, bP≥ ← bP≥xi
.

RETURN
h
Cmin, T, bP<, bP≥i

.

Figure 6: Greedy selection of binary splitting point.

ni, P (R1, . . . , Rn), as the expected gain of expandingni is

P (R1, . . . , Rn)
“
C(bP)− C

”
.

Our greedy algorithm chooses the next leaf to expand from
the queue based on this priority.

Figure 7 illustrates the complete greedy algorithm. We start
with a sequential plan for the root node, and a single split on
this node. We then iterate through the queue. We remove the
top leafni, and create two children leavesn′i andn′′i , based on
the greedy split fromni. These new leaves are then added to the
queue with appropriate priorities.

4.2.3 Complexity
The running complexity of this algorithm can be seen to be

O(nKCseqN + nKKp), whereCseq denotes the cost of com-
puting sequential plan for a subproblem (which will depend on
the sequential planning algorithm used for that purpose),N de-
notes the number of splits performed by the algorithm, andKp

denotes the complexity of computing the probabilities required
by this algorithm.

4.3 Restricting Choice of Split Points
The final heuristic we present is to reduce the number of can-

didate split points considered by the conditional planning al-
gorithms. In particular, for continuous variables, we need to
choose how to discretize the range of the variable; even for dis-
crete variables with large domains, we may need to restrict the
number of split points considered by the conditional planning
algorithms. The solution we propose in this paper is to simply
divide the domain of the variable into equal sized ranges and
consider only the end-points of the ranges. We defer the issue
of selecting the candidate split points more intelligently to fu-
ture work. Ifri denote the number of split points considered for
variableXi, we define theSplit Point Selection Factor(SPSF)
of a conditional planning algorithm to be:

SPSF = Π1≤i≤nri

A small SPSF can be expected to reduce the effectiveness of our

GREEDYPLAN (ϕ,MAXSIZE)
// Start plan with one leaf containing the optimal sequential plan, and greedily

add splits using GreedySplitin Figure 6. A priority queue over the leavesni

of the current plan determines which leaf to expand; the priority of a leaf
is the improvement in expected cost of splitting that leaf, versus using the
optimal sequential plan.

L ET bP ← OPTSEQUENTIAL(ϕ,[1, K1], . . . , [1, Kn]).

L ET
h
C, T (Xj ≥ xj), bP<xj

, bP≥xj

i
← GREEDYSPLIT(ϕ,

[1, K1], . . . , [1, Kn]).

L ET n1 ←
h bP, T (Xj ≥ xj), bP<xj

, bP≥xj
, [1, K1], . . . , [1, Kn]

i
.

L ET P ← {n1}.
ADD TO QUEUE n1 WITH PRIORITY C(bP)− C .

// Iterate expanding leaves until plan size reaches limit.
WHILE |P| < MAXSIZE:

REMOVE TOP OF QUEUE :

ni =
h bP, T (Xj ≥ xj), bP<xj

, bP≥xj
, R1, . . . , Rn

i
,

WHERE Rj = [a, b].

L ET
h
C, T (Xu ≥ xu), bP<xu , bP≥xu

i
← GREEDYSPLIT(ϕ,

R1, . . . , [a, xj − 1], . . . , Rn).
// The leafni is expanded to two leaves,n′i andn′′i that are added to the

queue.

L ET n′i ←
h bP<xj

, T (Xu ≥ xu), bP<xu , bP≥xu ,

R1, . . . , [a, xj − 1], . . . , Rn

i
.

ADD TO QUEUE n′i WITH PRIORITY

P (R1, . . . , [a, xj − 1], . . . , Rn)
“

C(bP<xj
)− C

”
.

L ET
“

C, T (Xv ≥ xv), bP<xv , bP≥xv

”
← GREEDYSPLIT(ϕ,

R1, . . . , [xj , b], . . . , Rn).

L ET n′′i ←
h bP≥xj

, T (Xv ≥ xv), bP<xv , bP≥xv ,

R1, . . . , [xj , b], . . . , Rn

i
.

ADD TO QUEUE n′′i WITH PRIORITY

P (R1, . . . , [xj , b], . . . , Rn)
“

C(bP≥xj
)− C

”
.

// The plan is modified to include new split.
L ET P ← P ∪

˘
ni → n′i, ni → n′′i

¯
.

RETURN P .

Figure 7: Greedy planning algorithm.

algorithms as the choice of split points is too restricted; whereas
a SPSF equal to the product of domain sizes allows arbitrary
choice of split points.

5. Efficient probability computations
Until now, we have ignored the issue of computing the event

probabilities required by our planning algorithms. In particu-
lar, the algorithms require the computation of conditional prob-
abilities of predicates given a set of predicates that are already
known to be satisfied. In this section, we will discuss how these
probability computations can be performed efficiently, given a
historical dataset of samples.

Consider the case where each required conditional proba-
bility is estimated from counts from a datasetD of d tuples
as described in Section 2.3. Consider a subproblem gener-
ated during the execution of either the EXHAUSTIVEPLAN algo-
rithm or the GREEDYSPLIT algorithm,Subproblem(ϕ, R1 =
[a1, b1], . . . , Rn = [an, bn]), and let the part of the dataset that
satisfies the conditionsXi ∈ Ri,∀i, beD(R1, . . . , Rn).

5.1 Probabilities for exhaustive planning
While solving a subproblem, the probabilities that EXHAUS-

TIVEPLAN (Figure 5) needs to compute are:

P<xi = P (Xi ∈ [ai, xi−1] | R1, . . . , Rn), ∀i, ∀ai < xi ≤ bi.

As we can see, all the probabilities required by this step of the al-
gorithm (ignoring any recursive calls for subproblems) are prob-
abilities conditioned on(X1 ∈ R1) ∧ . . . ∧ (Xn ∈ Rn). Note
thatP (xi | R1, . . . , Rn) is simply an independent normalized

histogram ofXi for the data inD(R1, . . . , Rn). We can com-
pute these histograms for every attributeX1, . . . , Xn with one
pass over the dataset. Once we haveP (xi | R1, . . . , Rn), we
can compute the probabilities of the required ranges incremen-
tally by noting that:

P<(xi+1) = P<xi + P (xi | R1, . . . , Rn). (7)

Thus, we can compute the probabilities of all required ranges in
time onlyO(|D|nK + nK), whereK = maxi Ki.

We must also consider generating the dataset for each sub-
problem called recursively fromR1, . . . , Rn. Here, we can cre-
ate an index independently for each attribute, for each value of
the attribute in timeO(|D|nK). We can now use a similar tech-
nique to the one used for range probabilities in Equation (7): the
set of indices for the range[1, xi] is equal to the set of indices
for [1, xi − i] union with the indices forxi. Thus, selecting the
dataset for all resulting subproblems is alsoO(|D|nK + nK).
Therefore, the complexity of the exhaustive algorithm using the
dataset to estimate probabilities isO(|D| (nK)2K2n).

5.2 Probabilities for greedy planning
When the GREEDYSPLIT is considering a conditioning pred-

icateXi ∈ [ai, xi − 1], it requires computation of two types of
distributions:

• P<xi = P (Xi ∈ [ai, xi − 1] | R1, . . . , Rn) as above,

• a joint probability distribution over the rediscretized at-
tributes in the query predicates, conditioned onX1 ∈
R1 ∧ . . . ∧ Xn ∈ Rn and on the particular choice of
splitting attribute and assignment.

The conditional probabilitiesP<xi can be computed incremen-
tally as in Equation (7). The joint distribution over the redis-
cretized attributes can be similarly computed from a normal-
ized joint histogram over each attributeXi and over the re-
discretized attributesX ′

1, . . . , X
′
m. We can then use an incre-

mental rule similar to the one in Equation (7) to compute the
required joint probabilities. Thus, the total computation re-
quired in at each split isO(|D|nK) to create the histograms
and O(nK + nKvm) to incrementally update the joint dis-
tributions. Using these optimizations, if the number of sub-
problems solved by GREEDYSPLIT is N , then the total running
time is O(NnK(Coptseq + vm)), or, for conjunctive queries,
O(NnKm2m).

6. Evaluation
We now experimentally evaluate the algorithms described

in the above sections over various datasets. We demonstrate
that our algorithm offers a substantial performance increase
over a non-conditional query execution engine for a wide class
of queries over real-world data sets. We also show that our
GreedySplit heuristic closely approximates the exhaustive al-
gorithm and that our techniques scale with respect to the num-
ber of query predicates, the domain size of the attributes in the
query, and the amount of historical data. Finally, we show that
our heuristic performs well with a small number of splits, corre-
sponding to a small plan size that may be required in memory-
constrained environments.

We implemented our algorithms in Java on traditional PC
hardware. We evaluate their performance by costing and run-
ning plans on this centralized PC; we reserve implementing a
plan executor that runs on sensor network hardware for future
work. We believe our techniques are readily implementable on
sensor networks, as the energy overhead required to execute a

Relative Performance, Heuristic vs. Exhaustive

0

0.2

0.4

0.6

0.8

1

1.2

Naive 0 1 5 10

Algorithm (0 - 10 = Num Steps in Heuristic)

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

ce

Average Worst Case

Exhaustive Performance

Performacne Gain of Heuristic-5 over Exhausitve
with Varying SPSF factors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10^6 10^7 10^8

Exhaustive SPSF

x
 P

e
rf

o
rm

a
n

ce
 G

a
in

Average Gain Maximum Gain

Heuristic Algorithm, 5

Steps, SPSF=1014

Fraction of Experiments vs. Performance Gain
Heuristic-10 vs Naive, Lab Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.
03
1.
05
1.
08
1.
10
1.
12
1.
15
1.
18
1.
20
1.
23
1.
27
1.
30
1.
33
1.
37
1.
41
1.
45
1.
49

Performance Gain

F
ra

ct
io

n
 o

f
E
x
p

e
ri

m
e
n

ts

(a) (b) (c)

Figure 8: Quality of plans: (a) Exhaustivealgorithm versus the Näıve and Heuristic algorithms on the lab data set, the threeHeuristic bars represent different

numbers of splits in theHeuristic algorithm; (b) impact of using a smaller SPSF’s to train theExhaustivealgorithm (versus Heuristic-5); (c) cumulative frequency

of performance gain for experiments over the lab data set, the frequency of at a particular x-coordinate indicates the fraction of experiments that did at least that

well.

conditional plan, especially when compared to the costs of ac-
quiring sensor readings, will be small.
Datasets: We present results for two real world data sets col-
lected from TinyOS-based sensors, as well as a synthetic dataset
adapted from [2].

• Lab: This is a data set containing 400,000light, temper-
ature, andhumidityreadings collected every two minutes
for several months from about 45 motes. The data set also
includesid of the generating sensors,time of the day, and
batteryvoltage. The first three attributes are very expen-
sive to acquire, whereas the rest of the attributes are rela-
tively inexpensive. For simplicity, we model the costs of
the first three attributes to be 100 units each, and the costs
of acquiring the rest of the attributes to be 1 unit each.

• Garden-5, Garden-11:This dataset consists of data col-
lected from a set of 11 motes deployed in a forest. Corre-
sponding to each mote, there are 3 attributes,temperature,
voltage, andhumidity. We present results for a subset of
this dataset containing data from 5 motes (Garden-5) as
well as for the entire dataset (Garden-11). The queries are
issued against the sensor network as a whole; in essence,
we treat these datasets as having 16 or 34 attributes re-
spectively (3 per mote, and time), and query the state of
the sensor network. Finally, the costs of acquiringtemper-
ature andhumidityare set to be 100 units each, whereas
the cost of the rest of the attributes is set to be 1 unit each.

• Synthetic: Finally, we present results on a synthetic
dataset adapted from [2]. The data generator uses three
parameters,n (number of attributes), Γ (correlation fac-
tor), andsel (unconditional selectivity). Then attributes
are divided intodn/Γ + 1e groups containingΓ + 1 at-
tributes each. Each attribute takes exactly two values, 0
and 1. The data is generated so that (1) any two attributes
in the same group are positively correlated, and have iden-
tical values for 80% of the tuples in the dataset, (2) any
two attributes in different groups are distributed indepen-
dently, and (3) for each attribute, the fraction of the tuples
for which that attribute is equal to 1 is approximatelysel.
To model cheap correlated attributes, we let one attribute
in each group to have cost equal to 1 unit, whereas the
rest of the attributes have cost 100 units each. Finally, the
query is simply a conjuctive query checking whether all
expensive attributes have value= 1. We present results
for various settings of the parameters.

Test v. Training: Our plans generated by our algorithms are
built using a set oftraining data, and evaluated on a disjoint set

of test data (for the first Lab and Garden datasets). Readings
from these two sets are from non-overlapping time windows,
simulating the case where historical data is used to generate a
model that is later run for days or weeks within a sensor network.
Algorithms Compared: We consider the following algorithms
in this study:

• Näıve (Cf. Section 4.1.1),

• CorrSeq: Sequential plan chosen by considering data cor-
relations. If the number of attributes is small (e.g.Lab
dataset), we use theOptSeqalgorithm, whereas for the
other datasets, we use theGreedySeqalgorithm for this
purpose.

• Exhaustive: The conditional plan computed by our ex-
haustive algorithm.

• Heuristic-k: The conditional plan generated by our
greedy conditional planning algorithm with at mostk
conditional branches allowed. Once again, we useOpt-
Seqfor choosing the base plans for the first dataset, and
GreedySeqfor choosing the base plans for the second
dataset.

6.1 Lab Dataset
In our first experiment, we compare the performance of the

exhaustive algorithm to our greedy heuristic. Our test queries
consist of three-predicate queries over the lab data. We found
that theNäıve is very successful on queries with very low selec-
tivities, as the first few chosen attributes are usually sufficient
to answer the query; for this reason, we chose a more challeng-
ing setting where most predicates generated for our experiments
are satisfied by a large (approximately 50%) portion of the data
set. For each query, we select, uniformly and at random, the left
endpoint of the range of the query; the width of each predicate is
chosen to be two standard deviations of the attribute which it is
over. Except where noted, to allow the exhaustive algorithm to
run, we use a SPSF of108 for the experiments with exhaustive
in this section.

Figure 8(a) shows the average performance ofHeuristic rel-
ative toExhaustivewhen both are running on the dataset with
SPSF set to108. We vary the number of splits allowed for
Heuristic from 0 to 10. Each bar represents the average of 95
different queries. Notice that in all cases, our algorithms out-
perform Näıve, and that both the worst case performance and
average performance ofHeuristic-10 is very close to the perfor-
mance ofExhaustive. We tried this experiment with a variety of
SPSF’s and data sets, and obtained similar results; space con-
straints preclude the inclusion of these graphs.

Figure 9: Example of a conditional plan generated by the heuristic algorithm

for a query over our lab data set looking for instances when it is both bright,

cool, and dry.

The space and time complexity of the exhaustive algorithm
are very high. On a 2.4GHz Pentium 4 with 1 gigabyte of RAM,
the largest problems we could solve were still several orders of
magnitude smaller than the smallest of our real-world data sets.
We discuss scalability results for all of our algorithms in Section
6.4.

Finally, we compare the performanceExhaustiveagainst that
of Heuristic for varying SPSF’s. Figure 8(b) shows the results
of this experiment, where we compareHeuristic-5 with a SPSF
of 1014 to Exhaustivewith varying SPSF’s. As before, each bar
represents the average (or maximum) of 95 trials. Notice that
Exhaustivewith smaller SPSF’s performs substantially worse
thanHeuristicwith large SPSF’s.

In general, as these results show, constraining the split point
selection too much is probably not appropriate, as it tends to
obscure interesting correlations in the data by grouping together
parts of the attribute space that may be partially correlated with
other attributes, diluting the benefit our algorithms can obtain by
exploiting such correlation.

6.1.1 Detailed Plan Study
Figure 9 illustrates an example of a real plan produced by our

system for one of our test queries from the lab data set. The total
performance gain for this plan is about 20% overNäıve. In this
case, the query looks for sensors that are reading cool tempera-
tures, and relatively high light intensities – indicating, perhaps,
that someone is working in the lab at night when it is typically
cold and dark. None of the predicates in this query have a par-
ticularly low marginal selectivity, but the total selectivity of the
query will be low, as there are few cases when it is both cold
and bright in our lab. Notice that in this case, our algorithm first
conditions on the hour in the day: when it is morning (hours 0
- 6), it prefers to sample light first, as very early in the morning
the lab is unused and it is dark, so this predicate will fail. In the
afternoon, additional conditional predicates on nodeid are intro-
duced. The split at nodeid≤ 6 represents a group of sensors
(1-6) in a common part of the lab that is not used at night, so
darkness is highly correlated with time of day. At the other sen-
sors (nodeid≥ 7), the lab is sometimes in use until late into the
night. Thus, in this part of the lab, light may not be correlated
with time of day. Interestingly, it appears that humidity is corre-
lated with time of day, as the generated plan samples humidity
first late at night. This is likely because the temperature control
system in our building is turned off at night, and air conditioning
and heating tends to keep the humidity low.

> 0.9 > 1 > 1.1 > 1.5 > 2 > 2.5

Performance Gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 E

xp
er

im
en

ts

Comparing Naive and Heuristic-10

> 0.9 > 1 > 1.1 > 1.3 > 1.5

Performance Gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 E

xp
er

im
en

ts

Comparing CorrSeq and Heuristic-10

Figure 10: Results for the Garden-5 Dataset

> 0.9 > 1 > 1.1 > 1.5 > 2 > 2.5

Performance Gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 E

xp
er

im
en

ts

Comparing Naive and Heuristic-10

> 0.85 > 1 > 1.1 > 1.3 > 1.5

Performance Gain

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 E

xp
er

im
en

ts

Comparing CorrSeq and Heuristic-10

Figure 11: Results for the Garden-11 Dataset

6.2 Garden Dataset
For the garden dataset, we generated two sets of queries con-

taining identical range predicates overtemperatureandhumidity
over all motes. The predicates used were generated as follows:

• a ≤ temperature/humidity ≤ b, where the range
〈a, b〉 was selected randomly so as to cover a specified
fraction of the domain size (which was varied between
1.25 to 3.25).

• not(a ≤ temperature/humidity ≤ b).
The SPSF forHeuristicwas set to10n, wheren is the number

of attributes in the dataset.
Figure 10 shows the results of running 90 queries generated as

above on the Garden-5 dataset. The queries in this case consist
of 10 predicates each. We plot two graphs, comparingHeuristic
to bothNäıveandCorrSeq. As we can see,Heuristicperforms
significantly better than bothNäıveandCorrSeqfor a large frac-
tion of queries. Though aHeuristic plan will never be worse
thanNäıveor CorrSeqover the training data, because of the mi-
nor differences between the probability distributions of the test
and the training datasets, for some of the queries,Heuristicac-
tually performs slightly worse than (less than 10%) the other
algorithms; as we can see, the penalty in those cases is negli-
gible, whereas the gains for the rest of queries are significantly
higher.

Figure 11 shows a similar plot for the Garden-11 dataset (with
queries consisting of 22 predicates each). The performance im-
provement is even more significant in this case, with a factor of
4 improvement overNäıvefor some of the queries.

6.3 Synthetic Dataset
Finally, we present results over the synthetic dataset adapted

from [2] for four settings of the parameters: (1)Γ = 1, n =
10, (2) Γ = 3, n = 10, (3) Γ = 1, n = 40, and (4)Γ =
3, n = 40. The queries (generated as described above) contain
5, 7, 20, and 30 predicates respectively. We plot the execution
costs of running the plans generated by our algorithms vs the
unconditional selectivity (sel) of the predicates. ForHeuristic,
we present results with at most 5 branches, and with at most 10
branches (Heuristic-5, andHeuristic-10).

As we can see in Figure 12, in all cases, conditional planning
offers significant performance improvements over the plans gen-
erated by bothNäıveandCorrSeq, in several cases by more than

0.2 0.4 0.6 0.8

Selectivity

0

100

200

300

E
xe

cu
tio

n
C

os
t

Gamma = 1, #Attributes = 10

Naive
CorrSeq

0.2 0.4 0.6 0.8

Selectivity

0

100

200

300

400

E
xe

cu
tio

n
C

os
t

Gamma = 3, #Attributes = 10

Heuristic-5
Heuristic-10

0.2 0.4 0.6 0.8

Selectivity

0

100

200

300

400

Gamma = 1, #Attributes = 40

0.2 0.4 0.6 0.8

Selectivity

0

100

200

300

400

500

Gamma = 3, #Attributes = 40
Figure 12: Results for Synthetic Dataset for various parameter settings. Here,

CorrSeqand Näıveoverlap completely whenΓ = 1, whereasHeuristic-5 and

Heuristic-10 have very similar performance when number of attributes is 10.

a factor of 2. Note that whenΓ = 1, NäıveandCorrSeqproduce
nearly identical query plans.

6.4 Scalability
We also ran experiments studying the scaling of the exhaus-

tive and heuristic algorithms versus number of predicates, at-
tribute domain sizes, and the amount of historical data. Recall
from our discussion above that we expect the performance of
our heuristic algorithm to scale linearly in the size of the data
set, linearly with domain size, and exponentially (base 2) in the
number of query variables. The exhaustive algorithm is also lin-
ear in the size of the data set, but is polynomial in the size of the
domain size and exponential in the number of query variables,
where the base of the exponent is the domain size. Our scalabil-
ity experiments verify that our implementation obeys the com-
plexity bounds given above. Due to space limitations, we omit
these experiments from this paper.

7. Applications and extensions
This paper focuses on building the basic data-structures and

algorithms required for obtaining good conditional plans for
complex acquisitional queries. Next, we outline several exten-
sions built on this basic framework that we are planning to pur-
sue in future.

Approximate answers: In a related work, we have pro-
posed an approach to exploit across-mote attribute correlations
in sensor network query processing to efficiently answer prob-
abilistic queries [9]. The algorithms developed in that paper,
however, only generatelinear plans; we are planning to explore
how conditional plans can be used instead to avoid unnecessary
acquisitions in that scenario as well.

Complex acquisition costs: We have focused on a very
simple cost function: the independent cost of acquiring a sin-
gle variable. In general, however, we may have significantly
more complex cost functions. For example, motes have sen-
sor boards with multiple sensors that are powered up simultane-
ously. Thus, the cost of acquiring a reading can be decomposed

as the high cost of powering up the board, plus a low cost for
a reading of each sensor in the board. This can be simulated
in our planning algorithms by making the costs of acquiring at-
tributes themselves conditional on the attributes acquired so far.
Acquisition costs (latencies) in web querying may also vary de-
pending on the time of the day and other phenomenon. How to
capture such cost functions, and how to use them efficiently, is
an interesting open question.

Another scenario where complex acquisition costs arise is
when a query refers to attributes that are themselves distributed
(e.g., if we are querying the state of the sensor network as a
whole). The acquisition costs of the attributes vary drastically
depending on which node is currently executing a predicate. The
dynamic nature of sensor networks poses interesting challenges
in estimating and using such cost functions.

Graphical Models: The methods presented in the previous
section, that use historical data to estimate conditional probabil-
ities, suffer from two issues: First, these algorithms are linear
in the size of the dataset, which can be very large. Second, af-
ter each split on a predicate, each subproblem will be consistent
with at most half of the data. Thus, the amount of data available
to estimate probabilities decreases exponentially with the num-
ber of splits. After several splits, our probability estimates will
thus have very high variance. This can result in choosing arbi-
trary plans, that may turn out to be significantly worse in reality
than on the training data.

An alternative is to build a compact model of the data.Prob-
abilistic graphical modelsprovide a compact representation of
complex, exponentially-large distributions, by exploiting condi-
tional independencies between attributes. These models offer
two significant advantages: First, there are several algorithms
that allow us to compute the conditional probabilities efficiently
by exploiting structure in the graphical model [6]. Second, by
exploiting conditional independencies, we can often represent
the required joint distribution with a polynomial number of pa-
rameters. Thus, this representation is significantly less suscep-
tible to the overfitting observed when estimating probabilities
from a dataset directly. Due to lack of space, we refer the reader
to the book by Cowellet al. [6] for details.

Query processing in other environments: We have largely
focused on the application of conditional plans in sensor net-
works. They are equally applicable in other wide-area environ-
ments; for example, on the web, the latency to acquire individual
data items can be quite high, and the data may exhibit correla-
tions that can be exploited using conditional plans. Similarly, in
compressed databases [4], the cost of acquiring attributes may
include the cost of decompression, which can be be very high.
Conditional plans can reduce the amount of decompression re-
quired to execute a query.

Our techniques can also be applied to traditional database
query processing. For example, our techniques generalize easily
to star queries containing only key-foreign key join predicates,
can be thought of as expensive “selections” on the relation at the
center of the star (commonly referred to as thefact table), and
conditional plans can be used to exploit correlations between the
dimensiontables.

Generalization to other types of queries: Thus far, we have
focused our attention on conjunctive queries. Other interesting
types of queries in sensor network queries are existential queries,
or queries that use the “LIMIT” clause. For example, we may
only be interested in finding out if there exists a sensor that is
recording high values of light and temperature. We can use con-
ditional plans to significantly reduce the number of acquisitions
made by determining which of the sensors are most likely to

satisfy the predicates.
Queries over data streams: In many practical settings, we

may be performing a query over a continuous stream of data. If
the data distribution does not change over time, we can use con-
ditional plans as described in this paper to evaluate such queries.
However, in many settings, the data distribution may change
slowly over time. In such cases, we can modify our algorithms
to slowly change the plan to adapt to the changing distribution.
Specifically, our methods for computing probabilities from a
data set in Section 5 can be modified to compute probabilities
incrementally over a sliding window of data. As the probabili-
ties change, we can modify our greedy algorithm to re-evaluate
the plan, and consider (greedy) modifications. Such adaptive ap-
proach could efficiently tackle fast, continuous streams of data.

8. Related work
Our idea of conditional plans is quite similar toparametric

query optimization[17, 11, 5, 10], where part of the query opti-
mization process is postponed until the runtime. Typically, these
techniques choose aset of query plans at query optimization,
and identify a set of conditions that are used to select one of
those plans at runtime. This earlier work differed substantially
from ours in two essential ways: First, in these traditional ap-
proaches, the plan chosen at the runtime is used for executing
the query over the entire dataset; thus, even if correlations were
taken into account by these approaches, per-tuple variations,
which we have seen to be prevalent and widely exploitable,
could not be accounted for. Secondly, these approaches did not
exploit data correlations while generating the plans.

Adaptive query processing techniques [14] attempt to reopti-
mize query execution plans during query execution itself. We
believe that the idea of conditional plans that we propose is both
orthogonal and complementary to adaptive query processing. If
sufficiently accurate information about the data is available (as
we assume in this work), then conditional plans can reap many
of the benefits of adaptive query processing techniquesapriori
(by choosing different query plans for different parts of data).
However, in many cases, such information may not be available,
and adaptive techniques must be used. [2] address the problem
of adaptively orderingpipelined filters(et al., selection predi-
cates) that may have correlations. Their focus is on finding good
sequentialplans (that may change with time), and they do not
consider conditional plans.

Earlier work on expensive predicates [13, 3, 2, 20] talks about
how to optimize queries with expensive predicates. All these
techniques however produce a single sequential plan in the end.
Shivakumaret al., [23] propose using low-cost predicates to
avoid evaluating expensive predicates. Their approach also con-
structs a sequential plan in the end, and the final query output
may contain false positives, or may miss certain answers. Our
approach, on the other hand, guarantees correct execution of the
original query in all cases.

In prior work [19], we propose the idea of acquisitional query
processing where the cost of acquiring attributes is explicitly
modeled, though our focus there was entirely on sensor network
query processing. In this paper, we have generalized this ba-
sic idea, and have proposed an approach to significantly speed
up query processing in such environments. Web querying is an-
other domain where the idea of acquisitional query processing,
and the techniques we propose in this paper, can be very useful.
Chen et al., [4] propose techniques to perform query optimiza-
tion in compressed database systems, and also model the cost
of acquiring attributes explicitly. The techniques we propose in
this paper can be extended in straightforward manner to their
scenario.

9. Conclusions
In this paper, we showed how to exploit correlations between

attributes in a database system by modifying the query optimizer
to produceconditionalplans that significantly outperform plans
produced by traditional database optimizers. We showed specif-
ically how these correlations can be used to optimize the perfor-
mance of multi-predicate selection queries with attributes that
have high acquisition costs [19] which frequently occur in dis-
tributed systems such as sensor networks and the Internet. We
developed planning algorithms for generating such conditional
plans given a historical data set with correlations. Our experi-
mental results demonstrate the significant performance gains if
the query optimizer is modified to take into account these corre-
lations.

10. References
[1] Planetlab. http://www.planet-lab.org.
[2] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom.

Adaptive ordering of pipelined stream filters. InSIGMOD, 2004.
[3] S. Chaudhuri and K. Shim. Optimization of queries with

user-defined predicates.TODS, 24(2):177–228, 1999.
[4] Z. Chen, J. Gehrke, and F. Korn. Query optimization in

compressed database systems. InACM SIGMOD, 2001.
[5] R. Cole and G. Graefe. Optimization of dynamic query evaluation

plans. InSIGMOD, 1994.
[6] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter.

Probabilistic Networks and Expert Systems. Spinger, N.Y., 1999.
[7] I. Crossbow. Wireless sensor networks (mica motes).

http://www.xbow.com/Products/WirelessSensorNetworks.htm.
[8] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting

correlated attributes in acquisitional query processing. Technical
report, Intel-Research, Berkeley, 2004.

[9] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In
VLDB, 2004.

[10] S. Ganguly. Design and analysis of parametric query optimization
algorithms. InVLDB, 1998.

[11] G. Graefe and K. Ward. Dynamic query evaluation plans. In
SIGMOD, 1989.

[12] R. Greiner, R. Hayward, and M. Molloy. Optimal depth-first
strategies for and-or trees. InAAAI/IAAI, 2002.

[13] J. M. Hellerstein. Optimization techniques for queries with
expensive methods.TODS, 23(2):113–157, 1998.

[14] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran,
A. Deshpande, K. Hildrum, S. Madden, V. Raman, and M. Shah.
Adaptive query processing: Technology in evolution.IEEE Data
Engineering Bulletin, 23(2):7–18, 2000.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for networked sensors. InASPLOS,
November 2000.

[16] L. Hyafil and R. Rivest. Constructing optimal binary decision
trees is np-complete.IPL, 1976.

[17] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric
query optimization. InVLDB, 1992.

[18] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of
nonrecursive queries. InVLDB, 1986.

[19] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks. In
ACM SIGMOD, 2003.

[20] K. Munagala, S. Babu, R. Motwani, and J. Widom. The pipelined
set cover problem. InICDT, 2005.

[21] J. Polastre. Design and implementation ofwireless sensor
networks for habitat monitoring. Master’s thesis, UCB, 2003.

[22] G. Pottie and W. Kaiser. Wireless integrated network sensors.
Communications of the ACM, 43(5):51 – 58, May 2000.

[23] N. Shivakumar, H. Garcia-Molina, and C. Chekuri. Filtering with
approximate predicates. InVLDB, 1998.

