
Flow Algorithms for Parallel Query Optimization
Amol Deshpande #1, Lisa Hellerstein ∗2

#University of Maryland, College Park, MD USA
1amol@cs.umd.edu

∗Polytechnic University, Brooklyn, NY USA
2hstein@cis.poly.edu

Abstract— We address the problem of minimizing the response
time of a multi-way join query using pipelined (inter-operator)
parallelism, in a parallel or a distributed environment. We
observe that in order to fully exploit the parallelism in the system,
we must consider a new class of “interleaving” plans, where
multiple query plans are used simultaneously to minimize the
response time of a query (or to maximize the tuple-throughput
of the system). We cast the query planning problem in this
environment as a “flow maximization problem”, and present
polynomial-time algorithms that (statically) find the optimal set
of plans to use for a given query, for a large class of multi-
way join queries. Our proposed algorithms also naturally extend
to query optimization over web services. Finally we present an
extensive experimental evaluation that demonstrates both the
need to consider such plans in parallel query processing and
the effectiveness of our algorithms.

I. INTRODUCTION

Parallelism has long been recognized as the most cost-
effective approach to scaling up the performance of database
query processing [8], [10], [14], [17]. Over the years, this
has led to the development of a host of query processing and
optimization algorithms for parallel databases, aimed toward
maximizing the query-throughput of the system or minimizing
the response time of a single large query. Broadly speaking,
the parallelism in a parallel database can be exploited in
three ways during query processing [15], [20]. Different query
operators that do not depend on each other can be executed
in parallel on different processors (independent parallelism).
Two operators in a producer-consumer relationship can be run
in parallel by pipelining the output of the producer to the
consumer (pipelined or inter-operator parallelism). Finally,
copies of the same query operator may be run on multiple
processors simultaneously, each operating on a partition of
the data (partitioned or intra-operator parallelism). Typically,
most systems use a combination of these, depending on the
available resources, the data placement (in a shared-nothing
system), and the execution plan itself (some execution plans
are naturally more parallelizable than others). For example,
partitioned parallelism can exploit the available processors
maximally, and should be used if the number of processors
exceeds the number of operators. Partitioned parallelism, how-
ever, suffers from higher communication overhead, is sensitive
to data skew [9], and is typically more complicated to set
up. Pipelined parallelism is typically considered easier to
implement and reason about, and results in less communication
overhead; however, it enables limited parallelism since the
number of operators in a database query is typically small.

In this paper, we consider the problem of minimizing the
response time of a multi-way join query being executed using

a left-deep pipelined plan, with each join operation being
evaluated on a separate processor. This type of execution ap-
pears naturally in many settings, especially in shared-nothing
systems where the query relations might be stored at different
machines. In shared-memory or shared-disk environments,
such execution might lead to better cache locality. Further,
as Srivastava et al. [21] observe, query optimization over web
services reduces to this problem as well: each web service can
be thought of as a separate processor.

Perhaps the biggest disadvantage of this type of execution
is that one of the processors, most likely the one execut-
ing the first join, may quickly become the bottleneck, with
the rest of the processors sitting idle [21]. We propose to
remedy this problem by exploiting a new class of plans,
called interleaving plans, where multiple regular query plans
are used simultaneously to fully exploit the parallelism in
the system. Despite superficial similarities to adaptive query
processing techniques such as eddies [2], interleaving plans are
not adaptive; we are instead addressing the static optimization
problem of finding an optimal interleaving plan, assuming that
the operator characteristics (selectivities and costs) are known.

Our algorithms are based on a characterization of query
execution as tuple flows that we proposed in prior work [4],
[5]; that work considers the problem of selection ordering
in a parallel setting, and presents an algorithm to find an
optimal solution by casting the problem as a flow maximization
problem. In this paper, we first generalize that work by giving
an O(n3) algorithm to find the optimal interleaving plan (that
minimizes the response time) to execute a selection ordering
query with tree-structured precedence constraints (where n is
the number of operators). Our algorithm has the additional,
highly desirable property that it produces a sparse solution
using at most O(n) different regular plans. We then extend
this algorithm to obtain algorithms for a large class of multi-
way join queries with acyclic query graphs, by reducing
the latter type of queries to precedence-constrained selection
ordering [18], [19], [21].

Outline
We begin with a discussion of related work in parallel query
optimization (Section II). We then present our execution model
for executing a multi-way join query and a reduction of this
problem to precedence-constrained selection ordering (Section
III). We present our main algorithm for finding an optimal
interleaving plan for the case when all operators are selective,
ie., have selectivity < 1 (Section IV). We discuss how this al-
gorithm can be extended to solve a large class of general multi-
way join queries, which may result in non-selective operators
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Fig. 1. (i) A 5-way join query, and the corresponding query graph. (ii) A pipelined plan where R1 is the driver relation. (iii) Executing the query using
pipelined parallelism with each join running on a different processor. The join with R5 is done using the R4 matches found earlier.

(Section V). Finally, we present an extensive simulation-based
experimental study that demonstrates the practical benefits of
using interleaving plans (Section VI).

II. RELATED WORK

There has been much work in the database literature on
query processing and optimization algorithms that can effec-
tively exploit multi-processor parallelism. Apers et al. [1] were
the first, to our knowledge, to explicitly study the tradeoffs
between response time optimization (minimizing the total time
taken to execute a query) and total work optimization (min-
imizing the total work across all processors), in the context
of distributed query processing. Ganguly et al. [11] formalize
these tradeoffs and show that optimizing for response time
is much harder than optimizing for total work, since the
response time metric does not obey the principle of optimality.
To make the parallel query optimization problem tractable,
Hong and Stonebraker [17] present a two-phase approach
that separates join order optimization from parallel scheduling
issues; several researchers have since looked at the scheduling
and optimization issues in the second phase in more detail
(e.g. [24], [16], [3], [12], [13]). To our knowledge, none of
the prior work in parallel query optimization has considered
using interleaving plans to minimize response time.

Our work is closely related to two recent papers. In prior
work (Condon et al. [4], [5]), we introduced the notion of
interleaving plans for parallel selection ordering. Here we
substantially extend that work by generalizing the algorithms
to multi-way join queries; we also present an extensive exper-
imental evaluation demonstrating the benefits of interleaving
plans. Srivastava et al. [21] study query optimization over web
services. Although they focus on finding a single plan for
all input tuples, they allow sending a tuple to multiple web
services in parallel. They don’t, however, consider interleaving
plans. In the extended version of this paper [7], we discuss an
approach to combine these two classes of plans.

Interleaving plans bear a superficial similarity to tuple-
routing query processors, particularly eddies [2]. The eddies
approach treats query processing as routing of tuples through
operators, and uses a different route for executing each tuple.

Tian and DeWitt [22] considered the problem of designing
tuple routing strategies for eddies in a distributed setting,
where operators reside on different nodes and the goal is to
minimize average response time or maximize throughput (a
setting similar to ours). They present an analytical formula-
tion and several practical routing strategies for this problem.
Eddies, however, use multiple plans for adaptivity purposes,
with the aim of converging to a single optimal plan if the data
characteristics are unchanged, whereas our goal is to find a
statically optimal interleaving plan that minimizes the response
time. In that sense, our work is closer in spirit to conditional
plans [6], where the goal is to find a static plan augmented
with decision points to optimally execute a selection query.
Our algorithms can be seen as a way to design routing policies
in a parallel and distributed setting for eddies.

The algorithms we present are based on a characterization
of query execution as tuple flows. We refer the reader to
Condon et al. [4], [5] for a discussion of related work on
flow algorithms.

III. PROBLEM FORMULATION AND ANALYSIS

We begin with formally defining the problem of evaluat-
ing a multi-way join query using pipelined (inter-operator)
parallelism and show how the problem can be reduced to
precedence-constrained selection ordering. We then introduce
the notion of interleaving plans.

A. Parallel Execution Model

Figure 1 shows a 5-way join query that we use as a running
example. Executing such a query using pipelined parallelism
requires us to designate one of the input relations as the
driver relation1. The join operators are executed in parallel on
different processors (Figure 1 (iii)), and the tuples of the driver
relation (along with matches found) are routed through the join
operators one by one. We assume that the join operators are
independent of each other.

1It is possible to drive execution using multiple driver relations and
symmetric hash join operators [23], but most database systems do not support
such plans.
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Fig. 2. Reducing the query in Figure 1 to precedence-constrained selection
ordering for driver choices R1 and R5.

The joins can be done as hash joins (as shown in Figure 1),
index joins (based on the availability of indexes and the sizes
of the relations), or nested-loops joins. The techniques we
propose are invariant to this choice; in the rest of the paper, we
assume all joins are executed using hash joins. For clarity, we
focus only on the “probe” costs of the join operators, ie., the
cost of looking up the matches given a tuple. We assume that
these costs are constant and do not depend on the tuples being
used to probe. We ignore the (constant) cost of scanning the
driven relations and/or building indexes on them, and assume
that the routing and communication costs are negligible – it is
fairly easy to extend our cost model to include these costs (e.g.,
by adding the per-tuple routing and communication overhead
to the probe costs of the operators).

B. Reduction to Precedence-Constrained Selection Ordering

Once the driver relation choice has been made, the problem
of ordering the “driven” relations bears many similarities to
selection ordering. In essence, the join operations can be
thought of as selections applied to the tuples from the driver
relation (even though some of the joins may be done using
components from other relations - cf. Figure 1 (iii)); the
precedence constraints arise from the desire to avoid Cartesian
products [18], [19], [21].

Given a multi-way join query over relations R1, . . . , Rn,
with one relation designated as the driver, the reduction begins
with creating a selection operator for each of the driven
relations, and setting up precedence constraints to prevent
Cartesian products (Figure 2). We denote the selection operator
corresponding to relation Ri by Oi. For acyclic query graphs
(our focus in this paper), the resulting precedence graph is a
forest of trees. The cost of Oi, denoted by ci, is set to be the
probe cost into the hash table on Ri, and the selectivity of Oi,
denoted by pi, is set to be the “fanout” of the join with Ri.
Figures 2 (i) and (ii) show two examples of this reduction for
the example query in Figure 1.

Join fanouts, unlike selection fanouts, may be > 1.
Definition: We say that an operator is selective if it has
selectivity < 1, and non-selective if it has selectivity ≥ 1.

C. Execution Plan Space

A serial plan for executing a selection ordering query
specifies a single permutation of the operators (obeying the
precedence constraints) in which to apply the operators to the
tuples of the relation. In a single-processor system, where
the goal is to minimize the total work, the rank ordering

algorithm [19] can be used to find the optimal serial plan;
this algorithm simply orders the operators by their values
of ci/(1 − pi) (Figure 3). Srivastava et al. [21] present an
algorithm to minimize response time when each operator is ex-
ecuted on a different processor in parallel. As they show, when
selectivities are all ≤ 1 and the processors are identical, the
optimal algorithm, called BOTTLENECK (Figure 3), simply
orders the operators by their execution costs (more generally,
by their tuple rate limits, ri’s). A somewhat unintuitive feature
of this algorithm is that the actual operator selectivities are
irrelevant.

Algorithms: OPT-SEQ (minimize total work) &
BOTTLENECK (minimize response time)

1. Let S denote the set of operators that can be applied to the
tuples while obeying precedence constraints.
2. Choose next operator in the serial plan to be the one with:

OPT-SEQ: min ci/(1− pi) among S.
BOTTLENECK: min ci (equiv. max ri = 1

ci
) among S.

3. Add newly valid operators (if any) to S.
4. Repeat.

Fig. 3. Algorithms for finding optimal serial plans for selective operators
(assuming identical processors)

Although BOTTLENECK finds the best serial plan for
executing the query, it typically does not exploit the full paral-
lelism in the system. Figure 4 illustrates this with an example
in which the query consists of three identical operators with
selectivities 0.2 and costs 0.1. The best serial plan can process
only 10 tuples in unit time. If we instead use three serial
plans simultaneously by routing 1/3 of the tuples through each,
the total expected number of tuples processed in unit time
increases to about 24.19.

We call such plans interleaving plans. In general, an inter-
leaving plan consists of a set of permutations (serial plans)
along with a probability weight for each of the permutations
(the probabilities sum to 1). When a new tuple enters the
system, it is assigned one of these permutations, chosen
randomly according to the weights (called the routing for that

(       )
(       )

Execute all tuples
using O1 →O2 →O3

Execute:
1/3 tuples using O1 →O2 →O3
1/3 tuples using O2 →O3 →O1
1/3 tuples using O3 →O1 →O2

O1 O2 O3 O1 O2 O3

(i) (ii)

(       )

(Denoted as          )

Fig. 4. Given 3 identical operators, O1, O2, O3, with p = 0.2, c = 0.1
and no precedence constraints, (i) the best serial plan processes 10 tuples in
unit time; (ii) an interleaving plan that uses 3 serial plans equally can process
24.19 tuples.
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tuple). The tuple is then sent through the operators in that
order, and is either discarded by some operator, or is output
from the system with a designation specifying it has satisfied
all predicates (for the original multi-way join query, a set of
result tuples will be output instead).

IV. MTTC ALGORITHM: SELECTIVE OPERATORS

In this section, we present our algorithm for finding the op-
timal interleaving plan for executing a precedence-constrained
selection ordering problem for tree-structured precedence con-
straints, when all operators are selective. The algorithm actu-
ally maximizes tuple throughput, i.e. the number of tuples
of the driver relation that can be processed in unit time.
We call this the MTTC problem (max-throughput with tree-
structured precedence constraints). We begin with a formal
problem definition, followed by an algorithm for the special
case when the precedence constraints are a forest of chains. We
then present an algorithm for the general case that recursively
reduces arbitrary tree-stuctured constraints to forests of chains.
Proofs of the results in this section can be found in the
extended version of this paper [7].

A. Definition of the MTTC Problem

The input to the MTTC problem is a list of n selection
operators, O1, . . . , On, associated selectivities p1, . . . , pn and
rate limits r1, . . . , rn, and a precedence graph G on the
operators. The pi and ri are real values satisfying 0 < pi < 1
and ri > 0. Rate limit ri = 1/ci is the number of tuples Oi
can process per unit time. Graph G is a forest of rooted trees.

The goal in the MTTC problem is to find an optimal tuple
routing that maximizes throughput. The routing specifies, for
each permutation of the operators, the number of tuples to
be sent along that permutation per unit time2. A tuple sent
along a permutation π travels through the operators in the order
specified by π, until it is either eliminated by an operator or it
has traveled through all the operators. A tuple is eliminated by
operator Oi with probability (1− pi). The routing must obey
the precedence constraints defined by G: for each Oi, Oj pair,
if Oj is a descendant of Oi in G, then tuples must be sent to
Oi before Oj . The routing must also respect the rate limits of
the operators: for each operator Oi, the expected number of
tuples reaching Oi per unit time cannot exceeed ri.

Below we give a linear program formally defining the
MTTC problem. We use the following notation. Let π be a
permutation of the operators O = {O1, . . . , On}. The kth
element of π is denoted by π(k). The index of operator π(k)
is denoted by π′(k), so π(k) = Oπ′(k). Let φ(n) be the set
of all n! permutations of O. For i ∈ {1, . . . , n} and π ∈ φn,
g(π, i) denotes the probability that a tuple sent according to
permutation π reaches operator Oi without being eliminated.
Thus if π(1) = Oi, then g(π, i) = 1; otherwise, g(π, i) =
pπ′(1)pπ′(2) . . . pπ′(m−1), where m is such that π(m) = Oi.
Define n! real-valued variables fπ , one for each π ∈ φ(n),
where each fπ represents the number of tuples routed along
permutation π per unit time. We call the fπ flow variables.

2These values are normalized using the total throughput at the end, to obtain
probabilities to be used for actual routing during execution.

MTTC LP: Given r1, . . . , rn > 0, p1 . . . , pn ∈ (0, 1), and
a precedence graph G on {O1, . . . , On} that is a forest of
trees, find an assignment to the variables fπ , for all π ∈ φ(n),
maximizing

F =
∑

π∈φ(n)

fπ

subject to the constraints:
(1)

∑
π∈φ(n) fπg(π, i) ≤ ri for all i ∈ {1, . . . , n},

(2) fπ ≥ 0 for all π ∈ φ(n), and
(3) fπ = 0 if π violates some constraint of G.

Definition: We refer to the constraints involving the ri as
rate constraints. If assignment K to the fπ satisfies the rate
constraint for ri with equality, we say that Oi is saturated by
K. The value F achieved by K is the throughput of K, and
we call K a routing.

B. Preliminaries

Given operators Oi and Oj , Oi can saturate Oj if ripi ≥ rj .
If ripi = rj , Oi can exactly saturate Oj , and if ripi > rj ,
Oi can overfill Oj . A chain is a tree in which each node
has exactly one child. A chain in the precedence graph of an
MTTC instance is proper if each non-leaf node in the chain
can saturate its child.

Below we state the main lemma on which our algorithms
are based. It was proved in [4], [5] for the MTTC problem with
no precedence constraints, but it also holds with precedence
constraints. Let K be a feasible solution to an MTTC instance,
and let O = {O1, . . . , On}. We say K has the saturated suffix
property if for some non-empty Q ⊆ O, (1) the operators in Q
are saturated by K and (2) if fπ > 0 in K, then the elements
of O−Q precede the elements of Q in π (i.e., no tuples flow
from an operator in Q to an operator in O−Q). We call Q a
saturated suffix of K.

Lemma 4.1: [4], [5] (The saturated suffix lemma) If fea-
sible solution K to the MTTC LP has the saturated-suffix
property with saturated suffix Q, then K is an optimal solution
and achieves throughput

F ∗ =

∑
Oi∈Q ri(1− pi)

(
∏
Oj∈O−Q pj)(1−

∏
Oi∈Q pi)

The idea behind our algorithm is to construct a routing with
the saturated suffix property. This may be impossible due
to precedence constraints; as a simple example, consider a
two-operator instance where O1 must precede O2, but O1

cannot saturate O2. However, by reducing rate limits of certain
operators, we will construct a new problem instance with the
same maximum throughput value, for which a routing with
the saturated suffix property is achievable.

C. The MTTC problem with no precedence constraints

We begin by briefly reviewing the algorithm from [5] for
the MTTC problem with no precedence constraints. In the
algorithm, we build a routing K incrementally. The routing
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consists of pairs (π, x) indicating that x amount of flow is to
be sent along permutation π.

Let the operators be numbered such that r1 ≥ . . . ≥ rn. Let
π be the permutation (O1, . . . , On). Since all selectivities are
< 1, π obeys the property that each operator in the ordering
can’t overfill its predecessor; this “can’t overfill” property is
an invariant of the algorithm.

We execute the following recursive procedure. Conceptually,
we start by sending flow through the operators according to
ordering π, beginning with no flow, and increasing the amount
at a continuous rate. As flow is increased, the residual capacity
(rate limit) of the operators decreases. Suppose that before any
operator is saturated, an operator Oi suddenly becomes able to
exactly saturate its predecessor Oj in π (i.e. r′ipi = r′j , where
r′i and r′j are the residual capacities of Oi and Oj). We stop
increasing the flow at this point. Let x be the resulting flow
value. (We actually calculate x analytically.) No additional
flow can be added along π without violating the “can’t overfill”
invariant. We place (π, x) into (initially empty) output routing
K. We then modify π by swapping Oi and Oj . In addition,
we “paste” Oi to the front of Oj , forming a “superoperator”
(Oi, Oj). All subsequent flow sent into the superoperator will
be sent first to Oi and then immediately to Oj . (Because
Oi can exactly saturate Oj , this means that ultimately either
both operators will be saturated, or neither.) We treat the
superoperator as a new single operator. Its rate limit is defined
to be the (residual) rate limit of Oi and its selectivity is defined
to be pipj . We now have a new ordering π on a set of n− 1
operators. We set the rate limits of the operators to equal their
residual rate limits. The “can’t overfill” invariant holds for π,
and we recurse on the n−1 operators and π. In each recursive
iteration, we add another (π, x) to routing K.

The recursion stops when during some iteration, as we
send increasing flow along π, some operator becomes fully
saturated before any operator Oi becomes able to exactly
saturate its predecessor Oj . In this case x becomes the amount
of flow causing the saturation, (π, x) is added to K, and we
terminate. It can be shown that, due to the “can’t overfill”
invariant, the final flow K has the saturated suffix property,
and hence is optimal.

As an example, consider an instance with two operators O1

and O2, where r1 = 3, r2 = 2, and p1 = p2 = 1/2. Let
π = (O1, O2). After sending x = 8/3 flow along ordering π,
the residual capacity of O1 is 3− 8/3 = 1/3 and the residual
capacity of O2 is 2−1/2∗8/3 = 2/3, so O2 can now exactly
saturate O1. We place (π, 8/3) into our routing. We swap O1

and O2 in π and form a superoperator (O2, O1) with rate
limit 2/3 and selectivity 1/2 ∗ 1/2 = 1/4. Treating it as a
single operator in π, a trivial repetition of the above procedure
(on one operator) finds that sending 2/3 flow units results in
saturation of (super)operator (O2, O1). These units are sent
along permutation π′ = (O2, O1), so (π′, 2/3) is added to
the routing. The result is an optimal routing saturating both
operators, whose total throughput is 8/3 + 2/3 = 10/3.

D. The MTTC algorithm for chains
We now present an MTTC algorithm for the special case

in which precedence graph G is a forest of chains. It is a

generalization of the algorithm just described. That algorithm
does not work here because precedence constraints may be
violated when (1) initially ordering the operators in decreasing
order of rate limits and (2) swapping the order of some Oi
and Oj in π. The first problem is handled via a preprocessing
procedure. To avoid the second problem we add additional
steps to the above algorithm, yielding a new procedure that
we call RouteChains. Details are below.

1) Preprocessing procedure: In the preprocessing proce-
dure, we first make each chain of G proper, as follows. For
each non-leaf operator Oi in the chain, beginning from the
top of the chain and proceeding downward, we execute the
following step: Let Oj be the child of Oi. If Oi cannot saturate
Oj , then reset the rate limit rj of Oj to be ripi.

Although the above procedure reduces the rate limits of
some operators, it does not reduce the maximum throughput
attainable. Because of the precedence constraints, all flow into
an operator Oj must first pass through its parent Oi, so at most
ripi flow can ever reach Oj .

Once the chains are proper, we sort all operators in de-
scending order of their rate limits. Let π = (Oi1 , . . . , Oin)
be the resulting permutation, and let partition P of π be
((Oi1), . . . , (Oin)).

2) The RouteChains procedure: Following preprocessing,
we run a recursive procedure called RouteChains. RouteChains
incrementally constructs a routing K, consisting of pairs of
the form (π, x), indicating that x amount of flow is to be sent
along permutation π.

Define a superoperator to be a permutation π′ of a subset of
the operators, such that with respect to the routing constructed
so far, each operator in π′ (but the last) can saturate its
successor in π′. The selectivity of π′, denoted σ(π′), is the
product of the selectivities of its component operators, and its
rate limit, denoted ρ(π′), is the (residual) rate limit of its first
operator.

The inputs to RouteChains are as follows.
RouteChains: Inputs

1. Rate limits r1, . . . , rn and selectivities p1, . . . , pn, for a
set of operators O = {O1, . . . , On},

2. A precedence graph G with vertex set O consisting of
proper chains,

3. A permutation π of O obeying the constraints of G,
4. An ordered partition P = (π1, . . . , πm) of π into
subpermutations πi, where each πi is a superoperator.

The inputs to RouteChains must obey the following “can’t
overfill” precondition: for 2 ≤ j ≤ m, ρ(πj)σ(πj) ≤
ρ(πj−1). That is, each superoperator in P cannot overfill its
predecessor.

For the initial call to RouteChains we use the values calcu-
lated during preprocessing. Because the chains are proper, π
obeys the precedence constraints.
RouteChains: Execution
RouteChains first calculates the minimum x ≥ 0 such that
sending x flow units along permutation π triggers one of the
following stopping conditions:

1. Some operator is saturated.
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2. Some superoperator πi, 2 ≤ i ≤ m, becomes able to
exactly saturate its predecessor πi−1.
3. Some operator Oi can exactly saturate Oj , where Oj is
the child of Oi in a chain of G, and Oi and Oj are contained
in distinct superoperators of P .

The value of x is calculated based on the following ob-
servations. Suppose π = (O1, . . . , On). For any operator
Oj , if y flow units are sent along π, then y

∏j−1
k=1 pk units

will reach operator Oj . The residual rate limit of Oj will
then be rj − y

∏j−1
k=1 pk. Thus saturation of Oj occurs when

y = rj∏j−1

k=1
pk

. Similarly, it can be shown that for 2 ≤
j ≤ m, superoperator πj becomes able to exactly saturate
πj−1 when y = ρ(πj)σ(πj)−ρ(πj−1)∏j

k=1
σ(πk)−

∏j−2

k=1
σ(πk)

. Finally, for 1 ≤
i < j ≤ n, Oi becomes able to exactly saturate Oj when
y = ripi−rj∏i

k=1
pk−

∏j−1

k=1
pk

. Thus x can be calculated by taking

the minimum of O(n) values.
After RouteChains computes x, what it does next is deter-

mined by the lowest-numbered stopping condition that was
triggered by sending x flow along permutation π.

If Stopping Condition 1 was triggered, then RouteChains
returns K = (π, x).

Else, if Stopping Condition 2 was triggered for some πi,
then RouteChains chooses one such πi. It swaps πi and
πi−1 in (π1, . . . , πm) and concatenates them into a single
superoperator, yielding a new partition into superoperators
P ′ = (π1, . . . , πi−2, πiπi−1, πi+1, . . . , πn) and a new per-
mutation π′ = (π1π2 . . . πi−2πiπi−1πi+1 . . . , πn). We call
this operation a swap-merge. RouteChains then calls itself
recursively, setting P to P ′, π to π′, the ri’s to the residual
rate limits, and keeping all other input parameters the same.
The recursive call returns a set K ′ of flow assignments.
RouteChains returns the union of K ′ and {(π, x)}.

Else if Stopping Condition 3 was triggered by a parent-
child pair Oi, Oj , then RouteChains chooses such a pair and
absorbs Oj into Oi as follows.

If Oi and Oj are contained in superoperators (Oi) and (Oj),
each containing no other operators, RouteChains deletes the
superoperator (Oj), and adds Oj to the end of the (Oi), to
form superoperator (Oi, Oj). Otherwise, let w, z be such that
Oi is in πw and Oj is in πz . Let a, b be such that πw(a) = Oi
and πz(b) = Oj . RouteChains splits πw into two parts, A =
(πw(1), . . . , πw(a)) and B = (πw(a + 1), . . . , πw(s)) where
s = |πw|. It splits πz into three parts, C = (πz(1), . . . , πw(b−
1)), D = (πz(b), . . . , πw(c−1)), and E = (πz(c), . . . , πw(t)),
where t = |πz| and c is the minimum value in {b+ 1, . . . , t}
such that πz(c) is not a member of the same precedence chain
as Oj ; if no such c exists, it sets c to be equal to t+1 and E to
be empty. RouteChains adds D to the end of A, forming four
superoperators AD,B,C,E out of πw and πz . It then forms
a new partition P ′ from P by replacing πw in P by AD,B,
in that order, and πz by C,E in that order. If any elements of
P ′ are empty, RouteChains removes them. Let π′ denote the
concatenation of the superoperators in P ′.

Partition P ′ may not satisfy the “can’t overfill” precondition
with respect to the residual rate limits. (For example, it may be

violated by superoperator B and its successor.) In this case,
RouteChains performs a modified topological sort on P ′. It
forms a directed graph G′ whose vertices are the superopera-
tors in P ′, with a directed edge from one superoperator to a
second if there is an operator Oi in the first superoperator, and
an operator Oj in the second, such that Oj is a descendant of
Oi in G. Since π′ obeys the precedence constraints, G′ is a
directed acyclic graph. RouteChains sorts the superoperators
in P ′ by executing the following step until G′ is empty: Let S
be the set of vertices (superoperators) in G′ with no incoming
edges. Choose the element of S with highest residual rate
limit, output it, and delete it and its outgoing edges from G′.
RouteChains re-sets P ′ to be the superoperators listed in the
order output by the sort, and π′ to be the concatenation of
those superoperators.

RouteChains then executes a recursive call, using the initial
set of operators, precedence constraints, and selectivities, and
setting π = π′, P = P ′ and the rate limits of the operators to
be equal to their residual rate limits. The recursive call returns
a set K ′ of flow assignments. RouteChains returns the union
of K ′ and {(π, x)}.

Theorem 4.1: When run on an MTTC instance I whose
precedence graph is a set of proper chains, RouteChains
produces an optimal routing for I with the saturated suffix
property. RouteChains runs in time O(n2 log n), and produces
a routing that uses at most 4n− 3 distinct permutations. 3

3) Example: We illustrate our algorithm using the 4-
operator selection ordering query shown in Figure 2 (i), which
has three chains, and one precedence constraint, between O4

and O5 (Figure 5). We will assume the rate limits of 900 for
operators O2, O3 and O4, and a rate limit of 225 for O5. The
selectivity of each operator is set to be 0.5.
• We arbitrarily break the ties, and pick the permutation
O4 → O2 → O3 → O5 to start adding flow.
• When 600 units of flow have been added, O2 exactly
saturates O4 (stop. cond. 2). We swap-merge O2 and O4

creating superoperator O24.
• At the same time (after adding 0 units of flow), we find
O4 exactly saturates its child O5 (stop. cond. 3). We
absorb O5 into its parent, creating superoperator O245.
There is no need to re-sort.
• After sending 240 units along O2 → O4 → O5 → O3,
we find that O3 saturates O245 (stop. cond. 2). We swap-
merge them to get a single super operator O3245.
• We send 720 units along O3 → O2 → O4 → O5, at
which point all operators are saturated, and we achieve
optimality (stop. cond. 1).

The throughput achieved is 1560; the best serial plan can only
process 900 tuples per unit time.

E. MTTC Algorithm for General Trees

We now describe the MTTC algorithm for arbitrary tree-
structured precedence graphs. Define a “fork” to be a node in
G with at least two children; a chain has no forks. Intuitively,

3The proofs of the theorems in this paper can be found in the extended
version of the paper [7].
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Step 1: Send 600 flow units along 
                O4 ➔ O2 ➔ O3 ➔ O5
            Swap-merge O2 and O4
            Merge O5 into its parent O4

Step 2: Send 240 flow units along 
                  O2 ➔ O4 ➔ O5 ➔ O3
            Swap-merge O3 and {O2→O4→O5}

Step 3: Send 720 flow units along 
                  O3 ➔ O2 ➔ O4 ➔ O5
             All nodes are saturated 
                      ⇒ Optimal Solution.

precedence-constraint

O4

r4 = 900
p4 = 0.5

O2

r2 = 900
p2 = 0.5

O3

r3 = 900
p3 = 0.5

O5

r5 = 225
p5 = 0.5

precedence-constraint

O4

r4 = 900
p4 = 0.5

O2

r2 = 900
p2 = 0.5

O3

r3 = 900
p3 = 0.5

O5

r5 = 225
p5 = 0.5

precedence-constraint

O4

r4 = 900
p4 = 0.5

O2

r2 = 900
p2 = 0.5

O3

r3 = 900
p3 = 0.5

O5

r5 = 225
p5 = 0.5

(   )(   )(   )

Fig. 5. Illustration of the algorithm for the case shown in Figure 2 (ii); Oi corresponds to the join with Ri.

(i)

0

O1 →O2→O3→O4→O56 →O78 
O5 →O6       

O1 →O3→O2→O56 →O4 →O78

O1 →O2→O3→O56→O78 →O4 

1

O6 →O5      

O1 →O2→O3→O4 →O5 →O6→O78 

O1 →O2→O3→O5→O6 →O4→O78

O1 →O2→O3→O6→O5 →O78→O4

O1 →O3→O2→O6→O5 →O4→O78

(iii)

O1

O3O2

O6O5O4

O8

O7

(ii)

O1

O3O2

O56O4

O78

Fig. 6. (i) An example precedence graph; (ii) The forest of chains below operator O3 is replaced by a single chain to obtain a new problem; (iii) The
solution for the new problem and for the operator O56 are combined together.

the algorithm works by recursively eliminating forks from G,
bottom-up. Before describing the algorithm, we illustrate it
with an example.

1) Example: We illustrate the execution of one recursive
call to the MTTC algorithm. (We actually illustrate a simplified
process to give the intuition; we discuss the actual process
below.) Let the input graph be the one shown in Figure 6 (i).
This graph has several forks; let the next fork we eliminate
be at node O3. The subtrees under O3 form a forest of three
chains. A new set of operators is constructed from this forest
of chains as follows:

• The three chains are made proper.
• RouteChains is used to find an optimal routing K ′ for
these three chains. Suppose that {O7, O8} is a saturated
suffix of K ′. Let K78 denote the routing (over O7 and
O8) derived from K ′ that saturates O7 and O8.
• A new operator O78 is constructed corresponding to O7

and O8. Its rate limit is set to be the throughput achieved
by K78, and its selectivity is set to p7p8.
• O7 and O8 are removed from the three chains, and
RouteChains is applied to operators O5 and O6. Suppose
the output routing K56 saturates both operators.
• A new operator O56 is constructed to contain K5 and
K6. Its rate limit is set to the throughput of K56 and its
selectivity is set to p5p6.
• A new precedence graph is constructed as shown in
Figure 6 (ii). Note that K ′ routes flow first through
{O5, O6} (where all but p5p6 of it is eliminated), and then

through {O7, O8}. Since K ′ saturates {O7, O8}, O56 can
saturate O78, and the new (sub)chain O56O78 is proper.

Having eliminated a fork from the graph, the resulting problem
is recursively solved to obtain a routing K ′′, which is then
combined with K56 and K78 to obtain a routing for the original
problem, using a technique from [5]. We illustrate this with
an example (Figure 6 (iii)).

Suppose K ′′, the optimal solution for the reduced
problem (Figure 6 (ii)), uses three permutations,
(O1, O2, O3, O4, O56, O78), (O1, O2, O3, O56, O78, O4),
and (O1, O2, O3, O56, O4, O78), and let the total flow be t.
Further, suppose the first and third permutations each carry
1
4 t flow, and the second carries 1

2 t flow. Similarly, suppose
routing K56 for O56 sends half the flow along permutation
O5, O6 and half along O6, O5. These two routings are shown
graphically in the first two columns of Figure 6 (iii). In
each column, the height of the region allocated to the three
permutations indicates the fraction of flow allocated to that
permutation by the associated routing. In the third column
we superimpose the divisions from the first two columns.
For each region R in the divided third column, we label
it with the permutation obtained by taking the associated
permutation from column 1, and replacing O56 in it with
the associated permutation from column 2. For example, the
second region from the top in the third column is associated
with O1, O2, O3, O56, O4 from column 1 and O5, O6 from
column 2, and is labeled by combining them. Column three
represents a division of flow among permutations of all the
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operators, yielding a final routing that divides t units of
flow proportionally according to this division. The resulting
routing allocates 1

4 t flow to each of four permutations. The
same approach would be used to incorporate the routing for
K78 into the overall routing.

2) MTTC algorithm description: The MTTC algorithm is
a recursive procedure that works by repeatedly eliminating
forks in the precedence graph. We describe the steps in the
MTTC algorithm here. The algorithm uses two procedures,
CombineRoutings and CombineChains, described below.

1. Base Case: If G is a forest of chains, apply the MTTC
algorithm for chains (Section IV-D) and return the solution.

2. Otherwise, let Oi be a fork of G whose subtrees are all
chains.

3. Let S denote the set of descendants of Oi, and let IS
denote the induced MTTC instance I restricted to the
operators in S. The precedence graph GS of IS is thus
a forest of chains.

4. Make the chains in IS proper (Section IV-D.1), and call
CombineChains(IS) to get a partition (A1, · · · , Am) of
the operators of IS , and routings KA1 , · · · ,KAm

corre-
sponding to the partitions.

5. Create m new operators, A1, · · · ,Am corresponding to
the Ai’s. For each Ai, the rate limit of Ai is defined to be
the throughput of KAi

, and the selectivity is defined to be
the product of the selectivities of the operators in Ai.

6. Construct a new precedence graph G′ from G by
replacing the chains below Oi with the single chain
(A1, . . . ,Am). Thus G′ has one less fork than G.

7. Let I ′ be the resulting new MTTC instance, having
precedence graph G′.

8. Recursively solve I ′. Let K ′ be the routing returned by
the recursive call.

9. Use CombineRoutings to combine the KAi with K ′.
Return the resulting routing.

CombineChains: CombineChains is used in fork elimination,
to replace a set of chains emanating from a fork by a single
chain. In the example above, to eliminate a fork we ran
RouteChains repeatedly on the chains emanating from the fork,
each time removing the operators in a saturated suffix. For
efficiency, CombineChains does something slightly different.
It uses another procedure (described below) to identify the
operators in a saturated suffix of some optimal routing; it
then runs RouteChains just on the operators in that saturated
suffix to produce a routing just for those operators. As in
the example, it then removes the operators in the suffix, and
repeats.

More specifically, let I be the input to CombineChains.
CombineChains first sorts the operators in I in descending
order of their rate limits. It (re)numbers them O1, . . . , On so
that r1 ≥ . . . ≥ rn. It then executes the following recursive
procedure on I . It computes the value

F ∗ = minj∈{1,...,n}

∑
i∈Qj

ri(1− pi)
(
∏
k 6∈Qj

pk)(1−
∏
i∈Qj

pi)

It sets Cj∗ to be {Oj∗ , . . . , On}, where j∗ is the largest value
of j achieving the minimum value F ∗. It can be shown that

Cj∗ is a saturated suffix in an optimal routing of the chains.
CombineChains runs RouteChains just on the (sub)chains of
operators in Cj∗ , to produce a routing Kj∗ .

CombineChains then removes the operators in Cj∗ from
I; the operators in Cj∗ will always appear at the end of the
chains. If no operators remain in the chains, CombineChains
outputs the one-item list A1 where A1 = Cj∗ , together with
routing K1 = Kj∗ . Otherwise, CombineChains executes a
recursive call on the remaining operators to produce a list
of operator subsets D = A1, . . . , Am−1, together with a
corresponding list K1, . . . ,Km−1 of routings for the operators
in each of the Ai. It then sets Am = Cj∗ , appends it to the
end of D, appends Kj∗ to the end of the associated list of
routings, and outputs the result.

Combining Routings: CombineRoutings is used to combine
the KA with A′. The approach is described in [5] and has
already been illustrated with an example above. See [5] for
more details.

The number of permutations used in the combined routing
is at most the sum of the number of permutations used in K ′

and the total number of permutations used in the KAi ’s.

Theorem 4.2: When run on an MTTC instance I , the
MTTC algorithm runs in time O(n3) and outputs an optimal
routing for I . The output routing uses fewer than 4n distinct
permutations.

V. MTTC: NON-SELECTIVE OPERATORS

Multi-way join queries may contain non-selective operators
with fanouts larger than 1. Next we briefly sketch how the
previous algorithm can be extended to handle such cases.
Further details can be found in [7]. We also note that, in such
cases, it might be preferable to consider an alternative plan
space [21] or a caching-based approach [7].

A. All non-selective operators

If all operators are non-selective, then we construct an
equivalent problem with only selective operators, by (1) re-
placing the selectivity, pi, of an operator Oi with 1/pi, and
(2) reversing all the precedence constraints. After solving this
new problem (which only contains selective operators), we
reverse each of the permutations in the resulting routing to
obtain a routing for the original problem.

Note that the precedence graph for the new problem may be
an “inverted tree”. The approach used in Section IV-E (wherein
we replace forests of chains by a single chain) can be extended
to handling such precendence graphs [7].

B. Mixture of Selective and Non-Selective Operators

However, if the problem instance contains both selective
and non-selective operators, the problem is more complex. If
the precedence graph is a forest of chains, then we can solve
the problem optimally as follows:

• Pre-processing Step: If there is a parent-child pair,
Oi, Oj , such that pi ≥ 1 and pj < 1, then replace the two
operators with a new operator Oij with selectivity pipj
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Fig. 7. Star query experiments: Comparing (i) response times (normalized using the MTTC solution) and (ii) total work (normalized using the OPT-SEQ
solution) for the three algorithms; (iii) With high variance in the operator costs, benefits of interleaving plans are lower; (iv) Interleaving plans are most
beneficial when selectivities are low.

and rate limit min(ri, rj/pi). Repeat until there are no
such pairs. In the resulting problem, I ′, no non-selective
operator precedes a selective operator.
• Split the problem into two problems, I ′s and I ′ns, such
that I ′s contains the selective operators (along with the
precedence constraints between the selective operators),
and I ′ns contains the non-selective operators (along with
the precedence constraints between them).
• Solve these two problems separately to obtain routings
K ′s and K ′ns, and combine them (as described in Section
IV-E).

The optimality proof can be found in [7].
Given the above algorithm for forests of chains, we can once

again apply the procedure described in Section IV-E to obtain
an algorithm for solving instances with tree-structured prece-
dence constraints. We conjecture that the algorithm returns an
optimal routing; however, we have been unable to prove this
so far.

VI. EXPERIMENTAL STUDY

We present an extensive performance evaluation of the algo-
rithms presented in the paper demonstrating both the benefits
of using interleaving plans to reduce the response times and
the effectiveness of our algorithms at finding such plans. We
compare three planning algorithms:

• OPT-SEQ [19]: The optimal serial plan for the central-
ized case, that minimizes the total work done, found using
the rank ordering algorithm (Section III-C).
• BOTTLENECK [21]: The serial plan that minimizes
the response time (bottleneck) using a serial plan, found
using the Bottleneck Algorithm (Section III-C).
• MTTC: The optimal interleaving plan found by our
algorithm presented in Section IV.

We have implemented the above algorithms in a single-
threaded simulation framework (implemented in Java) that
simulates execution of a multi-way join query using pipelined
parallelism. To execute a query with n relations, n − 1
processors are instantiated, with each processor handling one
of the driven relations. We use hash joins for executing the
queries. We control the join selectivities by appropriately
choosing the sizes of the driven relations; the join attributes
are all set to have a domain of size 1000, and to simulate a

selectivity of p, the corresponding relation is set to have 1000p
randomly chosen tuples.

Each plotted data point in our graphs corresponds to 50
random runs. In all but one graph, we plot the average value
of the normalized response time (response time of the plan
found using MTTC is used as the normalizing factor). In
one graph (Figure 7 (ii)), we plot the average value of the
normalized total work (total work done by OPT-SEQ is used
as the normalizing factor).

The effectiveness of interleaving plans depends heavily on
the query graph shape; queries with shallow precedence graphs
can exploit the parallelism more effectively than queries with
deep precedence graphs. To illustrate this, we show results for
3 types of query graphs: (1) star, (2) path, and (3) randomly-
generated query graphs.

Star Queries
For our first set of experiments, we use star queries with the
central relation being the driver relation. We first compare the
normalized response times of the three planning algorithms
for a range of query sizes (Figure 7 (i)). For this experiment,
the operator selectivities were chosen randomly between 0 and
1, and the operator costs were assumed to be identical (which
corresponds to the common case of homogeneous processors).
The interleaving plans found by the MTTC algorithm perform
much better than any serial plan (in many cases, by a factor of
5 or more). Note that, since all operator costs are identical, the
plan found OPT-SEQ is the optimal serial plan for response
time as well.

We next compare the total work done by the plans found by
these algorithms (Figure 7 (ii)). As expected, the interleaving
plans do more work than the OPT-SEQ plan (by up to a factor
of 2), but the amount of additional work not large compared to
the benefits in the response time obtained using an interleaving
plan. Interestingly, the BOTTLENECK plans also perform a
lot more work than the OPT-SEQ plans, even though their
response times are identical. Since all operator costs (ci’s) are
equal, the BOTTLENECK algorithm essentially picks arbitrary
plans (cf. Section III-C); although optimal for the response
time metric, those plans behave unpredictably with respect to
the total work metric.

With the next experiment, we illustrate the effects of
heterogeneity in the operator costs. For this experiment, we
choose the operator costs randomly between 1 and X , where
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Fig. 8. Comparing the three planning algorithms for (i) path query graphs
and (ii) randomly-generated query graphs.

X ∈ {1, 5, 20, 50}. As we see in Figure 7 (iii), with increasing
heterogeneity in the operator costs, the benefits of using
interleaving plans go down. This is because the total idle time
across the operators, which the interleaving plans exploit, goes
down significantly in such cases.

Finally, we illustrate how operator selectivities affect the
performance of the algorithms. Figure 7 (iv) compares the
performance of the three algorithms when the operator selec-
tivities are high (chosen randomly between 0.9 and 1), and
when they are low (chosen randomly between 0 and 0.1). As
we can see, the benefits of interleaving plans are highest when
the selectivities are low. This is because low selectivities result
in higher overall idle time across the processors. On the other
hand, when the selectivities are very high, the benefits of using
interleaving plans are very low (around 10-20%). We note that
star queries where all join selectivities are 0 form the best-case
scenario for interleaving plans.

Path Queries
Next we compare the performance of the three algorithms
when the query graph shape is a path (line), and the relation
in the middle of the graph is chosen as the driver. This query
essentially results in two long precedence chains, and does
not offer much parallelism. In fact, it is easy to show that
the response time of the BOTTLENECK algorithm is within
a factor of 2 of the best interleaving plan. We compare the
three algorithms for two sets of selectivities. As we can see
in Figure 8 (i), the interleaving plans can achieve close to a
factor of 2 when the operator selectivities are low. When the
selectivities are drawn randomly between 0 and 1, the benefits
range from about 30% for small query sizes to about 60% for
large queries.

Randomly-generated Queries
Finally, we run experiments on random query graphs generated
by randomly choosing a parent for each node in the graph,
while ensuring that the resulting graph is a tree. Figure 8
(ii) shows the results for this set of experiments. Even for
queries with as few as 6 relations, we get significant benefits,
including when selectivities are chosen between 0 and 1.
For low selectivity operators and for higher query sizes, the
benefits of using interleaving plans are much higher.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of executing a
multi-way join query using pipelined parallelism, and pre-
sented algorithms to optimally exploit the parallelism in the
system through use of interleaving plans for a large class
of join queries. Our experimental results demonstrate that
the interleaving plans can effectively exploit the parallelism
in the system to minimize query response times, sometimes
by orders of magnitude. Our work so far has opened up
a number of interesting future research directions, such as
handling correlated predicates, non-uniform join costs, and
multiple driver tables (a scenario common in data streams),
that we are planning to pursue in future.
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