
Cache-and-Query for Wide Area Sensor Databases

Amol Deshpande†,∗ Suman Nath‡,∗ Phillip B. Gibbons∗ Srinivasan Seshan‡,∗

amol@cs.berkeley.edu sknath@cmu.edu phillip.b.gibbons@intel.com srini@cmu.edu
∗Intel Research Pittsburgh †U.C. Berkeley ‡Carnegie Mellon University

ABSTRACT
Webcams, microphones, pressure gauges and other sensors pro-
vide exciting new opportunities for querying and monitoring the
physical world. In this paper we focus on querying wide area sen-
sor databases, containing (XML) data derived from sensors spread
over tens to thousands of miles. We present the first scalable sys-
tem for executing XPATH queries on such databases. The system
maintains the logical view of the data as a single XML document,
while physically the data is fragmented across any number of host
nodes. For scalability, sensor data is stored close to the sensors,
but can be cached elsewhere as dictated by the queries. Our de-
sign enables self-starting distributed queries that jump directly to
the lowest common ancestor of the query result, dramatically re-
ducing query response times. We present a novel query-evaluate-
gather technique (using XSLT) for detecting (1) which data in a
local database fragment is part of the query result, and (2) how to
gather the missing parts. We define partitioning and cache invari-
ants that ensure that even partial matches on cached data are ex-
ploited and that correct answers are returned, despite our dynamic
query-driven caching. Experimental results demonstrate that our
techniques dramatically increase query throughputs and decrease
query response times in wide area sensor databases.

1. INTRODUCTION
From webcams to smart dust, pervasive sensors are becoming

a reality, providing opportunities for new sensor-based services.
Consider for example a Parking Space Finder service for locating
available parking spaces near a user’s destination. The driver en-
ters into a PDA (or a car navigation system) her destination and
her criteria for desirable parking spaces — e.g., within two blocks
of her destination, at least a four hour meter, minimum price, etc.
She gets back directions to an available parking space satisfying
her criteria. If the space is taken before she arrives, the directions
are automatically updated to head to a new parking space.

What is required to create such a Parking Space Finder service
for a large metropolitan area? First, sensors are needed that can
determine whether or not a parking space is available. We en-
vision a large collection of webcams overlooking parking spaces,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

pressure sensors on the spots themselves, or some combination of
both. Second, a sensor database is needed, which stores the current
availability information along with static attributes of the parking
spaces such as the price and hours of their meters. Finally, a web-
accessible query processing system is needed, to provide answers
to high-level user queries.

To handle the large number of sensors spread over a wide area,
and to support high query volumes, our group has developed a wide
area sensor database system as part of the IrisNet (Internet-scale
Resource-intensive Sensor Network Services) project, with the fol-
lowing architectural design.

• For high update and query throughputs, the sensor database
is partitioned across multiple sites operating in parallel, and
the queries are directed to the sites containing the answers.
We assume that sites are Internet-connected (powered) PCs.
A site manager, called an organizing agent, runs on each site.

• Communication with the sensors is via sensor proxies [22],
called sensing agents, which collect nearby sensor data, pro-
cess/filter it to extract the desired data (e.g., parking space
availability information), and send update queries to the site
that owns the data (and possibly other sites). As in [22], we
assume that sensor proxies run on Internet-connected (pow-
ered) PCs.1 A large collection of sensor proxies operating in
parallel ensure that the system scales to a larger number of
sensors. Moreover, a potentially high volume of data (web-
cam feeds) is reduced at the sensor proxy to a much smaller
volume of data (e.g., availability information) sent to the or-
ganizing agents.

• To make posing queries easy for the users, IrisNet supports
a standard data representation (XML), a standard high-level
declarative query language (XPATH), and a logical view of
its distributed database as a single centralized database (lo-
cation transparency). The choice of XML as the data repre-
sentation format was motivated by the following reasons:

• The underlying data in such an application is quite di-
verse and heterogeneous in nature, and as such hard to
capture in a rigid data model.

• The “schema” of the data is constantly evolving to ac-
comodate changing needs of the users, and evolving ca-
pabilities of the underlying sensors. We also envision
on-the-fly addition and deletion of aggregate fields for
improving performance.

• As each sensor takes readings from a geographic lo-
cation, it is natural to organize the sensor data into a

1For example, webcams are typically attached to PCs that can host
a sensor proxy. For battery-powered motes, the sensor proxy is the
powered base station communicating with the motes [22].

geographic/political-boundary hierarchy (as depicted in
Figure 1). Representing, and making use of, such a hi-
erarchy is quite natural in XML, but very challenging
in the relational, or an object-relational data model.

We use an off-the-shelf XML database system, and interact
with the database using standard APIs (XPATH or XSLT for
querying, and SixDML or XUpdate for updates), in order
to take advantage of future improvements in XML database
technology.

Although we have used Parking Space Finder as a motivating ap-
plication, we envision IrisNet as a general platform for wide area
sensor services. For example, we are currently working with a team
of oceanographers to deploy IrisNet along the Oregon coastline,
to monitor a variety of coastal phenomena (rip-tides, sandbar for-
mation, etc.) Moreover, we believe that future wide area sensor
databases (not just IrisNet) will build upon a similar design, in or-
der to meet the desired performance requirements.2 Thus providing
techniques for correctly and efficiently processing queries on such
databases is crucial to the widespread use of wide area sensor sys-
tems. However, as outlined below, there are a number of challenges
to providing fast execution of XPATH queries on such a system;
this paper is the first to address these challenges.

In this paper, we present techniques for query processing and
caching in wide area sensor databases. The contributions of this
paper are:

• We present the first scalable system for executing XPATH
queries on wide area sensor databases. The system uses a
logical hierarchy of sites dictated by the XML document;
these logical sites are mapped to a smaller collection of phys-
ical sites, as dictated by the system administrator or the queries
themselves.

• We propose a technique for self-starting distributed queries,
which jump directly to the lowest common ancestor (LCA)
of the query result, by using DNS-style site names extracted
from the query itself. A key feature is that although a query
can be posed anywhere in the Internet, no global information
is needed to produce the LCA site name for the query.

• We show how general XPATH queries can be evaluated on
a single XML document when the document itself is frag-
mented across machines, and the fragmentation is constantly
changing. We propose a novel query-evaluate-gather (QEG)
technique for detecting (1) which data in the database frag-
ment at a site is part of the query result, and (2) how to gather
the missing parts. To our knowledge, no effective solution to
this problem was known prior to our work.

• We present a scheme for caching query results at sites as
dictated by the queries. Owned data and cached data are
stored in the same site database, with different tags, unifying
the query processing at a site. Moreover, we support query-
based consistency, in which each user query may specify its
tolerance for using stale (cached) data to quickly answer the
query.

• We define partitioning and cache invariants supporting par-
tial match caching, which ensures that even partial matches
on cached data can be exploited and that correct answers are
returned, despite our dynamic query-driven caching. Our ap-
proach is based on leveraging the data residing in the site

2For example, an object-relational wide area sensor database would
face many of the same issues and would greatly benefit from the
techniques presented in this paper (see Section 6).

Block1

Block2

Block3

Block1

Block2

Block3

usRegion state city neighborhood blockcounty

PA Allegheny
Pittsburgh

Shadyside

Oakland

Butler EtnaNY

NE

Figure 1: Logical Site Hierarchy

database, which differs from previous approaches based on
leveraging a collection of views.

• We present experimental results demonstrating the effective-
ness of our techniques in dramatically increasing update and
query throughputs and decreasing query response times in
wide area sensor databases.

The remainder of this paper is organized as follows. Section 2
describes the query processing challenges. Section 3 presents our
basic query processing and caching techniques. Then in Section 4,
we describe extensions to more general XPATH queries, cache con-
sistency, and ownership migration. Experimental results are in Sec-
tion 5. Section 6 describes related work, and conclusions are in
Section 7.

2. QUERY PROCESSING CHALLENGES
In this section, we consider a core problem in query processing

in wide area sensor databases, and demonstrate the challenges in
solving this problem.

We would like to evaluate an XPATH query on a single XML
document that has been fragmented across multiple sites. Consider
the example query in Figure 2 and the document fragment (at a site
under consideration) in Figure 3. The query asks for all available
parking spaces in two adjacent blocks of Oakland and Shadyside.
If this query is posed against this document, parking space 1 in
Oakland block 1 will be returned. The challenge is in determining
whether this is the entire answer. In particular, are there other park-
ing spaces in block 1 of Oakland? Moreover, no parking spaces
were returned from Shadyside: was that because they are all taken
or the site database was missing Shadyside? This information can-
not be determined solely from the query answer.

How might we try to solve this problem? First, we might try
splitting the XPATH query into two queries to the site database,
one for Oakland and one for Shadyside, but we would not learn
anything more. Second, we might try augmenting the database with
place holders (e.g., for Shadyside) that tag missing data. However,
unless the site database contains placeholders for all data in Pitts-
burgh, which is not a scalable solution, the XPATH query would

/usRegion[@id=’NE’]/state[@id=’PA’]/county[@id=’Allegheny’]

/city[@id=’Pittsburgh’]

/neighborhood[@id=’Oakland’ OR @id=’Shadyside’]

/block[@id=’1’]/parkingSpace[available=’yes’]

Figure 2: An XPATH query requesting all available parking
spaces in Oakland block 1 or Shadyside block 1.

<usRegion @id=’NE’>

<state @id=’PA’>

<county @id=’Allegheny’>

<city @id=’Pittsburgh’>

<neighborhood @id=’Oakland’>

<block @id=’1’>

<parkingSpace @id=’1’>

<available>yes</available>

</parkingSpace>

<parkingSpace @id=’2’>

<available>no</available>

</parkingSpace>

</block>

</neighborhood>

</city>

</county>

</state>

</usRegion>

Figure 3: An XML fragment present at a site.

not return all the needed placeholders. E.g., adding

<neighborhood @id=’Shadyside’ @tag=’placeholder’>

to this fragment would not change the answer, because the query
calls for specific data within the Shadyside neighborhood. Finally,
we might try maintaining meta information about what fragment
of the XML document is in the site database. There is a trade-off
between how much meta data we would need and how flexible the
partitioning is — this approach may require significant restrictions
on the fragmentation, otherwise the meta data may be as large as
the database itself! Moreover, given an XPATH query, it is not clear
how to combine this meta data outside the database with what is in-
side the database. For example, suppose that neighborhoods had
a numberOfFreeSpots attribute and parking spaces had a price at-
tribute, and the query asks for available no cost spots in block 1 of
Oakland and Shadyside:

/usRegion[@id=’NE’]/state[@id=’PA’]/county[@id=’Allegheny’]

/city[@id=’Pittsburgh’]/neighborhood[@id=’Oakland’

OR @id=’Shadyside’][@numberOfFreeSpots > 0]

/block[@id=’1’]/parkingSpace[available=’yes’][@price=’0’]

If the site database contained this attribute for both neighborhoods,
and the meta data reflected this, then whether or not we need to visit
the site(s) containing Shadyside block data depends on the value of
this attribute. In order to make this decision, we would need to de-
termine that a specific subquery requesting just this attribute should
be posed to the site database, and then combine its answer with the
meta data – clearly this would not be easy. Given the generality of
XPATH queries, this type of scenario may arise frequently and in
more complicated contexts.

A better approach is to include inside the database any meta in-
formation on what fragment of the XML document is present at
the site, as tag attributes associated with the relevant portions of
the database. These attributes must indicate not only what data is
present or missing, but how to find the missing data. But as illus-
trated above, XPATH is insufficiently powerful to effectively use
these tags. In the next section, we present our novel solution to
these challenges, based on the more powerful XSLT language. Our
technique solves these fragmentation challenges, and moreover, it
enables very flexible query result caching at the sites.

3. OUR SOLUTION
In this section, we describe our solution to the challenges out-

lined in the previous section. We begin with an overview of the
system before describing the various components in detail.

3.1 Overview
Our query processing system starts with the XML document de-

fined by the service. For simplicity, we will assume that the docu-
ment is fixed: only the values of attributes and fields are changing.3

The document defines a logical hierarchy on the data (see Figure 1).
At any point in time, we have partitioned ownership for fragments
of the document to a collection of sites (discussed in Section 3.2).
A site may also cache data owned by other sites (Section 3.3).

Users pose XPATH queries on the view of the data as a single
XML document. The query selects data from a set of nodes in the
hierarchy. The query is sent directly to the lowest common ances-
tor of these nodes, using our technique for self-starting distributed
queries (Section 3.4). There it begins a potentially recursive pro-
cess, which we denote query-evaluate-gather (Section 3.5). Upon
receiving a query, the organizing agent queries its local database
and cache, and evaluates the result. If necessary, it gathers miss-
ing data by sending subqueries to other sites, who may recursively
query additional sites, and so on. Finally the subquery answers re-
turn from the other sites, and the combined results are sent back to
the user.

XPATH queries supported. Throughout this paper, we take the
common approach of viewing an XML document as unordered, in
that we ignore any ordering based solely on the linearization of the
hierarchy into a sequential document. For example, although sib-
lings may appear in the document in a particular order, we assume
that siblings are unordered, as this matches our data model. Thus
we focus on the unordered fragment of XPATH, ignoring the few
operators such as position() or axes like following-siblings that
are inappropriate for unordered data. We support (and have imple-
mented) the entire unordered fragment of XPATH 1.0.

3.2 Data partitioning
There are two distinct aspects to data partitioning: data owner-

ship, which dictates who owns what part of data, and data storage,
which describes the actual data stored at each site. Our partitioning
scheme is based on a series of partitioning rules, tags (i.e., special
attributes), and invariants that must be maintained to ensure correct
answers. Our scheme uses the following definitions.

IDable nodes. We associate with certain (element) nodes in a doc-
ument an “id” attribute (see Figure 3). This id attribute is in the
spirit of a DTD’s ID type.4 However, we require only that the id
be unique among its siblings with the same element name (e.g., the
parkingSpace siblings within a block), whereas ID type attributes
must have globally unique values. This distinction is quite helpful
for us, because our document is fragmented across many sites, so it
would be difficult to ensure globally unique names. Moreover, the
values for our id attributes are short names that make sense to the
user query (e.g., Pittsburgh).

DEFINITION 3.1. A node in a document is called an IDable
node if (1) it has a unique id among its siblings with the same ele-
ment name, and (2) its parent is an IDable node. The root node of
a document is also an IDable node. The ID of an IDable node is
defined to be its 〈elementname, id〉 pair.

Figure 4 shows an example document, and its IDable nodes (de-
noted in bold). Note that each IDable node can be uniquely identi-
fied by the sequence of IDs on the path from the root to the node.
3The more general scenarios are addressed in Section 4.
4A DTD defines the schema for XML documents, including restric-
tions on attribute values.

neighborhood
id = 'Oakland'

zipcode = '15213'

block
id =' 1' available-spaces

block
id =' 2'

pSpace
id = '1'

in-use GPS price

25 centsno

pSpace
id = '2'

pSpace
id = '1'

8

Figure 4: IDable Nodes in a Document

DEFINITION 3.2. The local information of an IDable node n

is defined to be the document fragment containing: (1) all the at-
tributes of n, (2) all its non-IDable children and their descendants,
and (3) the IDs of its IDable children. The local ID information is
defined to be the document fragment that contains (1) the ID of the
node, and (2) the IDs of all its IDable children.

Thus the local ID information of an IDable node is a subset of the
local information of that node. For example, the local information
of the Oakland node in Figure 4 is:

<neighborhood @id=’Oakland’ @zipcode=’15213’>

<block @id=’1’></block>

<block @id=’2’></block>

<available-spaces>8</available-spaces>

</neighborhood>

Whereas its local ID information is:

<neighborhood @id=’Oakland’>

<block @id=’1’></block>

<block @id=’2’></block>

</neighborhood>

Note that the document fragments corresponding to the local in-
formations of the IDable nodes form a nearly-disjoint partitioning
of the original document, with the only overlap being the IDs of the
IDable nodes.

Data ownership. We permit each site to own an arbitrary set of
nodes from the document, under the following constraints:

• Each node in the document must be owned by exactly one
site.

• A node may have a different owner than its parent only if it
is an IDable node.

This enables considerable flexibility for partitioning. For example,
a site may own a node, a few of its grandchildren and cousins, but
not the intervening nodes in the hierarchy. Our query processing
algorithms must ensure correct answers in the presence of any such
partitionings.

The owner of a node is ultimately responsible for any queries on
that node. By requiring that only an IDable node may be on a dif-
ferent site than its parent, we ensure that any such node is globally
addressable. (We describe in Section 3.4 how the system locates
the site corresponding to the node.)

Data stored at each site. The data that is stored at each site is es-
sentially the union of an arbitrary combination of either the local
ID information or the complete local information of a set of nodes.
There are two invariants we maintain on the stored data: (I1) each
site must store the local information for the nodes it owns, and (I2)
if (at least) the ID of a node is stored, then the local ID information
of its parent must also be stored. Note that this implies that the
local ID information of all ancestors of such a node is also stored.
Typically, storing the sibling IDs of the ancesters adds only modest
storage overhead, compared to the (more extensive) local informa-
tion for the nodes themselves.

A special attribute called status (meaningful only for IDable nodes)
is used to summarize the stored data for a node, in order to ensure
correct and efficient query processing. It has four possible values:

• owned: The site owns this node. By invariants (I1) and (I2),
it has the local information of the node and at least the local
ID information of all its ancestors.

• complete: The site has the same information stored as owned,
except that it does not own the node.

• ID-complete: The site has the local ID information for this
node and the local ID information of all its ancestors, but it
does not have all the local information for the node.

• incomplete: For this node, the site has only its ID.
Our system maintains the invariant that each node at a site falls
into one of these four categories (a non-IDable node is implicitly
assumed to have the same status as its lowest IDable ancestor).

Intuition behind this structure. What have we accomplished by
these partitioning rules, special attributes, and invariants? If a site
has information about a node (beyond just its ID), it knows at least
the IDs of all its IDable children, and also the IDs of all its ances-
tors and their siblings. Thus when a query is routed to this site,
it can either answer it using the document fragment it has, or it
knows which parts are missing (the missing parts will always be
IDable nodes and the information in the subtrees below them). It
can then contact the appropriate sites that own the missing parts
(because it has their unique names) and get the information from
them.

As such, any given site has in its document fragment the infor-
mation needed to gather an answer to a query, even if it does not
have all the data itself.

3.3 Caching
Our goals are (1) to have considerable flexibility for replicating

data at multiple sites on the fly, and (2) to enable efficient and cor-
rect query processing despite this dynamic caching. The key obser-
vation is that the scheme outlined in Section 3.2 is well-suited to
accomplishing these goals.

Storing additional data. A site can add to its current document
any document fragment that satisfies: (C1) the document fragment
is a union of local informations or local ID informations of some
set of nodes, and (C2) if the document fragment contains local in-
formation or local ID information for a node, it also contains the
local ID information for its parent (hence all its ancestors). Then
by merging this new document fragment with the existing docu-
ment, we are guaranteed to maintain invariants (I1) and (I2) above.
Moreover, updating the status attributes is straightforward.

Caching query results. An important special case of the above
is the caching of query results. Recall that we route a query to
its LCA and then recursively progress down the hierarchy to pull
together the answer. In our current prototype, whenever a (partial)
answer is returned to a site, we cache the answer at the site. Thus

an organizing agent aggressively caches any data that it sees. This
has two benefits. First, subsequent queries on the same data can be
answered by the site, thereby avoiding the expense of gathering up
the answer again.5 Second, it automatically tunes the creation of
additional copies to the query workload; such copies can distribute
the workload over multiple sites. To make this caching possible,
we generalize the subqueries sent to sites, making them fetch the
smallest superset of the answer that satisfies (C1) and (C2) above.
(This does not alter the answer returned to the user. Details are in
Section 3.5.)

One could choose to use our generalized subqueries and caching
techniques only when the workload seems to dictate it. We plan to
look into such hybrid caching policies in more detail in the future.

Partial match caching. A key feature of our caching scheme is its
ability to support partial match caching, which ensures that even
partial matches on cached data can be exploited and that correct
answers are returned. Because our invariants ensure that we can
always use whatever data we have in a site database, and fetch any
missing parts of the answer, we can provide very flexible partial
match caching. For example, the query in Figure 2 may use data for
Oakland cached at the Pittsburgh site, even though this data is only
a partial match for the new query. Similarly, if distinct Oakland
and Shadyside queries result in the data being cached at Pittsburgh,
the query may use the merged cached data to immediately return
an answer. Even if the earlier queries have different predicates, our
generalization of subqueries may enable the later queries to use the
cached data. Note also that a site can determine when a collection
of queries has resulted in all the IDable siblings being cached, and
hence respond to queries over all such siblings (subsumption). For
example, suppose there are three neighborhoods downtown, mid-
town, and uptown in a city New York, all on different sites than the
city node. Then independent queries that cause the three neighbor-
hoods to be cached at the New York node, would lead to the query

... /city[@id=’New York’]/neighborhood/block

/parkingSpace[@available = ’yes’]

being correctly answered from just the New York site. (This query
requests all available parking spaces in New York.) This is because
invariant (I1) above ensures that New York always maintains the
IDs of all its neighborhoods, so it can detect when it has all of its
neighborhoods cached.

Evicting (cached) data. Any data can be removed as long as it
is always removed in units of local informations or local ID infor-
mations of IDable nodes and the conditions outlined above are still
valid after the removal. Currently, we use a simple cache manage-
ment policy that never removes cached data, but only replaces it
if a fresh copy of the same data is available for caching. We plan
to look into more sophisticated cache management policies in the
future.

In summary, our scheme makes it easy to provide flexible caching.
The main challenge is to do the above operations efficiently, with-
out having to fetch the entire document into memory and without
touching any more of the document than necessary. As it turns out,
this task is accomplished using the mechanism for query processing
in general, which we discuss in Section 3.5.

3.4 Finding sites
In this subsection, we discuss how the system can determine the

IP address for any site needed during query processing. Recall that
the mapping of IDable nodes to sites is arbitrary and dynamically
changing. However, there are only two situations in which IP ad-
dresses are needed during query processing: (1) when the query is
5Issues of staleness of cached data are discussed in Section 4.

initially posed by a user somewhere in the Internet, and (2) when
an organizing agent determines that it needs to pose a subquery to
a specific IDable node. We consider each situation in turn.

Self-starting distributed queries. Users anywhere on the Internet
can pose queries. For scalability, we clearly do not want to send all
queries to the site(s) hosting the root node of the hierarchy. Instead,
our goal is to send the query directly to the lowest common ancestor
(LCA) of the query result. But how do we find the site that owns the
LCA node, given the large number of nodes and the dynamic map-
ping of nodes to sites? Our solution is (1) to have DNS-style names
for nodes that can be constructed from the queries themselves, (2)
to use DNS lookups to determine the IP addresses of the desired
sites, and (3) to update the DNS entries when nodes are remapped.
Recall that each IDable node is uniquely identified by the sequence
of IDs on the path from the root to the node. Thus our DNS-style
names are simply the concatenation of these IDs. For example, for
the query in Figure 2, its LCA node is Pittsburgh. We construct the
DNS-style name

pittsburgh.allegheny.pa.ne.parking.intel-iris.net

perform a DNS lookup to get the IP address of the Pittsburgh site,
and route the query there.

A key feature is that no global information is needed to produce
this DNS-style name: it is extracted directly from the query! We
have a simple parser that processes the query string from its begin-
ning, and as long as the parser finds a repeated sequence of /ele-
mentname[@id=x], it prepends to the DNS name. The DNS lookup
may need several hops to find the appropriate DNS entry, but then
this entry is cached in a DNS server near to the query, so subse-
quent lookups will find the IP address in the nearby DNS server.
Note that no information about the XML document (or its schema)
is needed by the parser.

Sending a subquery. When an organizing agent determines that a
query requires data not in its site database, then by our invariants, it
has the root-to-node ID path for the IDable node it needs to contact.
To see this, observe that each piece of missing data is in the local
information of some IDable node. Consider one such IDable node
n. By invariant (I1), this node is owned by a different site. By
invariant (I2), regardless of n’s status value, we have its ID, and the
IDs of all its ancestors. Thus we can produce the DNS-style name
for any needed IDable node solely from the information in the site
database, and then perform the lookup to get the IP address. A
key feature of this design is that the mapping of IDable nodes to
IP addresses is encapsulated entirely in the DNS entries, and not
in any site databases. This makes it relatively easy to change the
mapping as desired for load balancing and other purposes.

3.5 Query-Evaluate-Gather
We now describe our query-evaluate-gather technique for de-

tecting (1) which data in a local database fragment is part of the
query result, and (2) how to gather the missing parts. As noted
above, our invariants guarantee that the site has all the information
required to answer a query (including whether it is required to con-
tact other sites). Handling arbitrary XPATH queries turns out to be
quite challenging though, because of the richness of the language.

As an example, consider the following (only moderately com-
plex) query:
/usRegion[@id=’NE’]/state[@id=’PA’]/county[@id=’Allegheny’]

/city[@id=’Pittsburgh’]/neighborhood[@id=’Oakland’]

/block[@id=’1’]

/parkingSpace[not(price > ../parkingSpace/price)]

This query requests the least pricey parking spot in a particular
block in Oakland (XPATH 1.0 does not have a min operator). Con-

sider a scenario where the individual parkingSpaces are owned by
different sites and moreover, each site only stores the local infor-
mation for the parkingSpace it owns (this is a permissible configu-
ration). Such a configuration is problematic for this query, because
none of the sites have sufficient information to evaluate the predi-
cate. This motivates the following definition.

DEFINITION 3.3. The nesting depth of an XPATH query is de-
fined to be the maximum depth at which a location path that tra-
verses over IDable nodes occurs in the query.

We will illustrate this definition through a few examples:

/a[@id=x]/b[@id=y]/c→ nesting depth = 0
/a[@id=x]//c→ nesting depth = 0
/a[./b/c]/b→ nesting depth = 1 (if b is IDable) or 0
(otherwise)
/a[count(./b/c) = 5]/b → nesting depth = 1 (if b is
IDable) or 0 (otherwise)
/a[count(./b[./c[@id=1]])]→ nesting depth = 2 (if
c is IDable) or 1 (if c is not IDable, but b is) or 0 (oth-
erwise)

The complexity of evaluating a query increases with the nesting
depth of the query. Queries with nesting depth 0 are the easiest
to solve, because the predicates can always be evaluated using the
local information (which is always present at the site that owns
the node). However, as the examples in Section 2 showed, even
this case is challenging, and there were no good previously known
solutions.

The basic QEG scheme. In the remainder of this section, we
describe our approach, assuming nesting depth 0. (Extensions to
larger nesting depths are discussed in Section 4.) Because XPATH
is insufficiently powerful, we use XSLT to query the database, eval-
uate what is there, and send subqueries to gather the missing parts
of the answer. We show how the XSLT programs used by our
scheme can be generated directly from the XPATH query.

Given an XPATH query Q, let LOCAL-INFO-REQUIRED be the
set of element names (tags) such that the final answer should in-
clude the entire local information for any IDable node with one of
these tags, if the node satisfies Q. As an example, for the following
query on the database shown in Figure 4,
... /neighborhood[@id=’Oakland’]/block

LOCAL-INFO-REQUIRED = {block, parkingSpace}. The query

... /neighborhood[@id=’Oakland’]/block/parkingSpace

on the other hand, only requires local information about park-

ingSpace. Note that this is consistent with the semantics of XPATH,
because XPATH returns entire subtrees in the document rooted at
the nodes selected by the query.

When an organizing agent receives a query Q, it generates an
XSLT program from that query that executes the following algo-
rithm:

1. Let cur be the node in the document under consideration at
any time, tagcur be the element name (tag) of cur, and let P

be the set of predicates on tagcur in the query. Initialize cur

to be the root of the document at the site.

2. Depending on the status of cur in the document, there are
four possibilities :

1. status = incomplete: In this case, see if P can be di-
vided into two predicates Pid and Prest, such that Pid

contains only predicates on the id attribute, and P =
Pid&&Prest. If this is possible, evaluate Pid against
the current node. If it evaluates to true, then form a

subquery for evaluating the rest of the query and note
this by adding an asksubquery tag to the answer being
formed. A post-processing step will then send this sub-
query to its LCA, in order to gather missing parts of the
answer. If Pid evaluates to false, it is also noted in the
answer being formed, so that the post-processor knows
that a subquery does not need to be asked.
If the division of P into two such predicates is not
straightforward, we assume that the node may be part
of the answer and form a subquery for evaluating the
rest of the query as above (i.e., we were unable to avoid
this subquery).

2. status = id-complete: The actions performed in this
case are similar to the above case, except that if tagcur

is not in LOCAL-INFO-REQUIRED and P = Pid, then
we can recurse on the children nodes without having
to form any subquery. On the other hand, if tagcur is
in LOCAL-INFO-REQUIRED, then the local information
for this node is required in the answer, and as such, we
must ask a subquery to gather that information.

3. status = owned: In this case, we have complete in-
formation to evaluate the predicate P . If P is satis-
fied, then recurse on the IDable children of cur, and
also copy the local information into the answer being
formed depending on whether tagcur is in LOCAL-INFO-
REQUIRED. Only local ID information needs to be copied
if tagcur is not in LOCAL-INFO-REQUIRED.

4. status = complete: The actions performed in this case
are similar to that for the above case, except for any
predicates that specify consistency requirements. We
will discuss this case in the next section.

This XSLT program is compiled and then executed on the site
document, with the result being an annotated document that con-
tains a subset of the answer plus placeholders for where subqueries
need to be asked (if any). When the subqueries return, the returned
answers are spliced in, replacing the placeholders. When all the
subqueries have returned, the resulting answer is returned to the
site that sent Q.

4. EXTENSIONS
In this section, we discuss extensions to our scheme, including

cache consistency issues, handling larger nesting depths, ownership
changes, schema changes, and speeding up XSLT processing.

Query-based consistency. Due to delays in the network and the
use of cached data, answers returned to users will not reflect the
absolutely most recent data. Instead, we provide a very flexible
mechanism in which each query may specify its tolerance for stale
data on a per element basis. We store timestamps along with the
data, indicating when the data was created (according to the cre-
ating site’s local clock – we do not assume globally synchronized
clocks). An XPATH query specifying a tolerance is automatically
routed to the data of appropriate freshness. In particular, each query
will take advantage of cached data only if the data is sufficiently
fresh. For example, a query Q with a consistency predicate such
as [timestamp > now - 30] for a particular element means that Q

can be answered using any data for that element whose timestamp
is within 30 seconds of the time Q was posed.

Although allowing users to specify a degree of staleness violates
strict data transparency, we believe it provides an easily understand-
able means for queries that trade off freshness for possibly large
performance improvements. For example, when a user is several
miles from her destination, the Parking Space Finder service may

fire off queries that tolerate minutes-old availability information.
As the user approaches her destination, the service fires off queries
that insist upon the most recent data.

The following changes to the XSLT program are needed to han-
dle consistency predicates in queries. If status = owned, then we
ignore consistency predicates, because the owner of the data has
the freshest copy. Thus the semantics of the above consistency
predicate allows for returning the freshest data even if that data
is more than 30 seconds old. This ensures that users get an answer.
Alternatively, the system could return an error message. If status
= complete, and if we can separate out the consistency predicates
Pconsistency from P , then we first check Prest — the predicates
in P on data not subject to the consistency predicates. If that eval-
uates to false, then there is no need to check for the consistency
predicates. If that evaluates to true and Pconsistency evaluates to
false, then we add a asksubquery tag at this point to signal the post-
processor. As before, if Pconsistency is not readily divided out, we
fall back to adding a asksubquery tag, in order to query the owner.

This notion of acceptable consistency can also be extended to
acceptable precision, based on certain aggregate attributes of the
data. As an example, queries asking for the number of available
parking spots in a city may express a 10% tolerance in the returned
answer.

Larger nesting depths. The main challenge with XPATH queries
with nesting depths greater that 0 is that the query may specify
predicates that can not be evaluated locally (recall the example
query in Section 3.5). Many such queries are quite natural in the
kinds of applications we are interested in.

There are two approaches to solving such queries. The first ap-
proach is to collect all the data needed to evaluate the predicate at
one site. The main question here is: what data needs to be fetched
and at which site should the data be collected? Referring to our
example query from Section 3.5,

.../block[@id=’1’]

/parkingSpace[not(price > ../parkingSpace/price)]

even though the predicate with nesting depth 1 is associated with
the parkingSpace tag, because of the upward reference in the pred-
icate (“..”), the data needed to check this predicate is the entire sub-
tree under the block tag.

Currently, we solve such a query by analyzing the query to find
out the earliest tag that is referred to in such a nested predicate
in the query. In this example query, this tag would be the block
tag. During query execution, when the XSLT program encounters
a node with this tag, it stops the execution at that point, issues a
subquery to fetch all the data under that block (in this case, using
the query .../block[@id=’1’]/), and proceeds with the execution
when the answer to the subquery returns. This approach guarantees
that whenever the predicate is evaluated, all the data that it requires
is always present locally.

This approach may not be optimal for certain queries. For exam-
ple, consider a (frivolous) query requesting all available spaces in
all cities that have Oakland as a neighborhood:

... /city[./neighborhood[@id=’Oakland’]]/ ...

Fetching all the data below the city nodes at the corresponding sites
(as will be done by the above approach) may be an overkill for this
query. It would be preferable to just evaluate the predicates directly,
which can be done by firing off subqueries of the form

boolean(... /city/neighborhood[@id=’Oakland’])

We are planning to implement and experiment with this approach
in the future.

Ownership changes. For the purposes of load balancing or ac-
commodating arriving or departing sites, it is useful to be able to

dynamically change the ownership of a set of IDable nodes. The
transition must appear atomic to the rest of the system. The steps
to be done to transfer an IDable node are (1) the site taking owner-
ship of an IDable node fetches a copy of the local information from
the owner, (2) any sensor proxy reporting to the previous owner is
asked to report to the new owner, (3) the new owner sets the sta-
tus for that node to owned while the old owner sets the status to
complete, and (4) the DNS entry corresponding to the node is up-
dated to the IP address of the new owner. This final step guarantees
the atomicity of this procedure. The rest of the system is oblivious
to the transfer until that point, and as such all the queries for that
node are still sent to the old owner. The old owner simply holds
all such queries until the transfer is complete. The DNS entries
are typically cached at the clients, and as such may not reflect this
ownership change immediately, but as the old owner has the cor-
rect DNS entry in its cache, it can forward any requests for that
node sent to it because of such stale DNS entries.

Schema changes. Schema changes that do not affect the hierarchy
of IDable nodes can be done locally by the organizing agent that
owns the relevant fragment of the data. Such schema changes in-
clude adding attributes to, or deleting attributes from the data, and
adding or removing non-IDable nodes. This might lead to transient
inconsistencies as the organizing agent has no way of knowing who
else might have cached that part of the data. But in a continuously
changing environment such as ours, we expect this inconsistency
to be corrected quickly.

Some of the schema changes that affect the hierarchy of the
IDable nodes can be handled similarly. For example, addition or
deletion of IDable nodes is performed by the organizing agent that
owns the parent of the affected IDable node. More drastic schema
changes, such as a restructuring of the hierarchy, may have to be
performed by collecting the entire document at one site, making the
changes, and redistributing the document back among the nodes.
Once again, such a change might lead to transient inconsistencies
in the data that, although undesirable, are permissible for the kinds
of applications we are looking at. More stringent consistency guar-
antees can also be implemented by maintaining auxiliary informa-
tion about the copies of the data, as we will discuss in Section 6.
We plan to explore these issues further in the future.

Speeding up XSLT processing. Recall that the QEG process-
ing at a site involves creating an XSLT program from the XPATH
query, compiling the XSLT program, and then executing the com-
piled program against the document. As demonstrated in Section 5,
there is significant overhead in the compilation step. We now de-
scribe our technique for eliminating most of this overhead by di-
rectly generating mostly compiled XSLT programs.

When an organizing agent starts up, one of the first things it does
is to create and compile an XSLT program using a dummy XPATH
query. Once this is done, it identifies the parts of this compiled
XSLT query that depend on the XPATH query. Subsequently, when
the organizing agent needs to create the XSLT program for an ac-
tual XPATH query, it simply modifies this XSLT program directly
to set the query-dependent information. Some compilation is still
required, because the query-dependent structures are in XPATH
and need to be recompiled. But the cost is much lower than the
cost of compiling the entire XSLT program.

5. PERFORMANCE STUDY
In this section, we present a preliminary performance study demon-

strating the features of our system, and the flexibility and effective-
ness of our architecture. The salient points of our experimental
study can be summarized as follows :

Figure 5: Webcams monitoring toy parking lots

• Our flexible architecture allowing arbitrary logical-to-physical
mappings can harvest the processing power in the system
more effectively than any traditional solution.

• Caching can be very effective in both reducing latencies of
queries, and offloading work to increase overall throughput.

• Compiling XSLT queries directly leads to huge savings in
query processing time.

Though our focus is on the XML-based solution that we have
proposed in this paper, we will also point out how some of our
conclusions generalize to alternative architectures for our applica-
tion (e.g., object-relational databases). In fact, one of the alterna-
tive architectures that we discuss in this section simulates use of an
object-relational database.

5.1 Experimental setup
For most of our experiments, we use a homogenous cluster of 9

2GHz Pentium IV machines running Redhat Linux 7.3 connected
by a local area network. In our current prototype, we have 10 sens-
ing agents (SAs) that each have an associated sensor (webcam) that
monitors a toy parking lot (Figure 5). For these larger-scale ex-
periments, we simulate as many SAs as required by running fake
SAs that produce random data updates. As our backend, we use
the Apache Xindice 1.0 [1] native XML database. Xindice cur-
rently does not support XSLT processing (though it is a planned
feature). Hence, in our current prototype, we use the Xalan XSLT
processor [2] for that purpose (Xalan is also used by Xindice for
processing XPATH).

We use an artificially generated database for our parking space
finder application consisting of a total of 2400 parking spaces us-
ing a hierarchy similar to the one shown in Figure 1. This database
models a small part of a nationwide database and contains 2 cities,
3 neighborhoods per city, 20 blocks per neighborhood, and 20 park-
ing spaces per block. We envision that the queries in such a database
will typically ask for available parking spaces geographically close
to a particular location. As described in Section 3.4, the queries are
initially routed to the organizing agent (OA) that owns the lowest
common ancestor of the data, and as such, we distinguish between
the queries in our workload based on the level in this hierarchy to
which they are first routed.

• Type 1: These queries ask for data from one block, specify-
ing the exact path to the block from the root.

QW-1 QW-2 QW-3 QW-4 QW-Mix

Query Workload

0

20

40

60

80

100

A
ve

ra
ge

 T
hr

ou
gh

pu
t

(q
ue

ri
es

/s
ec

)

Architecture 1
Architecture 2
Architecture 3
Architecture 4

Figure 7: Query Throughputs for Various Architectures

• Type 2: These queries ask for data from two blocks from a
single neighborhood.

• Type 3: These queries ask for data from two blocks from
two different neighborhoods. (Such a query may be asked
by a user if her destination is near the boundary of the two
neighborhoods.)

• Type 4: These queries ask for data from two blocks from
two different cities. (The destination is near the boundary
between two cities.)

We expect that type 3 and type 4 queries will be relatively uncom-
mon, and most of the queries will be of type 1 or 2. Hence, we will
also show results for mixed workloads that include more queries of
the first two types.

5.2 Handling sensor updates
An update from an SA is typically routed directly to the OA that

owns the relevant node in the hierarchy. On the OA side, processing
a sensor update involves updating the document at the site with the
new availability information, as well as timestamping the data. A
single OA is typically able to handle 200 updates a second in our
current prototype. The total number of updates that can be handled
by the system scales linearly with the number of OAs among which
the data is distributed.

5.3 Architectural comparison
With our first set of experiments, we demonstrate the flexibility

of our architecture in harvesting the processing power available in
the system. We consider four different architectures each of which
is a viable alternative for our application. We show results for five
query workloads, QW-1, QW-2, QW-3, QW-4, consisting of ran-
domly generated queries of types 1 to 4 respectively, and QW-Mix,
a mixed query workload that asks 40% queries of type 1 and 2 each,
15% queries of type 3 and 5% queries of type 4.

• Centralized – Figure 6(i): In this architecture, all the data is
located at a central server, and data updates as well as queries
are sent to a central server. Such an architecture can not be
expected to scale very well as it can handle very few sensor
updates (200 updates per second).

• Centralized querying, distributed update – Figure 6(ii): In
this scenario, we offload the sensor updates to other machines
by distributing the blocks among the rest of the machines.
The queries are still sent to the centralized server, because

Queries

SA Updates

Parking Space

Block

Neighborhood

City

Queries

SA Updates

Neigh-
borhood

City

(i) (ii)

Parking Space

Block

Queries

SA Updates

Neigh-
borhood

City

DNS
Server

Queries

SA Updates

DNS
Server

City

County

(iii) (iv)

Block

Neighborhood

Parking Space

Block

Figure 6: Sensor Database Architectures

the server is the sole repository for the mapping from blocks
to physical machines. This scenario is intended to simu-
late a simple distributed object-relational database, where the
blocks form an object-relational table that is distributed and
the hierarchy is maintained as another set of tables that are
all stored at the central server. Of course, this is not the only
possible design using an object-relational database, but most
such designs will suffer from similar flaws as this design.
(Object-relational sensor databases are discussed further in
Section 6.)

• Distributed querying, distributed update, fixed two-level
organization – Figure 6(iii): This scenario is similar to the
above scenario, except that we use the DNS server to store
the mapping from blocks to physical machines. The DNS
server runs on one of the sites. This helps in solving the
queries of type 1 significantly, but does not help much with
other kinds of queries.

• Distributed querying, distributed update, hierarchical or-
ganization – Figure 6(iv): A more logical organization of the
data, considering the nature of the query workloads, would
be to arrange it hierarchically in a geographic fashion. We
do this by assigning the 6 neighborhoods to 6 different sites,
assigning the 2 cities to two different sites, and assigning the
rest of the hierarchy to one site. This corresponds to the sce-
nario of choice in IrisNet.

Note that all architectures use the same number of SAs, and the
latter three architectures use the same number of sites.

Figure 7 shows the query throughputs for these four architectures
for the five query workloads. As we can see, the centralized solu-
tion (Architecture 1) does not scale very well for querying either,
and can handle very few queries efficiently. Although distributing
only the updates (Architecture 2) increases the number of sensor
data updates the system is able to handle, it only improves query
throughput by a factor of 2 over the centralized solution, because
all queries go through the centralized server. Using DNS for self-
starting distributed queries (Architecture 3) shows the effectiveness
of this technique, as the throughput for type 1 queries increases by
a factor of 3 over Architecture 2. However, all other queries still
go through the central server, which is the bottleneck for the other
types of queries, and also for the mixed workload. The hierarchical
distribution of data (Architecture 4) turns out to perform the best
overall as it can handle all kinds of queries quite well. It does per-
form 25% worse than Architecture 3 for type 1 queries, because it
is using 25% fewer machines in processing these queries. However,

it performs at least 60% better than the other architectures on the
mixed workload.

Because the mapping of logical nodes in the hierarchy to the
physical sites is not fixed in our architecture, our system is able to
handle skewed query workloads much more effectively than other
architectures. For example, during business hours, a large percent-
age of the queries may be asking for information for blocks in the
Downtown neighborhood. Such a skewed query workload can be
much better handled by redistributing those blocks across all avail-
able machines, as opposed to them being on a single node as in the
above mapping. Figure 8 shows the results of a simple experiment
where we skewed the query workload to consist of 90% queries
targetting a single neighborhood for type 1 and type 2 queries. As
we can see, the original distribution of the data (Architecture 4)
does not perform very well, whereas a more balanced architecture
that distributes the blocks in that neighborhood across all sites has
a factor of 4 higher throughput for this workload.

5.4 Dynamic load balancing
As discussed in the earlier section, our system is capable of

changing the mapping of logical nodes in the hierarchy to the phys-
ical sites dynamically while still being able to answer queries.

We show the effectiveness of dynamic load balancing through an
experiment that traced the average throughput of the system over
time. For this experiment, we started multiple querying clients
all asking queries of type 1, with 90% of the queries directed to
a fixed neighborhood X , and 10% of the queries asking for a block
in a randomly chosen neighborhood. Figure 9 shows the average
throughput of the system over time. As we can see, initially when
all the blocks in neighborhood X are located on a single site, the av-
erage throughput of the system was quite low. At 206 seconds into
the experiment (first dashed line), we started redistributing the data
on that site to other sites by explicitly asking the OA to delegate its
blocks to other nodes one by one. In our current prototype, this has
to be done by sending a request for delegating ownership of each
block one at a time. These requests were sent at even intervals until
373 seconds (second dashed line). At that time, the blocks under
neighborhood X were distributed across all the machines evenly.
As we can see, the average throughput of the system increased by
nearly a factor of 3 even with this crude load-balancing scheme,
while the system was still able to answer queries.

5.5 Caching
Caching of query results has two benefits: it can be used to re-

duce response times by bringing the data close to the queries, and

QW-1 QW-2 QW-Mix2

Query Workloads

0

20

40

60

80

100

A
ve

ra
ge

 T
hr

ou
gh

pu
t

Original Distribution
Balanced Distribution

Figure 8: Load Balancing (QW-Mix2
consists of 50% type 1 and 50% type
2 queries)

0 200 400 600

Time (secs)

0

50

100

150

200

N
um

be
r

of
 q

ue
ri

es
 f

in
is

he
d

in
 p

re
ce

di
ng

 5
 s

ec

start end

Figure 9: Dynamic Load Balancing

QW-1 QW-2 QW-3 QW-4 QW-Mix

Query Workload

0

20

40

60

80

100

A
ve

ra
ge

 T
hr

ou
gh

pu
t

(q
ue

ri
es

/s
ec

)

No Caching
Caching with no hits
Caching with 50% hits
Caching with 100% hits

Figure 10: Caching Throughputs (Architecture 4)

it can be used to off-load work from the sites that own popular data
to less loaded sites. Figure 10 shows how caching can help in in-
creasing overall throughput of the system by offloading work. We
use the fourth architecture and show results without caching, with
caching but no hits (this demonstrates the overheads of caching),
with caching and 50% hits, and finally, with caching and 100%
hits. As we can see, caching induces minimal overhead in the sys-
tem. Caching does not affect the throughputs for type 1 and type 2
in this scenario because these queries are always directed to the ma-
chine that has the full data. On the other hand, for type 3 and type
4 queries, we see that as the probability of hits increases, the over-
all throughput of the system reduces significantly. This happens
because after the initial few queries, all the queries are completely
answered by the top-level sites (sites that are assigned to the city
and county nodes), and these nodes become the bottleneck. As we
will see in Section 5.6, the time taken to forward a query to another
node is much less than the time taken to process the query when
the answer is present at a node. This suggests the need for by-
passing the cache under heavy load imbalance. On the other hand,
caching improves throughput by up to 33% for the more realistic
mixed workload, because the otherwise idle top-level sites can ab-
sorb some of the load from the lower-level sites.

We have also studied the effects of caching on latency. Our re-
sults show that even for our local area set-up, query latencies are
reduced by 10–33% for type 3 and type 4 queries, and for the mixed

workload. We plan to study the latency savings for wide area net-
works, where the impact of caching should be more pronounced.

5.6 Micro-benchmarks
To understand how the time to answer a query is distributed

amongst various tasks, we ran some micro-benchmarks against our
system. Figure 11 shows the breakdown of query processing time
depending on at which level in the hierarchy the query was asked.
The query used in this experiment was a query of type 1 asking for
one particular block. Even though this query will always be routed
to the site that owns the neighborhood, we artificially routed this
query to the sites higher up in the hierarchy to see the effect of the
number of hops taken by the query. Three settings were studied:
small database with naive XSLT creation, small database with fast
XSLT creation, and large database with fast XSLT creation.

As we can see, for all of the scenarios, the total processing time
consumed by the query is reduced significantly (by over 50%) if
the query is routed directly to the site that has the data, once again
demonstrating the effectiveness of self-starting distributed queries.
This experiment also shows why we chose to optimize the XSLT
query creation time. As we can see, if the XSLT query is gener-
ated and compiled using traditional interfaces, then the time taken
for this completely dominates the overall query processing time.
Using direct compilation to XSLT from the original XPATH query
reduces the overall query processing time by over 50%!

To see how our query processing mechanism scales with respect
to the database size, we increased the total size of the database by a
factor of 8 by doubling the number of neighborhoods, the number
of blocks in a neighborhood, and the number of parking spaces in
a block. As we can see, the processing time increased by less than
20% at each of the nodes!

These micro-benchmarks also show where the bottlenecks in our
current prototype are. As we can see, most of the time is spent in
executing the XSLT query and during CPU processing for commu-
nication. The communication part also includes the cost of con-
structing and deconstructing the messages. We believe that much
of this is because we are using Java 1.3; using JIT (just-in-time
compilation) and newer XSLT processing packages should signifi-
cantly reduce this time.

6. RELATED WORK
Previous work in sensor databases has focused primarily on net-

0

100

200

300

400

500
A

ve
ra

ge
 t

im
e

(m
se

c)
Rest
Communication
Executing the XSLT Query
Creating the XSLT query

(i)

(i)
(i)

(ii)

(ii)
(ii)(iii)

(iii) (iii)

Small Database, Naive Small Database, Fast Large Database, Fast
XSLT Creation XSLT Creation XSLT Creation

Figure 11: Microbenchmarks: when the query is routed
to the OA that owns (i) the county node, (ii) the city node,
(iii) the neighborhood node

works of closely co-located sensors with limited resources [7, 22,
23]. The sensor query processing system operates directly on con-
tinuous, never-ending streams of sensor data that are pushed into
the query plans for continuous queries. The stream of data is viewed
as a streaming relation (e.g., in Fjords [22]) or a time series (e.g., in
Cougar [7]). These efforts have developed techniques for answer-
ing continuous queries over streaming data and for performing cer-
tain query processing tasks in the sensor network itself in order to
eliminate communication and extend sensor battery lifetimes.

This paper complements this previous work by addressing fun-
damental challenges in distributed query processing over wide area
sensor databases. Based on the applications we were considering,
we sought to provide a more familiar abstraction of the database as
the collection of values corresponding to the most recent updates
(e.g., the currently available parking spaces). Even in this more tra-
ditional setting, there were plenty of challenges to overcome. The
distributed database infrastructure in IrisNet shares much in com-
mon with a variety of large-scale distributed databases. For exam-
ple, DNS [24] relies on a distributed database that uses a hierarchy
based on the structure of host names, in order to support name-
to-address mapping. LDAP [33] addresses some of DNS’s limita-
tions by enabling richer standardized naming using hierarchically-
organized values and attributes. However, a key difference is that
these efforts target a very narrow set of lookup queries (with very
limited predicates), not the richness of a query language like XPATH.

Abiteboul et al. [3] present techniques for materializing and main-
taining views over semistructured data. Answering queries from
views is a hard problem in general. Our caching infrastructure dif-
fers significantly from this work in that we do not store or use the
queries that resulted in the caching of the data, only the data itself.
Our approach is more data-driven in nature. We generalize sub-
queries, tag the data, and maintain certain invariants, all to make
our partial-match caching scheme tractable. There has been a lot
of work on caching in distributed databases, and object-oriented
databases. Franklin and Carey [13] present techniques for client-
server caching in object-oriented databases. Various work [29, 15,
27, 4, 21, 5, 26] discusses issues of data replication and replicate
management in distributed databases. Much of this work has fo-
cused on maintaining replicas consistent with the original data,
with various levels of consistency guarantees. In our work, we
take the approach of not providing any strict guarantees of con-
sistency. We believe that for the kinds of applications for which
wide area sensor databases will be used, such strict guarantees are
not required. Depending upon the requirements of an application,
it is certainly possible to provide such guarantees by maintaining
auxiliary information about the replicas of the data in the system.
Our approach is more akin to DNS, in that it is based on specifying

consistency requirements with the queries, and using a time-to-live
(ttl) field associated with the cached copies in order to determine
staleness.

Recently, there has been a lot of interest in streaming data sources
and continuous query processing [9, 10, 25]. This work is related
to ours in that the sensor proxies can be thought of as producing
data streams, and continuous queries over such streams are quite
natural in such a system. To our knowledge, most of this work fo-
cuses on a centralized system, whereas distributed data storage and
query processing is one of our main design goals. As a result, the
query processing challenges we face in our system are quite differ-
ent. Also, these systems assume that the streaming data sources are
relational in nature, whereas we use XML as our data model.

Although we propose a hierarchical, native XML storage ap-
proach to wide area sensor databases, an alternative would be to
use a distributed object-relational database [30] to store the leaves
of the XML document (as discussed in Section 5). In our park-
ing space finder application, these would correspond to either the
blocks or the parking spaces. The hierarchy information can be
maintained either at a central server or along with the leaves them-
selves. This approach has several critical disadvantages. First, the
hierarchy information becomes a bottleneck resource, as demon-
strated in our performance study. Approaches to avoid this bottle-
neck would likely entail mimicking much of our hierarchical ap-
proach, and hence would benefit from the techniques presented
in this paper. Second, the richness of XML allows transparent
schema changes, and the use of highly expressive languages such
as XPATH, XSLT or XQuery. Many queries that can be naturally
described using these languages are not easily expressible in SQL.
Third, use of such a database seriously restricts how data can be
partitioned among available sites, limiting opportunities for load-
balancing. Our architecture also enables powerful caching seman-
tics naturally; we are not aware of any work on caching in object-
relational databases that is equally as powerful. Much work has
also been done on storing XML using object-relational databases,
and publishing object-relational data as XML [8, 20, 31, 28]. This
work is orthogonal to the issues we discuss here, as the challenges
in our query processing come mainly from the single document
view of the data, and the distributed nature of our system.

Recent work on peer-to-peer databases [17, 11, 16, 18] is quite
closely related to our work. Although our data is organized hierar-
chically, and for performance reasons, we expect the participating
sites to also have a hierarchical organization, this is not required
by our architecture. As such, the participating sites can be thought
of as peers cooperating with each other to store and query data.
In [17], distributed hash tables (DHTs) perform the analogous role
of the DNS server in our architecture in that both of them are used
to find relevant data satisfying a query. DNS is more attractive in
our scenario because of the hierarchical nature of our data and its
longest prefix match lookups. Our work differs considerably in the
actual query processing part itself because of our use of XML and
the XPATH query language. [16, 18] discuss issues of data place-
ment, and caching in peer-to-peer networks. The OLAP caching
framework presented in [18] relates quite closely to our caching
framework, but handles different kinds of data and queries.

There is a large body of literature on load balancing techniques
for parallel and distributed systems (e.g., [6, 12, 14, 19, 32]). Our
current system provides a natural mechanism for performing load
balancing, but we have not yet determined effective load balancing
policies for our setting.

7. CONCLUSIONS
In this paper, we motivated the view of a wide area sensor database

as a distributed hierarchical database with timestamped updates ar-
riving at the leaves. We showed the advantages of using XML as
a data representation, constructing a logical site hierarchy match-
ing the XML document hierarchy, mapping this logical hierarchy
onto a smaller collection of physical sites, and providing for flex-
ible partitioning and caching that adapts to query workloads. We
described the many challenges in providing efficient and correct
XPATH query processing in such an environment, and proposed
novel solutions to address these challenges in an effective, flexi-
ble, unified, and scalable manner. New techniques were presented
for self-starting distributed queries, query-evaluate-gather, partial-
match caching, and query-based consistency. Experimental results
on our IrisNet prototype demonstrated the significant performance
advantages of our approach even for a small collection of sites. We
anticipate that these advantages will only increase when IrisNet is
deployed over hundreds of sites and thousands of miles.

We are currently exploring several extensions to our query pro-
cessing architecture. Continuous queries are an important class of
queries that are natural to a sensor database system. Our architec-
ture naturally allows us to support continuous queries through the
various data structures that we maintain to collect information from
other organizing agents. Though our system can support aggregate
queries as well, the caching infrastructure that we present in this pa-
per is not fully adequate for caching results from aggregate queries,
and we plan to add support for view-based semantic caching in the
future. Another area of research we are interested in is data mining
over historical sensor data, and automatically using the historical
trends to provide better answers to queries. For example, histori-
cal and temporal trends could be used to alert a user how quickly a
downtown parking lot is filling up.

In this paper, we have focused solely on the query processing as-
pects of IrisNet. IrisNet provides a general solution for answering
XPATH queries over partitioned XML documents, beyond park-
ing space queries. Further details on the other applications and
components of the IrisNet system can be found at www.intel-
iris.net.

8. REFERENCES
[1] Apache Xindice Database. http://www.dbxml.org.
[2] Xalan-Java. http://xml.apache.org/xalan-j.
[3] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L.

Wiener. Incremental maintenance for materialized views
over semistructured data. In VLDB, 1998.

[4] D. Agrawal and S. Sengupta. Modular synchronization in
distributed, multi-version databases: Version control and
concurrency control. IEEE TKDE, 5(1), 1993.

[5] R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching
issues in an information retrieval system. TODS, 15(3), 1990.

[6] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In Symposium on Principles and Practice of
Parallel Programming, 1995.

[7] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor
database systems. In Mobile Data Management, 2001.

[8] M. J. Carey et al. XPERANTO: Publishing object-relational
data as XML. In WebDB, 2000.

[9] D. Carney et al. Monitoring streams - A new class of data
management applications. In VLDB, 2002.

[10] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In CIDR, 2003.

[11] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. In International Conference on

Distributed Computing Systems, 2002.
[12] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and

P. Gauthier. Cluster-based scalable network services. In
SOSP, 1997.

[13] M. Franklin and M. Carey. Client-server caching revisited. In
International Workshop on Distributed Object Management,
1992.

[14] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2), 1993.

[15] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In SIGMOD, 1996.

[16] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu.
What can databases do for peer-to-peer. In WebDB, 2001.

[17] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker,
and I. Stoica. Complex queries in DHT-based peer-to-peer
networks. In International Workshop on Peer-to-Peer
Systems, 2001.

[18] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan.
An adaptive peer-to-peer network for distributed caching of
OLAP results. In SIGMOD, 2002.

[19] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In STOC, 1997.

[20] M. Klettke and H. Meyer. XML and object-relational
database systems — enhancing structural mappings based on
statistics. In WebDB, 2000.

[21] N. Krishnakumar and A. Bernstein. Bounded ignorance in
replicated systems. In PODS, 1991.

[22] S. Madden and M. J. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In ICDE,
2002.

[23] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A tiny aggregation service for ad hoc sensor networks.
In OSDI, 2002.

[24] P. V. Mockapetris and K. J. Dunlap. Development of the
Domain Name System. In SIGCOMM, 1988.

[25] R. Motwani et al. Query processing, approximation, and
resource management in a data stream management system.
In CIDR, 2003.

[26] C. Olston and J. Widom. Best-effort cache synchronization
with source cooperation. In SIGMOD, 2002.

[27] C. Pu and A. Leff. Replica control in distributed system: An
asynchronous approach. In SIGMOD, 1991.

[28] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and
retrieval of XML documents using object-relational
databases. In Database and Expert Systems Applications,
1999.

[29] J. Sidell, P. M. Aoki, S. Barr, A. Sah, C. Staelin,
M. Stonebraker, and A. Yu. Data replication in Mariposa. In
ICDE, 1996.

[30] M. Stonebraker and G. Kemnitz. The Postgres next
generation database management system. CACM, 34(10),
1991.

[31] B. Surjanto, N. Ritter, and H. Loeser. XML content
management based on object-relational database technology.
In Web Info. Sys. Eng., 2000.

[32] B. W. Wah. File placement on distributed computer systems.
IEEE Computer, 17(1), 1984.

[33] M. Wahl, T. Howes, and S. Kille. Lightweight Directory
Access Protocol (v3). Tech report, IETF, RFC 2251, 1997.

