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Abstract Graphical models are a popular and well-studied framework for compact repre-
sentation of a joint probability distribution over a large number of interdependent
variables, and for efficient reasoning about such a distribution. They have been
proven useful in a wide range of domains from natural language processing to
computer vision to bioinformatics. In this chapter, we present an approach to us-
ing graphical models for managing and querying large-scale uncertain databases.
We present a unified framework based on the concepts from graphical models
that can model not only tuple-level and attribute-level uncertainties, but can also
handle arbitrary correlations that may be present among the data; our framework
can also naturally capture shared correlations where the same uncertainties and
correlations occur repeatedly in the data. We develop an efficient strategy for
query evaluation over such probabilistic databases by casting the query process-
ing problem as an inference problem in an appropriately constructed graphical
model, and present optimizations specific to probabilistic databases that enable
efficient query evaluation. We conclude the chapter with a discussion of related
and future work on these topics.

Keywords: Graphical models; probabilistic databases; inference; first-order probabilistic
models.
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1. Introduction
An increasing number of real-world applications are demanding support for

managing, storing, and querying uncertain data in relational database systems.
Examples include data integration [14], sensor network applications [22], in-
formation extraction systems [34], mobile object tracking systems [11] and
others. Traditional relational database management systems are not suited for
storing or querying uncertain data, or for reasoning about the uncertainty itself
– commonly desired in these applications. As a result, numerous approaches
have been proposed to handle uncertainty in databases over the years [32, 10,
24, 26, 4, 39, 11, 22, 14, 8, 6]. However, most of these approaches make sim-
plistic and restrictive assumptions concerning the types of uncertainties that
can be represented. In particular, many of the proposed models can only cap-
ture and reason about tuple-level existence uncertainties, and cannot be easily
extended to handle uncertain attribute values which occur naturally in many
domains. Second, they make highly restrictive independence assumptions and
cannot easily model correlations among the tuples or attribute values.

Consider a simple car advertisement database (Figure 1.1) containing infor-
mation regarding pre-owned cars for sale, culled from various sources on the
Internet. By its very nature, the data in such a database contains various types
of uncertainties that interact in complex ways. First off, we may have uncer-
tainty about the validity of a tuple – older ads are likely to correspond to cars
that have already been sold. We may represent such uncertainty by associating
an existence probability (denoted probe) with each tuple. Second, many of the
attribute values may not be known precisely. In some cases, we may have an
explicit probability distribution over an attribute value instead (e.g. the Sell-
erID attribute for Ad 103 in Figure 1.1(a)). More typically, we may have a joint
probability distribution over the attributes, and the uncertainty in the attribute
values for a specific tuple may be computed using the known attribute values
for that tuple. Figure 1.1(d) shows such a joint probability distribution over the
attributes make, model and mpg; this can then be used to compute a distribu-
tion over the mpg attribute for a specific tuple (given the tuple’s make and/or
model information). Finally, the data may exhibit complex attribute-level or
tuple-level correlations. For instance, since the ads 101 and 102 are both en-
tered by the same seller, their validity is expected to be highly correlated; such
a correlation may be represented using a joint probability distribution as shown
in Figure 1.1(c).

Many other application domains naturally produce correlated data as well [52].
For instance, data integration may result in relations containing duplicate tu-
ples that refer to the same entity; such tuples must be modeled as mutually
exclusive [10, 1]. Real-world datasets such as the Christmas Bird Count [16]
naturally contain complex correlations among tuples. Data generated by sen-



Graphical Models for Uncertain Data 3

Ad SellerID Date Type Model mpg Price probe
101 201 1/1 Sedan Civic(EX) ? $6000 0.5
102 201 1/10 Sedan Civic(DX) ? $4000 0.45

103
- prob

201 0.6
202 0.4

1/15
- prob

Sedan 0.3
Hybrid 0.7

Civic ? $12000 0.8

104 202 1/1 Hybrid Civic ? $20000 0.2
105 202 1/1 Hybrid Civic ? $20000 0.2

(a) Advertisements

SellerID Reputation
201 Shady
202 Good

(b) Sellers

Ad 101 Ad 102 prob
valid valid 0.4
valid invalid 0.1

invalid valid 0.05
invalid invalid 0.45

(c)

Type Model mpg prob

Sedan

Civic(EX)
26 0.2
28 0.6
30 0.2

Civic(DX)
32 0.1
35 0.7
37 0.2

Civic
28 0.4
35 0.6

Hybrid Civic
45 0.4
50 0.6

(d)

Figure 1.1. (a,b) A simple car advertisement database with two relations, one containing
uncertain data; (c) A joint probability function (factor) that represents the correlation between
the validity of two of the ads (probe for the corresponding tuples in the Advertisements table
can be computed from this); (d) A shared factor that captures the correlations between several
attributes in Advertisements – this can be used to obtain a probability distribution over missing
attribute values for any tuple.

sor networks is typically highly correlated, both in time and space [22]. Fi-
nally, data generated through the application of a machine learning technique
(e.g. classification labels) typically exhibits complex correlation patterns. Fur-
thermore, the problem of handling correlations among tuples arises naturally
during query evaluation even when one assumes that the base data tuples are
independent. In other words, the independence assumption is not closed under
the relational operators, specifically join [26, 14].

In this chapter, we present a framework built on the foundations of proba-
bilistic graphical models that allows us to uniformly handle uncertainties and
correlations in the data, while keeping the basic probabilistic framework simple
and intuitive. The salient features of our proposed framework are as follows:

• Our framework enables us to uniformly represent both tuple-level and
attribute-level uncertainties and correlations through the use of conditional
probability distributions and joint probability factors. Our proposed model
is based on the commonly-used possible world semantics [26, 14], and as
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a result, every relational algebra query has precise and clear semantics on
uncertain data.

• Our framework can represent and exploit recurring correlation patterns
(called shared factors) that are common in many application domains and
are also manifested during the query evaluation process itself (Figure 1.1(d)
shows one such shared factor).

• We show how to cast query evaluation on probabilistic databases as an in-
ference problem in probabilistic graphical models and develop techniques
for efficiently constructing such models during query processing. This
equivalence not only aids in our understanding of query evaluation on un-
certain databases, but also enables transparent technology transfer by al-
lowing us to draw upon the prior work on inference in the probabilistic
reasoning community. In fact several of the novel inference algorithms we
develop for query evaluation over probabilistic databases are of interest to
the probabilistic reasoning community as well.

Our focus in this chapter is on management of large-scale uncertain data using
probabilistic graphical models. We differentiate this from the dual problem
of casting inference in probabilistic graphical models as query evaluation in
an appropriately designed database (where the conditional probability distri-
butions are stored as database relations) [9]. We revisit this issue in Section
5, along with several other topics such as probabilistic relational models and
the relationship between our approach and other probabilistic query evaluation
approaches.

The rest of the paper is organized as follows. We begin with a brief overview
of graphical models (Section 2); we focus on representation and inference, and
refer the reader to several texts on machine learning [44, 13, 35, 27] for learn-
ing and other advanced issues. We then present our framework for representing
uncertain data using these concepts (Section 3). Next we develop an approach
to cast query processing in probabilistic databases as an inference problem,
and present several techniques for efficient inference (Section 4). We conclude
with a discussion of related topics such as probabilistic relational models, safe
plans, and lineage-based approaches (Section 5).

2. Graphical Models: Overview
Probabilistic graphical models (PGMs) comprise a powerful class of ap-

proaches that enable us to compactly represent and efficiently reason about
very large joint probability distributions [44, 13]. They provide a principled
approach to dealing with the uncertainty in many application domains through
the use of probability theory, while effectively coping with the computational
and representational complexity through the use of graph theory. They have
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been proven useful in a wide range of domains including natural language pro-
cessing, computer vision, social networks, bioinformatics, code design, sensor
networks, and unstructured data integration to name a few. Techniques from
graphical models literature have also been applied to many topics directly of in-
terest to the database community including information extraction, sensor data
analysis, imprecise data representation and querying, selectivity estimation for
query optimization, and data privacy.

At a high level, our goal is to efficiently represent and operate upon a joint
distribution Pr over a set of random variables X = {X1, . . . , Xn}. Even
if these variables are binary-valued, a naive representation of the joint distri-
bution requires the specification of 2n numbers (the probabilities of the 2n

different assignments to the variables), which would be infeasible except for
very small n. Fortunately, most real-world application domains exhibit a high
degree of structure in this joint distribution that allows us to factor the represen-
tation of the distribution into modular components. More specifically, PGMs
exploit conditional independences among the variables:

Definition 2.1. Let X, Y, and Z be sets of random variables. X is condition-
ally independent of Y given Z (denoted X⊥Y|Z) in distribution Pr if:

Pr(X = x,Y = y|Z = z) = Pr(X = x|Z = z) Pr(Y = y|Z = z)

for all values x ∈ dom(X), y ∈ dom(Y) and z ∈ dom(Z).

A graphical model consists of two components: (1) A graph whose nodes
are the random variables and whose edges connect variables that interact di-
rectly; variables that are not directly connected are conditionally independent
given some combination of the other variables. (2) A set of small functions
called factors each over a subset of the random variables.

Definition 2.2. A factor f(X) is a function over a (small) set of random vari-
ables X = {X1, . . . , Xk} such that f(x) ≥ 0 ∀x ∈ dom(X1) × . . . ×
dom(Xk).

The set of factors that can be associated with a graphical model is constrained
by the nature (undirected vs directed) and the structure of the graph as we will
see later. Note that it is not required that f(x) be ≤ 1; in other words, factors
are not required to be (but can be) probability distributions.

Definition 2.3. A probabilistic graphical model (PGM) P = 〈F ,X〉 defines
a joint distribution over the set of random variables X via a set of factors
F , each defined over a subset of X . Given a complete joint assignment x ∈
dom(X1) × · · · × dom(Xn) to the variables in X , the joint distribution is
defined by:

Pr(x) =
1
Z
∏
f∈F

f(xf )



6

where xf denotes the assignments restricted to the arguments of f and Z =∑
x′
∏
f∈F f(x′f ) is a normalization constant.

The power of graphical models comes from the graphical representation of
factors that makes it easy to understand, reason about, and operate upon them.
Depending on the nature of the interactions between the variables, there are two
popular classes of graphical models, Bayesian networks (directed models), and
Markov networks (undirected models). These differ in the family of probability
distributions they can represent, the set of factorizations they allow, and the
way in which the interactions are quantified along the edges. We discuss these
briefly in turn.

Directed Graphical Models: Bayesian Networks
Directed graphical models, popularly known as Bayesian networks, are typ-

ically used to represent causal or asymmetric interactions amongst a set of ran-
dom variables. A directed edge from variable Xi to variable Xj in the graph
(which must be acyclic) is used to indicate that Xi directly influences Xj .
A canonical set of conditional independences encoded by a directed graph-
ical model is obtained as follows: a node Xj is independent of all its non-
descendants given the values of its parents. In other words, if Xi is not a
descendant or a parent of Xj , then Xi⊥Xj |parents(Xj). The rest of the con-
ditional independences encoded by the model can be derived from these.

The probability distribution that a directed graphical model represents can
be factorized as follows:

Pr(X1, . . . , Xn) =
n∏
i=1

Pr(Xi|parents(Xi))

In other words, each of the factors associated with a Bayesian network is a
conditional probability distribution (CPD) over a node given its parents in the
graph.

Figure 1.2 shows a simple example Bayesian network that models the lo-
cation, age, degree, experience, and income of a person. In this application
domain, we might model the location to be independent from the rest of the
variables (as captured by not having any edges to or from the corresponding
node in the graph). For simplicity, we also model the age and degree to be in-
dependent from each other if no other information about the person is known.
Although income is influenced by degree, age, and experience, in most cases,
the influence from age will be indirect, and will disappear given the experi-
ence of the person; in other words, once the experience level of a person is
known, the age does not provide any additional information about the income.
This is modeled by not having any direct edge from age to income. The figure
also shows the factors that will be associated with such a Bayesian network
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... ... ...
0-10
0-10
0-10
E

> 45 0.1
30-45 0.4

0.920-30
pr(E/A)A

f4(E, A) = Pr(E|A)
0.4Other

London 0.1
CA 0.3

0.2NY
pr(L)L

f1(L) = Pr(L)

> 45 0.3
30-45 0.4

0.320-30
pr(A)A

f2(A) = Pr(A)

Location Age

ExperienceDegree

Income

Pr(L, A, D, E, I) = f1(L)  f2(A)  f3(D)  f4(E, A)  f5(I, E, D))
                         = Pr(L)  Pr(A)  Pr(D)  Pr(E | A)  Pr(I | E, D))

0.15Other
PhD 0.05
MS 0.2

0.5BS
pr(D)D

f3(D) = Pr(D)

...

I

... ... ...
0-10
E

0.95Other
pr(I|E,D)D

f5(I, E, D) = Pr(I | E, D)

<$50k

Examples of conditional independences captured:
                  Location ⊥ {Age, Degree, Experience, Income}

Degree ⊥ {Age, Experience}
Income ⊥ Age | Experience

Figure 1.2. Example of a directed model for a domain with 5 random variables

(one CPD each corresponding to each node), and the expression for the joint
probability distribution as a product of the factors.

A domain expert typically chooses the edges to be added to the model, al-
though the graph could also be learned from a training dataset. A sparse graph
with few edges leads to more compact representation and (typically) more ef-
ficient inference, but a denser graph might be required to capture all the inter-
actions between the variables faithfully.

The compactness of representing a joint probability distribution using a
Bayesian network is evident from the above example. If each of the variables
has domain of size 10, the size of the joint pdf will be 105, whereas the number
of probabilities required to store the factors as shown in the figure is only about
1000, an order of magnitude reduction.

Since Bayesian networks are easy to design, interpret and reason about, they
are extensively used in practice. Some popular examples of Bayesian networks
include Hidden Markov Models [47, 56], Kalman Filters [37, 57], and QMR
networks [40, 33].
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Location Age

ExperienceDegree

Income

f'1(L)

f'2(A, E)

f'3(D, E, I)

Pr(L, A, D, E, I)  ∝ f'1(L) f'2(A, E) f'3(D, E, I)

Examples of Conditional Independences Captured:
           Location ⊥ {Age, Degree, Experience, Income}

{Degree, Income} ⊥ Age | Experience  

Note:
Degree ⊥ Experience,   Degree ⊥ Age

Figure 1.3. Example of an undirected model for a domain with 5 random variables

Undirected Graphical Models: Markov Networks
Undirected graphical models, or Markov Networks, are useful for repre-

senting distributions over variables where there is no natural directionality to
the influence of one variable over another and where the interactions are more
symmetric. Examples include the interactions between atoms in a molecular
structure, the dependencies between the labels of pixels of an image, or the
interactions between environmental properties sensed by geographically co-
located sensors [22]. Markov networks are sometimes preferred over Bayesian
networks because they provide a simpler model of independences between
variables.

The probability distribution represented by a Markov network factorizes in
a somewhat less intuitive manner than Bayesian networks; in many cases, the
factors may only indicate the relative compatibility of different assignments to
the variables, but may not have any straightforward probabilistic interpretation.
Let G be the undirected graph over the random variables X = {X1, . . . , Xn}
corresponding to a Markov network, and let C denote the set of cliques (com-
plete subgraphs) of G. Then the probability distribution represented by the
Markov network factorizes as follows:

Pr(X1, . . . , Xn) =
1
Z

∏
C∈C

fC(XC)

where fC(XC) are the factors (also called potential functions) each over a
complete subgraph of G. Z =

∑
X

∏
C∈C fC(XC) is the normalization con-

stant.
Figure 1.3 shows an example Markov network over the same set of ran-

dom variables as above. The maximal complete subgraphs of the network are
{Location}, {Degree,Experience, Income}, {Age,Experience} and fac-
tors may be defined over any of these sets of random variables, or their subsets.
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The conditional independences captured by a Markov network are deter-
mined as follows: if a set of nodes X separates sets of nodes Y and Z (i.e.,
if by removing the nodes in X, there are no paths between a node in Y and a
node in Z), then Y and Z are conditionally independent given X. Figure 1.3
also shows the conditional independences captured by our example network.

An important subclass of undirected models is the class of decomposable
models [20]. In a decomposable model, the graph is constrained to be chordal
(triangulated) and the factors are the joint probability distributions over the
maximal cliques of the graph. These types of models have many desirable
properties such as closed product form factorizations that are easy to compute
and reason about [21]. Further, these bear many similarities to the notion of
acyclic database schemas [5].

Inference Queries
Next we consider the main types of tasks (queries) that are commonly per-

formed over the model. The most common query type is the conditional prob-
ability query, Pr(Y | E = e). Such a query consists of two parts: (1) the
evidence, a subset E of random variables in the network, and an instantiation e
to these variables; and (2) the query, a subset Y of random variables in the net-
work. Our task is to compute Pr(Y | E = e) = Pr(Y,e)

Pr(e) , i.e., the probability
distribution over the values y of Y, conditioned on the fact that E = e.

A special case of conditional probability queries is simply marginal compu-
tation queries, where we are asked to compute the marginal probability distri-
bution Pr(Y) over a subset of variables Y.

Another type of query that often arises, called maximum a posteriori (MAP),
is finding the most probable assignment to some subset of variables. As with
conditional probability queries, we are usually given evidence E = e, and a
set of query variables, Y. In this case, however, our goal is to compute the
most likely assignment to Y given the evidence E = e, i.e.:

argmaxy Pr(y, e)

where, in general, argmaxxf(x) represents the value of x for which f(x) is
maximal. Note that there might be more than one assignment that has the high-
est posterior probability. In this case, we can either decide that the MAP task
is to return the set of possible assignments, or to return an arbitrary member of
that set.

A special variant of this class of queries is the most probable explanation
(MPE) queries. An MPE query tries to find the most likely assignment to all
of the (non-evidence) variables, i.e., Y = X − E. MPE queries are some-
what easier than MAP queries, which are much harder to answer than the other
tasks; this is because MAP queries contain both summations and maximiza-
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tions, thus combining the elements of both conditional probabilities queries
and MPE queries.

The simplest way to use the graphical model to answer any of these queries
is: (1) generate the joint probability distribution over all the variables, (2) con-
dition it using the evidence (generating another joint pdf), and then (3) sum
over the unneeded variables (in the case of a conditional probability query) or
search for the most likely entry (in the case of an MPE query). For example,
consider the example shown in Figure 1.2, and lets say we want to compute the
marginal probability distribution corresponding to income (I). This distribu-
tion can be obtained from the full joint distribution by summing out the rest of
the variables:

Pr(I) = ΣL,A,D,E Pr(I, L,A,D,E)
= ΣL,A,D,E f1(L)f2(A)f3(D)f4(E,A)f5(I, E,D)

However, this approach is not very satisfactory and is likely to be infeasi-
ble in most cases, since it results in an exponential space and computational
blowup that the graphical model representation was designed to avoid. In gen-
eral, the exact computation of either of the inference tasks is #P-complete.
However, many graphical models that arise in practice have certain proper-
ties that allow efficient probabilistic computation [59]. More specifically, the
problem can be solved in polynomial time for graphical models with bounded
tree-width [50].

Variable elimination (VE) [59, 19], also known as bucket elimination, is
an exact inference algorithm that has the ability to exploit this structure. In-
tuitively variable elimination specifies the order in which the variables are
summed out (eliminated) from the above expression; eliminating a variable
requires multiplying all factors that contain the variable, and then summing
out the variable. Say we chose the order: L,A,D,E, then the computation is
as follows (the expression evaluated in each step is underlined, and its result is
bold-faced in the next step):

Pr(I) = ΣL,A,D,Ef1(L)f2(A)f3(D)f4(E,A)f5(I, E,D)
= ΣE(ΣDf5(I, E,D)f3(D) (ΣAf2(A)f4(E,A) (ΣLf1(L))))

= ΣE(ΣDf5(I, E,D)f3(D) (ΣAf2(A)f4(E,A)))

= ΣE(ΣDf5(I, E,D)f3(D)) g1(E)

= ΣE g2(I,E)g1(E)

= g3(I)

The order in which the variables are summed out is known as the elimination
order, and the cost of running VE depends on the choice of the elimination
order. Even though finding the optimal ordering is NP-hard [2] (this is closely
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related to the problem of finding the optimal triangulation of a graph), good
heuristics are available [7, 18].

Another popular algorithm for exact inference is the junction tree algo-
rithm [13, 30]. A junction tree is an efficient data structure for reusing work
for several inference queries on the same graph. Once a junction tree is con-
structed, we can provide exact answers to inference queries over any subset
of variables in the same clique by running the sum-product message passing
or belief propagation algorithms. The message passing algorithm runs in time
that is linear in the number of cliques in the tree and exponential in the size of
the largest clique in the tree (which is same as the tree-width of the model).

However, many real-life graphical models give rise to graphs with large
tree-widths, and the design of good approximation schemes in such cases is
an active topic of research in the statistics and probabilistic reasoning commu-
nities. The most commonly used techniques include methods based on belief
propagation (e.g. loopy belief propagation [42]), sampling-based techniques
(e.g. Gibbs sampling, particle filters [3, 38]) and variational approximation
methods [36] to name a few. We refer the reader to [35] for further details.

3. Representing Uncertainty using Graphical
Models

We are now ready to define a probabilistic database in terms of a PGM. The
basic idea is to use random variables to depict the uncertain attribute values
and factors to represent the uncertainty and the correlations. Let R denote
a probabilistic relation or simply, relation, and let attr(R) denote the set of
attributes of R. A relation R consists of a set of probabilistic tuples or simply,
tuples, each of which is a mapping from attr(R) to random variables. Let
t.a denote the random variable corresponding to tuple t ∈ R and attribute
a ∈ attr(R). Besides mapping each attribute to a random variable, every tuple
t is also associated with a boolean-valued random variable which captures the
existence uncertainty of t and we denote this by t.e.

Definition 3.1. A probabilistic database or simply, a database, D is a pair
〈R,P〉 where R is a set of relations and P denotes a PGM defined over the
set of random variables associated with the tuples inR.

Figure 1.4(a) shows a small two-relation database that we use as a running
example. In this database, every tuple has an uncertain attribute (the B at-
tributes) and these are indicated in Figure 1.4(a) by specifying the probabili-
ties with which each attribute takes the assignments from its domain. In our
proposed framework, we represent this uncertainty by associating a random
variable with each of the uncertain attributes, and by using factors to capture
the corresponding probability distributions and correlations if present.
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S A B
s1 a1 {1: 0.6, 2: 0.4}
s2 a2 {1: 0.6, 2: 0.4}

T B C
t1 {2: 0.5, 3: 0.5} c

s1.B f inds1.B

1 0.6
2 0.4

s2.B f inds2.B

1 0.6
2 0.4

t1.B f indt1.B

2 0.5
3 0.5

s1.B s2.B

t1.B

f ind
s2.B

f ind
s1.B

f ind
t1.B

(a) (b) (c)

Figure 1.4. (a) A small database with uncertain attributes. For ease of exposition, we show
the marginal pdfs over the attribute values in the table; this information can be derived from
the factors. (b) Factors corresponding to the database assuming complete independence. (c)
Graphical representation of the factors.

For instance, s2.B can be assigned the value 1 with probability 0.6 and
the value 2 with probability 0.4 and we would represent this using the factor
fs2.B shown in Figure 1.4(b). We show all three required factors fs1.B(s1.B),
fs2.B(s2.B) and ft1.B(t1.B) in Figure 1.4(b). Here we assume that the at-
tributes are independent of each other. If, for instance, s2.B and t1.B were
correlated, we would capture that using a factor ft1.B,s2.B(t1.B, s2.B) (de-
tailed example below).

In addition to the random variables which denote uncertain attribute val-
ues, we can introduce tuple existence random variables s1.e, s2.e, and t1.e, to
capture tuple uncertainty. These are boolean-valued random variables and can
have associated factors. In Figure 1.4, we assume the tuples are certain, so we
don’t show the existence random variables for the base tuples.

Possible World Semantics
We now define the semantics for our formulation of a probabilistic database.

LetX denote the set of random variables associated with databaseD = 〈R,P〉.
Possible world semantics define a probabilistic databaseD as a probability dis-
tribution over deterministic databases (possible worlds) [14] each of which is
obtained by assigning X a joint assignment x ∈ ×X∈Xdom(X). The proba-
bility associated with the possible world obtained from the joint assignment x
is given by the distribution defined by the PGM P (Definition 2.3).

For the example shown in Figure 1.4, each possible world is obtained by
assigning all three random variables s1.B, s2.B and t1.B assignments from
their respective domains. Since each of the attributes can take 2 values, there
are 23 = 8 possible worlds. Figure 1.5 shows all 8 possible worlds with the
corresponding probabilities listed under the column “prob.(ind.)” (indicating
the independence assumption). The probability associated with each possi-
ble world is obtained by multiplying the appropriate numbers returned by the
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possible world prob prob. prob. prob.
(ind.) (implies) (diff.) (pos.corr.)

D1 : S = {(a1, 1), (a2, 1)}, T = {(2, c)} 0.18 0.50 0.30 0.06
D2 : S = {(a1, 1), (a2, 1)}, T = {(3, c)} 0.18 0.02 0.06 0.30
D3 : S = {(a1, 1), (a2, 2)}, T = {(2, c)} 0.12 0 0.20 0.04
D4 : S = {(a1, 1), (a2, 1)}, T = {(3, c)} 0.12 0.08 0.04 0.20
D5 : S = {(a1, 2), (a2, 1)}, T = {(2, c)} 0.12 0 0 0.24
D6 : S = {(a1, 2), (a2, 1)}, T = {(3, c)} 0.12 0.08 0.24 0
D7 : S = {(a1, 2), (a2, 2)}, T = {(2, c)} 0.08 0 0 0.16
D8 : S = {(a1, 2), (a2, 2)}, T = {(3, c)} 0.08 0.32 0.16 0

Figure 1.5. Possible worlds for example in Figure 1.4(a) and three other different types of
correlations.

implies

Pr (s1.B, s2.B, t1.B) = f impliest1.B
(t1.B)f impliest1.B,s1.B

(t1.B, s1.B)f impliest1.B,s2.B
(t1.B, s2.B)

t1.B f impliest1.B

2 0.5
3 0.5

t1.B s1.B f impliest1.B,s1.B

2 1 1
2 2 0
3 1 0.2
3 2 0.8

t1.B s2.B f impliest1.B,s2.B

2 1 1
2 2 0
3 1 0.2
3 2 0.8

Figure 1.6. Factors for the probabilistic databases with “implies” correlations (we have omit-
ted the normalization constant Z because the numbers are such that distribution is already nor-
malized)

factors and normalizing if necessary. For instance, for the possible world ob-
tained by the assignment s1.B = 1, s2.B = 2, t1.B = 2 (D3 in Figure 1.5)
the probability is 0.6× 0.4× 0.5 = 0.12.

Let us now try to modify our example to illustrate how to represent corre-
lations in a probabilistic database. In particular, we will try to construct three
different databases containing the following dependencies:

implies: t1.B = 2 implies s1.B 6= 2 and s2.B 6= 2, in other words,
(t1.B = 2) =⇒ (s1.B = 1) ∧ (s2.B = 1).

different: t1B and s1.B cannot have the same assignment, in other
words, (t1.B = 2)⇔ (s1.B = 1) or (s1.B = 2)⇔ (t1.B = 3).

positive correlation: High positive correlation between t1.B and s1.B –
if one is assigned 2 then the other is also assigned the same value with
high probability.

Figure 1.5 shows four distributions over the possible worlds that each satisfy
one of the above correlations (the columns are labeled with abbreviations of the
names of the correlations, e.g., the column for positive correlation is labeled
“pos. corr.”).
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To represent the possible worlds of our example database with the new cor-
relations, we simply redefine the factors in the database appropriately. For
example, Figure 1.6 represents the factors for the first case (implies). In this
case, we use a factor on t1.B and s1.B to encode the correlation that (t1.B =
2) =⇒ (s1.B = 1). Similarly, a factor on t1.B and s2.B is used to encode
the other correlation.

Note that in Definition 3.1, we make no restrictions as to which random
variables appear as arguments in a factor. Thus, if the user wishes, she may de-
fine a factor containing random variables from the same tuple, different tuples,
tuples from different relations or tuple existence and attribute value random
variables; thus, in our formulation we can express any kind of correlation that
one might think of representing in a probabilistic database.

Shared Factors
In many cases, the uncertainty in the data is defined using general statistics

that do not vary on a per-tuple basis, and this leads to significant duplication of
factors in the probabilistic database. For instance, when combining data from
different sources in a data integration scenario, the sources may be assigned
data quality values, which may be translated into tuple existence probabili-
ties [1]; all tuples from the same source are then expected to have the same
factor associated with them. If the uncertainties are derived from an attribute-
level joint probability distribution (as shown in our earlier example in Figure
1.1), then many of the factors are expected to be identical.

Another source of shared correlations in probabilistic databases is the query
evaluation approach itself. As we will see in the next section, while evaluat-
ing queries we first build an augmented PGM on the fly by introducing small
factors involving the base tuples and the intermediate tuples. For instance, if
tuples t and t′ join to produce intermediate tuple r, we introduce a factor that
encodes the correlation that r exists iff both t and t exist (an ∧-factor). More
importantly, such a factor is introduced whenever any pair of tuples join, thus
leading to repeated copies of the same ∧-factor.

We call such factors shared factors and explicitly capture them in our frame-
work; furthermore, our inference algorithms actively identify and exploit such
commonalities to reduce the query processing time [53].

Representing Probabilistic Relations
Earlier approaches represented probabilistic relations by storing uncertainty

with each tuple in isolation. This is inadequate for our purpose since the same
tuple can be involved in multiple factors, and the same factor can be associated
with different sets of random variables. This necessitates an approach where
the data and the uncertainty parts are stored separately. Figure 1.7 shows how
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id A B
s1 a1 ⊥
s2 a2 ⊥

id B C
t1 ⊥ c

fid args probs
f1 1 “2,0.5;3,0.5”
f2 2 “2,1,1;2,2,0 ...”
f3 2 “2,1,1;2,2,0 ...”

RV fid pos
t1.B f1 = f impliest1.B

1

t1.B f2 = f impliest1.B,s1.B
1

s1.B f2 = f impliest1.B,s1.B
2

t1.B f3 = f impliest1.B,s2.B
1

s1.B f3 = f impliest1.B,s2.B
2

(a) Base Tables (b) factors table (c) factor-rvs table

Figure 1.7. Representing the factors from Figure 1.6 using a relational database; shared fac-
tors can be represented by using an additional level of indirection.

we store the factors and associate them with the tuples in our current prototype
implementation. We use an internal id attribute for each relation that is auto-
matically generated when tuples are inserted into the relation; this attribute is
used to identify the random variables corresponding to a tuple uniquely. We
use ⊥ to indicate uncertain attribute values (Figure 1.7(a)). Two additional ta-
bles are used to store the factors and their associations with the tuple variables:

factors: This table stores a serialized representation of the factor along
with some auxiliary information such as the number of arguments.

factor-rvs: This normalized relation stores the association between fac-
tors and random variables; the random variables can be of two types:
(1) attribute value random variables (e.g. t1.B), or (2) existence random
variables (e.g. t1.e). Each row in this table indicates the participation
of a random variable in a factor. Since the table is normalized, we also
need to store the “position” of the random variable in the factor.

Note that this schema does not exploit shared factors (factors f2 and f3 are
identical in the above example); they can be easily handled by adding one
additional table.

4. Query Evaluation over Uncertain Data
Having defined our representation scheme, we now move our discussion to

query evaluation. The main advantage of associating possible world seman-
tics with a probabilistic database is that it lends precise semantics to the query
evaluation problem. Given a user-submitted query q (expressed in some stan-
dard query language such as relational algebra) and a database D, the result
of evaluating q against D is defined to be the set of results obtained by evalu-
ating q against each possible world of D, augmented with the probabilities of
the possible worlds. Relating back to our earlier examples, suppose we want
to run the query q =

∏
C(S ./B T ). Figure 1.8(a) shows the set of results

obtained from each set of possible worlds, augmented by the corresponding
probabilities depending on which database we ran the query against.
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possible query prob. prob. prob. prob.
world result (ind.) (implies) (diff.) (pos.corr.)
D1 ∅ 0.18 0.50 0.30 0.06
D2 ∅ 0.18 0.02 0.06 0.30
D3 {c} 0.12 0 0.20 0.04
D4 ∅ 0.12 0.08 0.04 0.20
D5 {c} 0.12 0 0 0.24
D6 ∅ 0.12 0.08 0.24 0
D7 {c} 0.08 0 0 0.16
D8 ∅ 0.08 0.32 0.16 0

(a)

query Pr(D3) + Pr(D5) + Pr(D7)
result ind. implies diff. pos.corr.
{c} 0.32 0 0.20 0.40

(b)

Figure 1.8. Results of running the query
Q

C(S ./B T ) on example probabilistic databases
(Figures 1.4 and 1.5). The query returns a non-empty (and identical) result in possible worlds
D3, D5, and D7, and the final result probability is obtained by adding up the probabilities of
those worlds.

Now, even though query evaluation under possible world semantics is clear
and intuitive, it is typically not feasible to evaluate a query directly using these
semantics. First and foremost among these issues is the size of the result. Since
the number of possible worlds is exponential in the number of random variables
in the database (to be more precise, it is equal to the product of the domain sizes
of all random variables), if every possible world returns a different result, the
result size itself will be very large. To get around this issue, it is traditional to
compress the result before returning it to the user. One way of doing this is to
collect all tuples from the set of results returned by possible world semantics
and return these along with the sum of probabilities of the possible worlds that
return the tuple as a result [14]. In Figure 1.8(a), there is only one tuple that is
returned as a result and this tuple is returned by possible worlds D3, D5 and
D7. In Figure 1.8(b), we show the resulting probabilities obtained by summing
across these three possible worlds for each example database.

The second issue is related to the complexity of computing the results of a
query from these first principles. Since the number of possible worlds is very
large for any non-trivial probabilistic database, evaluating results directly by
enumerating all of its possible worlds is going to be infeasible.

To solve this problem, we first make the connection between computing
query results for a probabilistic database and the marginal probability compu-
tation problem for probabilistic graphical models.
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Definition 4.1. Given a PGM P = 〈F ,X〉 and a random variable X ∈ X ,
the marginal probability associated with the assignment X = x, where x ∈
dom(X), is defined as µ(x) =

∑
x∼x Pr(x), where Pr(x) denotes the distri-

bution defined by the PGM and x ∼ x denotes a joint assignment to X where
X is assigned x.

Since each possible world is obtained by a joint assignment to all random
variables in the probabilistic database, there is an intuitive connection between
computing marginal probabilities and computing result tuple probabilities by
summing over all possible worlds. In the rest of this section, we make this con-
nection more precise. We first show how to augment the PGM underlying the
database such that the augmented PGM contains random variables representing
result tuples. We can then express the probability computation associated with
evaluating the query as a standard marginal probability computation problem;
this allows us to use standard probabilistic inference algorithms to evaluate
queries over probabilistic databases.

We first present an example to illustrate the basic ideas underlying our ap-
proach to augmenting the PGM underlying the database given a query, after
that we discuss how to augment the PGM in the general case given any rela-
tional algebra query.

Example
Consider running the query

∏
C(S ./B T ) on the database presented in Fig-

ure 1.4(a). Our query evaluation approach is very similar to query evaluation
in traditional database systems and is depicted in Figure 1.9. Just as in tra-
ditional database query processing, in Figure 1.9, we introduce intermediates
tuples produced by the join (i1 and i2) and produce a result tuple (r1) from the
projection operation. What makes query processing for probabilistic databases
different from traditional database query processing is the fact that we need to
preserve the correlations among the random variables representing the inter-
mediate and result tuples and the random variables representing the tuples they
were produced from. In our example, there are three such correlations that we
need to take care of:

i1 (produced by the join between s1 and t1) exists or i1.e is true only in
those possible worlds where both s1.B and t1.B are assigned the value
2.

Similarly, i2.e is true only in those possible worlds where both s2.B
and t1.B are assigned the value 2.

Finally, r1 (the result tuple produced by the projection) exists or r1.e is
true only in those possible worlds that produce at least one of i1 or i2
or both.
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a1
a2

{1:0.6, 2:0.4}
{1:0.6, 2:0.4}

BA
s1
S

s2
{2:0.5, 3:0.5} c

CB
t1
T

C
c
c

a1
a2

2
2

BA
i1
i2

c
C

r1

fi1.e    fi2.e fr1.e   

B

S         TB

ΠC (S        T)

s1.B s2.Bt1.B

i1.e i2.e

r1.e

fi1.e(i1.e, s1.B, t1.B) fi2.e(i2.e, s2.B, t1.B)

fr1.e(r1.e, i1.e, i2.e)

f ind
s2.B

f ind
s1.B

f ind
t1.B

Figure 1.9. Evaluating
Q

C(S ./B T ) on the database from Figure 1.4(a).

To enforce these correlations, during query evaluation we introduce inter-
mediate factors defined over appropriate random variables. For our example,
we introduce the following three correlations:

• For the correlation among i1.e, s1.B and t1.B we introduce the factor fi1.e
which is defined as:

fi1.e(i1.e, s1.B, t1.B) =
{

1 if i1.e⇔ ((s1.B == 2) ∧ (t1.B == 2))
0 otherwise

• Similarly, for the correlation among i2.e, s2.B and t1.B we introduce the
factor fi2.e which is defined as:

fi2.e(i2.e, s2.B, t1.B) =
{

1 if i2.e⇔ ((s2.B == 2) ∧ (t1.B == 2))
0 otherwise

• For the correlation among r1.e, i1.e and i2.e, we introduce a factor fr1.e
capturing the or semantics:

fr1.e(r1.e, i1.e, i2.e) =
{

1 if r1.e⇔ (i1.e ∨ i2.e)
0 otherwise

Figure 1.9 depicts the full run of the query along with the introduced factors.
Now, to compute the probability of existence of r1 (which is what we did in

Figure 1.8 by enumerating over all possible worlds), we simply need to com-
pute the marginal probability associated with the assignment r1.e = true from
PGM formed by the set of factors in the base data and the factors introduced
during query evaluation. For instance, for the example where we assumed
complete independence among all uncertain attribute values (Figure 1.4(b))
our augmented PGM is given by the collection fs1.B, fs2.B, ft1.B, fi1.e, fi2.e



Graphical Models for Uncertain Data 19

and fr1.e, and to compute the marginal probability we can simply use any of
the exact inference algorithms available in the probabilistic reasoning literature
such as variable elimination [59, 19] or the junction tree algorithm [30].

Generating Factors during Query Evaluation
Query evaluation for general relational algebra also follows the same basic

ideas. In what follows, we modify the traditional relational algebra operators so
that they not only generate intermediate tuples but also introduce intermediate
factors which, combined with the factors on the base data, provide a PGM that
can then be used to compute marginal probabilities of the random variables
associated with result tuples of interest. We next describe the modified σ, ×,∏

, δ, ∪, − and γ (aggregation) operators where we use ∅ to denote a special
“null” symbol.

Select: Let σc(R) denote the query we are interested in, where c denotes the
predicate of the select operation. Every tuple t ∈ R can be jointly instanti-
ated with values from ×a∈attr(R)dom(t.a). If none of these instantiations
satisfy c then t does not give rise to any result tuple. If even a single in-
stantiation satisfies c, then we generate an intermediate tuple r that maps
attributes from R to random variables, besides being associated with a tu-
ple existence random variable r.e. We then introduce factors encoding the
correlations among the random variables for r and the random variables for
t. The first factor we introduce is fσr.e, which encodes the correlations for
r.e:

fσr.e(r.e, t.e, {t.a}a∈attr(R)) =
{

1 if t.e ∧ c({t.a}a∈attr(R))⇔ r.e
0 otherwise

where c({t.a}a∈attrR) is true if a joint assignment to the attribute value
random variables of t satisfies the predicate c and false otherwise.

We also introduce a factor for r.a, ∀a ∈ attr(R) (where dom(r.A) =
dom(t.A)), denoted by fσr.a. fσr.a takes t.a, r.e and r.a as arguments and
can be defined as:

fσr.a(r.a, r.e, t.a) =

 1 if r.e ∧ (t.a == r.a)
1 if r.e ∧ (r.a == ∅)
0 otherwise

Cartesian Product: Suppose R1 and R2 are the two relations involved in the
Cartesian product operation. Let r denote the join result of two tuples t1 ∈
R1 and t2 ∈ R2. Thus r maps every attribute from attr(R1)∪ attr(R2) to
a random variable, besides being associated with a tuple existence random
variable r.e. The factor for r.e, denoted by f×r.e, takes t1.e, t2.e and r.e as
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arguments, and is defined as:

f×r.e(r.e, t1.e, t2.e) =
{

1 if t1.e ∧ t2.e⇔ r.e
0 otherwise

We also introduce a factor f×r.a for each a ∈ attr(R1)∪ attr(R2), and this
is defined exactly in the same fashion as fσr.a. Basically, for a ∈ attr(R1)
(a ∈ attr(R2)), it returns 1 if r.e ∧ (t1.a == r.a) (r.e ∧ (t2.a == r.a))
holds or if r.e ∧ (r.a == ∅) holds, and 0 otherwise.

Project (without duplicate elimination): Let
∏

a(R) denote the operation we
are interested in where a ⊆ attr(R) denotes the set of attributes we want
to project onto. Let r denote the result of projecting t ∈ R. Thus r maps
each attribute a ∈ a to a random variable, besides being associated with
r.e. The factor for r.e, denoted by f

Q
r.e, takes t.e and r.e as arguments, and

is defined as follows:

f
Q
r.e(r.e, t.e) =

{
1 if t.e⇔ r.e
0 otherwise

Each factor f
Q
r.a, introduced for r.a, ∀a ∈ a, is defined exactly as fσr.a, in

other words, f
Q
r.a(r.a, r.e, t.a) = fσr.a(r.a, r.e, t.a).

Duplicate Elimination: Duplicate elimination is a slightly more complex op-
eration because it can give rise to multiple intermediate tuples even if there
was only one input tuple to begin with. Let R denote the relation from
which we want to eliminate duplicates, then the resulting relation after du-
plicate elimination will contain tuples whose existence is uncertain, more
precisely the resulting tuples’ attribute values are known. Any element
from

⋃
t∈R×a∈attr(R)dom(t.a) may correspond to the values of a possible

result tuple. Let r denote any such result tuple whose attribute values are
known, only r.e is not true with certainty. Denote by ra the value of at-
tribute a in r. We only need to introduce the factor f δr.e for r.e. To do this
we compute the set of tuples from R that may give rise to r. Any tuple t
that satisfies

∧
a∈attr(R)(ra ∈ dom(t.a)) may give rise to r. Let yrt be an

intermediate random variable with dom(yrt ) = {true, false} such that
yrt is true iff t gives rise to r and false otherwise. This is easily done by
introducing a factor f δyrt that takes {t.a}a∈attr(R), t.e and yrt as arguments
and is defined as:

f δyrt (y
r
t , {t.a}a∈attr(R), t.e) =

{
1 if t.e ∧

∧
a(t.a == ra)⇔ yrt

0 otherwise

where {t.a}a∈attr(R) denotes all attribute value random variables of t. We
can then define f δr.e in terms of yrt . f δr.e takes as arguments {yrt }t∈Tr , where
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Tr denotes the set of tuples that may give rise to r (contains the assignment
{ra}a∈attr(R) in its joint domain), and r.e, and is defined as:

f δr.e(r.e, {yrt }t∈Tr) =
{

1 if
∨
t∈Tr y

r
t ⇔ r.e

0 otherwise

Union and set difference: These operators require set semantics. Let R1 and
R2 denote the relations on which we want to apply one of these two opera-
tors, either R1 ∪R2 or R1 −R2. We will assume that both R1 and R2 are
sets of tuples such that every tuple contained in them have their attribute
values fixed and the only uncertainty associated with these tuples are with
their existence (if not then we can apply a δ operation to convert them to
this form). Now, consider result tuple r and sets of tuples T 1

r , containing
all tuples from R1 that match r’s attribute values, and T 2

r , containing all
tuples from R2 that match r’s attribute values. The required factors for r.e
can now be defined as follows:

f∪r.e(r.e, {t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
) =

{
1 if (

∨
t∈T 1

r ∪T 2
r
t.e)⇔ r.e

0 otherwise

f−r.e(r.e, {t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
)

=
{

1 if ((
∨
t∈T 1

r
t.e) ∧ ¬(

∨
t∈T 2

r
t.e))⇔ r.e

0 otherwise

Aggregation operators: Aggregation operators are also easily handled using
factors. Suppose we want to compute the sum aggregate on attribute a of
relation R, then we simply define a random variable r.a for the result and
introduce a factor that takes as arguments {t.a}t∈attr(R) and r.a, and define
the factor so that it returns 1 if r.a == (

∑
t∈R t.a) and 0 otherwise. Thus

for any aggregate operator γ and result tuple random variable r.a, we can
define the following factor:

fγr.a(r.a, {t.a}t∈R) =

 1 if r.a == γt∈Rt.a
1 if (r.a == ∅)⇔

∧
t∈R(t.a == ∅)

0 otherwise

Query Evaluation as Inference
Given a query and a probabilistic database (and the corresponding PGM),

we can use the procedures described in the previous section to construct an
augmented PGM that contains random variables corresponding to the result
tuples. Computing the result probabilities is simply a matter of evaluating
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J A B factors
j1 m 1 f1
j2 m 2 f1

K B C factors
k1 1 p f2
k2 1 q f2
k3 2 p f3
k4 2 q f3

L C D factors
l1 p α f4
l2 r α f5
l3 r β f6
l4 r β f7
l5 r γ f8
l6 r α f9

Evaluating πD((J on K) on L))

j1.e j2.e k1.e k2.e k3.e k4.e

i1.e i2.e i3.e i4.e l1.e

i5.e i6.e

r.e

f1 f2 f3

f × f × f × f ×

f × f ×

f π

f4

{m, 1, p} {m, 1, q} {m, 2, p} {m, 2, q}

{m, 1, p, α}

{α}

{m, 2, p, α}

{m, 1} {m, 2} {1, p} {1, q} {2, p} {2, q}

{p, α}

Figure 1.10. An example query evaluation over a 3-relation database with only tuple uncer-
tainty but many correlations (tuples associated with the same factor are correlated with each
other). The intermediate tuples are shown alongside the corresponding random variables. Tu-
ples l2, . . . , l6 do not participate in the query.

marginal probability queries over this PGM. We can use any standard exact
or approximate inference algorithm developed in the probabilistic reasoning
community for this purpose, depending on our requirements of accuracy and
speed. Note that the resulting PGM, and hence the complexity of inference,
will depend on the query plan used for executing the query. We revisit this
issue in Section 5.

Figure 1.10 shows the PGM generated when evaluating a multi-way join
query over 3 relations; computing the result tuple probability is equivalent to
computing the marginal probability distribution over the random variable r.e.
Similarly, Figure 1.11 shows the PGM constructed in response to an aggregate
query (details below).

Optimizations
For the above operator modifications, we have attempted to be completely

general and hence the factors introduced may look slightly more complicated
than need be. For example, it is not necessary that fσr.E take as arguments all
random variables {t.a}a∈attr(R) (as defined above), it only needs to take those
t.a random variables as arguments which are involved in the predicate c of
the σ operation. Also, given a theta-join we do not need to implement this
as a Cartesian product followed by a select operation. It is straightforward to
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r1.count r2.count

r.count

l1.e
f4

{p, α}

l2.e
f5

{r, α}

l3.e
f6

{r, β}

l4.e
f7

{r, α}

l5.e
f8

{r, γ}

l6.e
f9

{r, α}

...

l4.e

... ... ...

false

l6.e

10

probr2.count

f(r2.count, l4.e, l6.e)

false
false 01false
false 02false
true 00false

Figure 1.11. PGM constructed during the evaluation of countG(σD=α(L)) over the proba-
bilistic database from Figure 1.10. By exploiting decomposability of count, we can limit the
maximum size of the newly introduced factors to 3 (the naive implementation would have con-
structed a 5-variable factor).

push the select operation into the Cartesian product factors and implement the
theta-join directly by modifying f×r.E appropriately using c.

Another type of optimization that is extremely useful for aggregate compu-
tation, duplicate elimination and the set-theoretic operations (∪ and −) is to
exploit decomposable functions. A decomposable function is one whose re-
sult does not depend on the order in which the inputs are presented to it. For
instance, ∨ is a decomposable function, and so are most of the aggregation op-
erators including sum, count, max and min. The problem with some of the
redefined relational algebra operators is that, if implemented naively, they may
lead to large intermediate factors. For instance, while running a δ operation, if
Tr contains n tuples for some r, then the factor f δr.e will be of size 2n+1. By ex-
ploiting decomposability of ∨ we can implement the same factor using a linear
number of constant sized (3-argument) factors which may lead to significant
speedups. We refer the interested reader to [50, 60] for more details. The only
aggregation operator that is not decomposable is avg, but even in this case we
can exploit the same ideas by implementing avg in terms of sum and count
both of which are decomposable. Figure 1.11 shows the PGM constructed for
an example aggregate query over the database from Figure 1.10.

Finally, one of the key ways we can reduce the complexity of query eval-
uation is by exploiting recurring (shared) factors. In recent work [53], we
developed a general-purpose inference algorithm that can exploit such shared
factors. Our algorithm identifies and exploits the symmetry present in the aug-
mented PGM to significantly speed up query evaluation in most cases. We
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omit the details due to space constraints and refer the reader to [53] for further
details.

5. Related Work and Discussion
Next we briefly discuss some of the closely related concepts in query eval-

uation over probabilistic databases, namely safe plans and lineage. We then
briefly discuss the relationship of our approach to probabilistic relational mod-
els, lifted inference, and scalable inference using databases. We believe most
of these represent rich opportunities for future research.

Safe Plans
One of the key results in query evaluation over probabilistic databases is the

dichotomy of conjunctive query evaluation on tuple-independent probabilistic
databases by Dalvi and Suciu [14, 15]. Briefly the result states that the com-
plexity of evaluating a conjunctive query over tuple-independent probabilistic
databases is either PTIME or #P-complete. For the former case, Dalvi and Su-
ciu [14] also present an algorithm to find what are called safe query plans, that
permit correct extensional evaluation of the query. We relate the notion of safe
plans to our approach through the following theorem:

Theorem 5.1. When executing a query over a tuple-independent probabilistic
database using a safe query plan, the resulting probabilistic graphical model
is tree-structured (for which inference can be done in PTIME).

Note that the dichotomy result presented in [15] reflects a worst-case sce-
nario over all possible instances of a probabilistic database. In other words,
even if a query does not have safe plan, for a specific probabilistic database
instance, query evaluation may still be reasonably efficient. Our approach can
easily capture this because in such cases the resulting PGM will either be tree-
structured or have low tree-width, thus allowing us to execute the query effi-
ciently. One of the important open problems in this area is developing algo-
rithms for identifying query plans that result in PGMs with low tree-widths for
a given probabilistic database and a given query.

Representing Uncertainty using Lineage
Several works [26, 58, 6, 48, 49] have proposed using explicit boolean for-

mulas to capture the relationship between the base tuples and the intermediate
tuples. In the Trio system [58, 6], such formulas are called lineage, and are
computed during the query evaluation. The result tuple probabilities are then
computed on demand by evaluating the lineage formulas. In recent work, Re
et al. [49] presented techniques for approximate compression of such lineage
formulas for more efficient storage and query evaluation.
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The PGM constructed in our approach can be thought of as a generaliza-
tion of such boolean formulas, since the PGM can represent more complex
relationships than can be captured using a boolean formula. Further, the PGM
naturally captures common subexpressions between the lineage formulas cor-
responding to different result tuples, and avoids re-computation during the in-
ference process. Evaluation of boolean formulas can be seen as a special case
of probabilistic inference, and thus techniques from exact or approximate in-
ference literature can be directly applied to evaluating the lineage formulas
as well. However lineage formula evaluation admits efficient approximation
schemes (e.g. based on polynomial approximation [49]) that may not translate
to general probabilistic graphical models.

Probabilistic Relational Models
Probabilistic relational models (PRMs) [25, 27] extend Bayesian networks

with the concepts of objects, their properties and relations between them. In a
way, they are to Bayesian networks as relational logic is to propositional logic.
PRMs can also be thought of as a generalization of the probabilistic database
framework that we presented in this chapter, and extending our approach to
transparently and efficiently handle a PRM-based model is one of the important
research directions that we plan to pursue in future. We begin with illustrating
PRMs using a simple example, and then discuss the challenges in integrating
them with our approach.

A PRM contains a relational component that describes the relational schema
of the domain, and a probabilistic component that captures the probabilistic
dependencies that hold in the domain. Figure 1.12 shows a simple example
PRM over a relational schema containing three relations, Author, Paper, and
Review. For simplicity the relationship AuthorOf is modeled as many-to-one
(with a single author per paper), whereas the relationship Reviewed is many-
to-many. Along with the relational schema, a PRM specifies a probabilistic
model over the attributes of the relations. A key difference between Bayesian
networks and PRMs is that an attribute in one relation may depend on an at-
tribute in another relation. For example, the quality of a paper may depend on
the properties of the author (as shown in the figure).

When defining a dependence across a many-to-one relationship, a mecha-
nism to aggregate the attribute values must be specified as well. For instance,
the accepted attribute for a paper is modeled as dependent on the mood at-
tribute from the review relation. However a single paper may have multiple
reviews, and we must somehow combine the values of mood attribute from
those reviews; the example PRM uses the MODE of the attribute values for
this purpose.
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Figure 1.12. A probabilistic relational model defined over an example relational schema.
Similar to Bayesian networks, the model parameters consist of conditional probability distribu-
tions for each node given its parents.

Now, given a relational skeleton that specifies the primary keys and for-
eign keys for the tuples, the PRM defines a probability distribution over the
attributes of the tuples. Figure 1.13 shows an example of this, with two papers
with keys P1 and P2, both by the author A1. The PRM then specifies a joint
probability distribution over the random variables as shown in the figure. If the
skeleton also specifies the values of some of the attributes, those can be treated
as evidence in a straightforward way.

PRMs can also capture uncertainty in the link structure (i.e., the key-foreign
key dependencies). We refer the reader to [27] for more details.

Conceptually it is straightforward to extend our probabilistic model to allow
the dependences to be defined using a PRM (shared factors is one step in that
direction); the real challenge is doing inference over such models (see below).
We are planning to explore closer integration between these two areas in the
future.

Lifted Inference
Many first-order machine learning models such as PRMs allow defining

rich, compact probability distributions over large collections of random vari-
ables. Inference over such models can be tricky, and the initial approaches to
inference involved grounding out the graphical model by explicitly creating
random variables (as shown in Figure 1.13) and then using standard inference
algorithms. This can however result in very large graphical models, and can in-
volve much redundant inference (since most of the factors are shared). Lifted
inference techniques aim to address this situation by avoiding propositional-
ization (grounding) as much as possible [45, 46, 17, 55, 41, 53]. Most of
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Figure 1.13. An instance of the example PRM with two papers: P1, P2, with the same author
A1. For P1, we use an explicit random variable for representing the mode ofR1.M andR2.M .
No such variable is needed for P2 since it only has one review.

this work assumes that the input is a first-order probabilistic model (such as
a PRM). Poole [46] presents a modified version of the variable elimination
algorithm [59] for this purpose. Braz et al. [17] and Milch et al. [41] present
algorithms that look for specific types of structures in the first-order model, and
exploit these for efficient inference. Singla et al. [55] develop a modified loopy
belief propagation algorithm (for approximate inference) for lifted inference.

As discussed above, in our recent work [53], we developed a general-purpose
lifted inference algorithm for probabilistic query evaluation. Our algorithm
however does not operate on the first-order representation, and we are cur-
rently working on combining our approach with the techniques developed in
the lifted inference literature.

Scalable Inference using a Relational Database
Finally a very related but at the same time fundamentally different problem

is that of expressing inference tasks as database queries. Consider the Bayesian
network shown in Figure 1.2, and consider the (inference) task of finding the
marginal probability distribution over income (I). As seen before, this can be
written as:

Pr(I) = ΣL,A,D,E f1(L)f2(A)f3(D)f4(E,A)f5(I, E,D)

If the factors (CPDs) become very large, we might choose to store them as
relations in a database (called functional relations by Bravo et al. [9]). For
example, the relations corresponding to f1 and f5 may have schemas F1(L,
prob), and F5(I, E, D, prob) respectively. Then this inference task can be
written as an SQL query as follows:
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select I, sum(F1.prob * F2.prob * F3.prob * F4.prob * F5.prob)
from F1 join F2 join F3 join F4 join F5
group by I

This approach not only enables easy and persistent maintenance of Bayesian
networks, but can also enable significant performance optimizations (we refer
the reader to Bravo et al. [9] for a more detailed discussion).

However note that this approach is only suitable when the number of random
variables is small (i.e. the size of the network is small), since each factor must
be stored as a separate relation. The number of uncertain facts in a probabilistic
database is likely to be very large and continuously changing, and storing each
factor as a different relation would be infeasible in those cases. Second, the
main “query/inference” tasks that need to be supported in the two scenarios
are quite different. In probabilistic databases, the SQL queries operate on the
values of the random variables, concatenating or aggregating them, whereas
inference in Bayesian networks is typically concerned with marginalization
and conditioning. Supporting both types of tasks in a unified manner remains
one of the most important open problems in this area.

6. Conclusions
Graphical models are a versatile tool that have been applied to many database

problems such as selectivity estimation [28, 21, 43, 31], sensor network data
management [23], information extraction [12, 51], data integration [54, 29] to
name a few. In this chapter, we presented a simple and intuitive framework for
managing large-scale uncertain data using graphical models, that allows us to
capture complex uncertainties and correlations in the data in a uniform manner.
We showed how the problem of query evaluation in uncertain databases can be
seen to be equivalent to probabilistic inference in an appropriately constructed
graphical model. This equivalence enables us to employ the formidable ma-
chinery developed in the probabilistic reasoning literature over the years for
answering queries over probabilistic databases. We believe it will also lead to
a deeper understanding of how to devise more efficient inference algorithms
for large-scale, structured probabilistic models.
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