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ABSTRACT

We address the problem of finding a “best” deterministic query an-

swer to a query over a probabilistic database. For this purpose,

we propose the notion of a consensus world (or a consensus an
swer) which is a deterministic world (answer) that minimizes the

expected distance to the possible worlds (answers). This problem
can be seen as a generalization of the well-studied inconsistent in-

formation aggregation problems (e.g. rank aggregation) to proba-
bilistic databases. We consider this problem for various types of

queries including SPJ queries, Top-k ranking queries, group-by ag-
gregate queries, and clustering. For different distance metrics, we

obtain polynomial time optimal or approximation algorithms for

computing the consensus answers (or prove NP-hardness). MosP

sensor networks [15]. Supporting complex queries and decision-
making on probabilistic databases is significantly more difficult
than on deterministic databases, and the key challenges include

defining proper and intuitive semantics for queries over them, and

developing efficient query processing algorithms.
The common semantics in probabilistic databases arpdksi-

ble worlds semanti¢csvhere a probabilistic database is considered
to correspond to a probability distribution over a set of determin-
istic databases called possible worlds. Therefore, posing queries
over such a probabilistic database generates a probability distribu-
tion over a set of deterministic results which we call “possible an-
swers”. However, a full list of possible answers together with their
robabilities is not desirable in most cases since the size of the list

of our results are for a general probabilistic database model, called0U!d be exponentially large, and the probability associated with

and/xor tree modelhich significantly generalizes previous prob-
abilistic database models like x-tuples and block-independent dis-
joint models, and is of independent interest.
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each single answer is extremely small. One approach to addressing
this issue is to “combine” the possible answers somehow to obtain
a more compact representation of the result. For select-project-
join queries, for instance, one proposed approach is to union all
the possible answers, and compute the probability of each result
tuple by adding the probabilities of all the possible answers it be-
longs to [14]. This approach, however, can not be easily extended
to other types of queries like ranking or aggregate queries.
Furthermore, from the user or application perspective, despite
the probabilistic nature of the data, a single, deterministic query re-
sult may be desirable, on which further analysis or decision-making
could be based. For SPJ queries, this is often achieved by “thresh-
olding”, i.e., returning only the result tuples with a sufficiently high
probability of being true. For aggregate queries, often expected

Consensus answers, rank aggregation, probabilistic databases, quaplues are returned instead [28]. For ranking queries, on the other

processing, probabilistic and/xor tree

1. INTRODUCTION

There is an increasing interest in uncertain and probabilistic data-
bases arising in application domains like information retrieval [14,
38], recommendation systems [34, 36], mobile object data man-
agement [8], information extraction [23], data integration [3] and

hand, a range of different approaches have been proposed to find
the true ranking of the tuples. These include UTop-k [40], URank-
k [40], probabilistic threshold Top-k [26], global Top-k [46], ex-
pected rank [10], and so on. Although these definitions seem to
reason about the ranking over probabilistic databases in some “nat-
ural” ways, there is a lack of a unified and systematic analysis
framework to justify their semantics and to discriminate the use-
fulness of one from another.
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best of our knowledge, this connection between query processing
in probabilistic databases and inconsistent information aggregation,
though natural, has never been realized before in any formal and
mathematical way. Concretely, we propose the notiothefcon-



sensus answerRoughly speaking, the consensus answer is a an- a range of issues from theoretical development of data models and
swer that isclosest in expectatioto the answers of the possible datalanguages, to practical implementation issues such as indexing
worlds. To measure the closeness of two answerand », we techniques. In terms of representation power, most of this work has
need to define suitable distance functit{m;, 72) over the answer either assumed independence between the tuples [19, 14], or has
space. For example, if an answer is a vector, we can simply use therestricted the correlations that can be modeled [5, 30, 3, 37]. Sev-
L» norm; whereas in other cases, for instance, Top-k queries, theeral approaches for modeling complex correlations in probabilistic
definition ofd is more involved. If the most consensus answer can databases have also been proposed [38, 4, 39, 43].

be taken from any point in the answer space, we refer it antan For efficient query evaluation over probabilistic databases, one of
answer A median answeron the other hand, must be the answer the key results is the dichotomy of conjunctive query evaluation on
for some possible world with non-zero probability. tuple-independent probabilistic databases by Dalvi and Suciu [14,

From a mathematical perspective, if the distance function is prop- 13]. Briefly the result states that the complexity of evaluating a
erly defined to reflect the closeness of the answers, the most con-conjunctive query over tuple-independent probabilistic databases
sensus answer is perhaps the best deterministic representative of this either PTIME or #P-complete. For the former case, Dalvi and
set of all possible answers, since it can be thought as the centroidSuciu [14] also present an algorithm to find what are caflaf®

of the set of points corresponding to the possible answers. query plansthat permit correaéxtensionaévaluation of the query.
Our key contributions can be summarized as follows: Unfortunately the problem of finding consensus answers appears to
o (Probabilistic And/Xor Tree) We propose a new model for mod- be much harder; this is because even if a query has a safe plan, the
eling correlations, called thprobabilistic and/xor treemodel, result tuples may still be arbitrarily correlated.

that can capture two types of correlations, mutual exclusion and I recent years, there has also been much work on efficiently an-
coexistence. This model generalizes the previous models suchswering different types of queries over probabilistic databases, in-
as x-tuples, and block-independent disjoint tuples model. More cluding aggregates [28], summarization [12], clustering [11], near-
important, this model admits an elegant generating functions €st neighbors [6] and so on. Soliman et al. [40] first considered
based framework for many types of probability computations. the problem of top-k query evaluation over probabilistic databases,
We note that it is possible to represent the correlations capturedand proposed two ranking functions to combine the tuple scores
by such a tree using probabilistic c-tables [22] and provenance and probabilities. This problem is particularly interesting for our

semirings [21]. However, that does not directly imply efficient Purposes, since the semantics of the query (what it should return)

algorithms for the problems we consider in this paper. are not quite clear. This has led to much recent work (Zhang et
al. [46], Hua et al. [25, 26], Cormode et al. [10] etc.) that has pro-

posed different ways to compute the top-k answers; as we observe
in our recent work, the answers under different semantics can be
wildly different from each other [31].

The problem of aggregating inconsistent information from dif-
ferent sources arises in numerous disciplines and has been stud-
o (Top-k ranking Queries) The problem of aggregating inconsis- ied in different contexts over decades. Specifically, the RANK-

e (Set Distance Metrics) We show that the mean and the median
world can be found in polynomial time for theymmetric dif-
ferencemetric for and/xor tree model. For the Jaccard distance
metric, we present a polynomial time algorithm to compute the
mean and median world for a tuple independent database.

tent rankings has been well-studied under the namarif ag- AGGREGATION problem aims at combinirigdifferent complete
gregation[16]. We develop polynomial time algorithms for com-  ranked lists7, ..., 7 on the same set of objects into a single
puting mean and median top-k answers under the symmetric dif- ranking, which is the best description of the combined preferences
ference metric, and the mean answers und@rsection met- in the given lists. This problem was considered as early as the
ric andgeneralized Spearman’s footrule distar{t8], for the 18th century when Condorcet and Borda proposed a voting system
and/xor tree model. for elections [9, 7]. In the late 50's, Kemeny proposed the first

b b . mathematical criterion for choosing the best ranking [29]. Namely,
* (Groupby Aggregates) For group by count queries, we present the Kemeny optimal aggregatianis the ranking that minimizes

a 4-approximation to the problem of finding a median answer Zl_c d(r, 1), whered(r;, ;) is the number of pairs of elements
(finding mean answers is trivial). e ara e

that are ranked in different order i) andr; (also called Kendall's
e (Consensus Clustering) We also consider the consensus clustertau distance). While computing the Kemeny optimal is shown to be
ing problem for the and/xor tree model and get a constant ap- NP-hard [17], 2-approximation can be easily achieved by picking
proximation by extending a previous result [2]. the best ranking fronk given ranking lists. The other well-known
2-approximation is from the fact the Spearman footrule distance,
Outline: We begin with a discussion of the related work (Section defined to belr(r;,7;) = Y, |7:(t) — 75(t)], is within twice the
2). We then define the probabilistic and/xor tree model (Section 3), Kendall’'s tau distance and the footrule aggregation can be done
and present a generating functions-based method to do probabilityoptimally in polynomial time [16]. Ailon et al. [2] improve the
computations on them (Section 3.3). The bulk of our key results approximation ratio ta/3. We refer the readers to [24] for a sur-
are presented in Sections 4 and 5 where we address the problem ofey on this problem. For aggregating top-k answers, Ailon [1] re-
finding consensus worlds for different set distance metrics and for cently obtained ars/2-approximation based on rounding an LP
top-k ranking queries respectively. We then briefly discuss finding solution. Quite recently, Soliman et al. [41] also observed the re-
consensus worlds for group-lmpuntaggregate queries and clus-  |ationship between ranking in uncertain databases and the RANK-

tering queries in Section 6. AGGREGATION problem and proposed a polynomial time algo-
rithm under Spearman’s footrule distance for full rankings.
2. RELATED WORK The CONSENSUS-CLUSTERING problem asks for the best clus-

tering of a set of elements which minimizes the number of pairwise
disagreements with the givénclusterings. It is known to be NP-
hard [42] and a 2-approximation can also be obtained by picking
%he best one from the givdnclusterings. The best known approx-

There has been much work on managing probabilistic, uncer-
tain, incomplete, and/or fuzzy data in database systems and this
area has received renewed attention in the last few years (see e.
[27, 5, 30, 19, 20, 8, 14, 37, 44, 4, 43]). This work has spanned



imation ratio is4/3 [2].

3. PRELIMINARIES

We begin with reviewing the possible worlds semantics, and in-
troduce the probabilistic and/xor tree model.

3.1 Possible World Semantics

We consider probabilistic databases with both tuple-level un-
certainty (the existence of a tuple is uncertain) and attribute-level
uncertainty (a tuple attribute value is uncertain). Specifically, we
denote a probabilistic relation bg” (K; A), whereK is thekey
attribute, andA is the value attributé. For a particular tuple in

DEFINITION 1. A probabilistic and/xor treel” represents the
mutual exclusion and co-existence correlations in a probabilistic
relation RP(K; A), whereK is the possible worlds key, antlis
the value attribute. I/, each leaf is a key-attribute pair (a tuple
alternative), and each inner node has a magk,or ®. For each
® nodeu and each of its childremw € Ch(u), there is a nonneg-
ative valuePr(u, v) associated with the edde, v). Moreover, we
require

o (Probability Constraint)y ", o,y Pr(u,v) < 1.

e (Key Constraint) For any two different leavés [» holding
the same key,C A(ly, l2) is a@ nodé.

RP, its key attribute is certain and is sometimes called the possible L&t 7. be the subtree rooted atand Ch(v) = {v1,...,v¢}. The

worlds key. R” is assumed to correspond to a probability space
(PW, Pr) where the set of outcomes is a set of deterministic rela-
tions, which we calpossible worldsPW = {pw1, pwa, ..., pwn }.

Note that two tuples can not have the same value for the key at-

tribute in a single possible world. Because of the typically expo-
nential size of PV, an explicit possible worlds representation is

not feasible, and hence the semantics are usually captured implic-

itly by probabilistic models with polynomial size specification.

Let T denote the set of tuples in all possible worlds. For ease of
notation, we will usg¢ € pw in place of ‘t appears in the possible
world pw”, Pr(t) to denotePr(t is present andPr(—t) to denote
Pr(tis not present

Further, for a tupIetP € RT, we call the certain tuples corre-
sponding to it (with the same key value) in the union of the possible
worlds, itsalternatives

Block-Independent Disjoint (BID) Scheme: BID is one of the

subtree7, inductively defines a random subsgt of its leaves by
the following independent process:

e Ifvisaleaf,S, = {v}.

e If 7, roots at a®) node, then
g — Sy,  with probPr(v, v;)
Y10 Pr(v,v;)

with prob1 — 3¢,

e If 7, roots at a@® node, therS, = U¢_; S,
Probabilistic and/xor trees can capture more complicated correla-
tions than the prior models such as the BID model or x-tuples. We
remark that Markov or Bayesian network models are able to cap-
ture more general correlations [38], however, the structure of the
model is more complex and probability computations on them (in-
ference) is typically exponential in the treewidth of the model. The
treewidth of an and/xor tree (viewing it as a Markov network) is
not bounded, and hence the techniques developed for those models

more popular models for probabilistic databases, and assumes thagan not be used to obtain a polynomial time algorithms for and/xor

different probabilistic tuples (with different key values) are inde-
pendent of each other [14, 37, 13, 35]. Formally, a BID scheme
has the relational schema of the frdd{ K; A; Pr) whereK is the
possible worlds keyA is the value attribute, anBlr captures the
probability of the corresponding tuple alternative.

3.2 Probabilistic And/Xor Tree

trees.

3.3 Computing Probabilities on And/Xor Trees

Aside from the representational power of the and/xor tree model,
perhaps its best feature is that many types of probability computa-
tions can be done efficiently and elegantly on them ugieigerat-
ing functions In our prior work [31], we used a similar technique

We generalize the block-independent disjoint tuples model, whichfor computing ranking functions for tuple-level uncertainty model.

can capturenutual exclusiotbetween tuples, by adding support for
mutual co-existen¢end allowing these to be specified in a hierar-

chical manner. Two events satisfy the mutual co-existence correla-

tion if in any possible world, either both happen or neither occurs.
We model such correlations usingoeobabilistic and/xor tregor
and/xor tree for short), which also generalizes the notiong- of

Here we generalize the idea to a broader range of probability com-
putations.

We denote the and/xor tree By. Suppose¥ = {x1,x2,...}is
a set of variables. Define a mappiagvhich associates each leaf
I € T with a variables(l) € X. Let7, denote the subtree rooted
atv and letvy, ..., v; bew’s children. For each node € 7, we

tuples[37, 45], p-or-sets [13] and tuple independent databases. We define a generating functiaf, recursively:

first considered this model for tuple-level uncertainty in an earlier

paper [31], and generalize it here to handle attribute-level uncer-

tainty.
We use®) (or) to denote mutual exclusion ag (and) for co-

existence. Figure 1 shows two examples of probabilistic and/xor
trees. Briefly, the leaves of the tree correspond to the tuple alter- 4 f  js a® node, i (X) = [T, Fon (X)

natives (we abuse the notation somewhat andtusedenote both

the tuple, and its key value). The first tree captures a relation with

four independent tuples; , t2, t3, t4, each with two alternatives,

o If vis aleaf, Fi(X) = s(v).
o If visa® node,
Fo(X) = (1= sy p(v,00)) + Sy For (X) - p(v, v8)

The generating functioF (X)) for tree 7 is the one defined
above for the root. It is easy to see, if we have a constant num-

whereas the second tree shows how we can capture arbitrary posher of variables, the polynomial can be expanded in the form of

sible worlds using an and/xor tree (Figure 1(ii) shows the possible 3~
11,22,

worlds corresponding to that tree).

Now, let us formally define a probabilistic and/xor tree. In tree
7T, we denote the set of children of nodeby Chs(v) and the
least common ancestor of two leavgsandiz by LC A7 (11, 12).
We omit the subscript if the context is clear.

IFor clarity, we assume singleton key and value attributes.

| Ciyip... @it ay? ... in polynomial time.

Now recall that each possible worldy contains a subset of the
leaves of7 (as dictated by th€) and ® nodes). The following
theorem characterizes the relationship between the coefficients of

F and the probabilities we are interested in.

2The key constraint is imposed to avoid two leaves with the same
key but different attribute values coexisting in a possible world.
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Figure 1: (i) The and/xor tree representation of a set of block-independent disjoint tuples; the generating function obtained by
assigning the same variabler to all leaves gives us the distribution over the sizes of the possible worlds. (ii) Example of a highly
correlated probabilistic database with 3 possible worlds and (jii) the and/xor tree that captures the correlation; the coefficient of;
(0.3) isPr(r(ts,6) = 1) (i.e., prob. that that alternative of ¢5 is ranked at position 1).

THEOREM 1. The coefficient of the terff ; «/ in () is the 4. SET DISTANCE MEASURES

total probability of the possible worlds for which, for glithere are We first consider the problem of finding the consensus world for

exactlyi; leaves associated with variahtg . a probabilistic relation under two set distance measures: symmetric
. ) . ) ) difference, and Jaccard distance; the probabilistic relation may be

The proof is by induction on the tree structure and is omitted. an existing relation in the database, or the result of executing a

conjunctive query over it.

ExAMPLE 1. If we associate all leaves with the same variable . .
z, the coefficient of" is equal toPr(|pw| = ). 4.1 Symmetric Difference

The symmetric difference distance between two $4tsS, is
The above can be used to obtain a distribution on the possible worlddefined to be

sizes (Flgure 1(|)) dA(S17 SQ) _ |S1A52| _ |(Sl \ 52) U (Sz \Sl)‘
EXAMPLE 2. If we associate a subsstof the leaves with vari-  Note that two different alternatives of a tuple are treated as different
able z, and other leaves with constamf the coefficient of" is tuples here.

equal toPr(|jpw N S| = 7).
THEOREM 2. The mean world under the symmetric difference

EXAMPLE 3. Nextwe show how to compule(r(t) = 1) (i.e., distance is the set of all tuples with probability0.5.
the probablllt_yt is rank(_ed at position), wherer(t) de_note theank PROOF. Supposes is a fixed set of tuples anl = 7' — S. Let
of the tuple in a possible world by sorseoremetric. Assume 1, if p= true o _ _
only has one alternativé?, a), and hence only one possible value 9(p) = { 0 if p = false be the indicator function. We write

of score,s. Then, in the and/xor tre@, we associate all leaves

. ) i Epw da (S, as follows:
with key other tham and score value larger thasnwith variablezx, pwepw(da (S pw)]

and the leaf(t, a) with va}rigbley,_e_lrlld the rest of leaves with con- E[da(S,pw)] = E[Z 5(t ¢ pw) + Z 5(t € pw))
stantl. Then, the coefficient a ~ "y in the generating function tes e
is exactlyPr(r(t) = 4). If the tuple has multiple alternatives, we
can computePr(r(t) = 4) for it by summing up the probabilities = > E[6(t ¢ pw)] + Y E[S(t € pw)]
for the alternatives. tes tes
= Y Pr(=t)+ > Pr(t)
See Figure 1(iii) for an example. tes tes
3.4 Problem Definition Thus, each tuplée contributesPr(—t) to the expected distance if

) . t € S andPr(t) otherwise, and hence the minimum is achieved by
We denote the domain of answers for a querybgnd the dis- the set of tuples with probability 0.5. [

tance function between two answersdyy. Formally, we define
the most consensus answeto be a feasible answer to the query  Thuys, finding the mean answer for a conjunctive query is easy if

such that the expected distance betweeand the answer,,, of we can decide which result tuples have probabitity.5.
the (random) worlghw is minimized, i.e, Finding the consensus median world is somewhat trickier, with
. , the main concern being that the world that contains all tuples with
T=arg Hlé%{E[d(T s Tow)]}- probability > 0.5 may not be a possible world.
We call the most consensus answeflithe mean answexhen COROLLARY 1. Ifthe correlations can be modeled using a prob-

Q is the set of all feasible answers (Ifis restricted to be the setof  abilistic and/xor tree, the median world is the set containing all
possible answers (answers of some possible worlds with non-zerotuples with probability greater tha@.5.

probability), we call the most consensus answefithe median

answer Taking the example of the top-k queries, the median an- The proof is by induction on the height of the tree, and is omit-
swer must be the top-k answer of some possible world while the ted for space constraints. This however does not hold for arbitrary
mean answer can be any sorted list of &ze correlations. Next we show that finding a median answer for a



conjunctive query is NP-Hard even if result tuple probability com-

PROOF SayW; is the mean world and the lemma is not true,

putation is easy (i.e., even if the query has a safe plan) because of.e, 3t; € Wi,t2 ¢ Wi s.t. Pr(t1) < Pr(t2). LetW = W; —

the correlations between the result tuples.
THEOREM 3. For conjunctive queries over databases with ar-
bitrary correlations, finding a median answer is NP-Hard.
PrROOF Consider the query:
Q(C) :=7mc(RNXS)

whereR = R(C,z,b) areS = S(xz,b) are two relations inde-
pendent with each other. We show finding a median world for this
query is NP-Hard by showing a reduction from the MAX-2-SAT
problem. Recall that in a MAX-2-SAT instance, we are given a

conjunctive normal form expression with 2 literals per clause and

{t:1}, Wo =W+ {t2}andW’' =T — W — {t1} — {t=}. We will
prove W has a smaller expected Jaccard distance, thus rendering
contradiction. SupposgVi| = |Wa2| = k. We let matrixM =
[mi,;]s,; wherem,; ; = kk‘ijr” We construct generating functions
as we did in Lemma 1. éuppos]él and 7, are the generating
functions foriW; andWs, respectively. We writd A || = 3", . aq,;

for any matrixA and letA ® B the Hadamard product o and

B (take product entrywise). We denote:

F'(z,y) = [Liew (Pr(=t) + Pr(t)z) [T ey (Pr(=t) + Pr(t)y)

We can easily see that:

Fi(z,y) = F'(z,y) (Pr(=t1) + Pr(t1)z) (Pr(=t2) + Pr(t2)y)
)

the task is to determine the maximum number of clauses that canF2(z,y) = F'(z,y) (Pr(=t1) + Pr(t1)y) (Pr(—t2) + Pr(t2)x)

be simultaneously satisfied by an assignment. Let the MAX-2-
SAT instance consist of variables,z1,...,z,, andk clauses.
Let S(z,b) = {(z1,0), (z1,1), (z2,0), (z2,1),... } contain two
mutually exclusive tuples each farvariables; all tuples are equi-
probable with probability 0.5R(C, x,b) is a deterministic table,
and contains two tuples for each clause: Suppeséor z;) is a
literal in clausec;, R contains tupl€c;, z;,1) (or (c;, z;,0)). We

can see thaRk X S has the same set of tuples Bsand each tu-
ple has probabilityd.5. Moreover, two tuples with the san@
value are independent. Therefore, the result@fR X S) con-

tains one tuple for each clause, associated with a probability of

1—-0.5%x0.5=0.75.

Then, taking the difference, we gé&t = Fi(z,y) — Fa(xz,y) is
equal to:
F'(x,y) (Pr(=t1)Pr(t2) — Pr(t1)Pr(=t2)) (y — ) 1)

Let Cx = [ci,;] be the coefficient matrix of~ wherec;,; is the
coefficient of termz*y’. Using the proof of Lemma 1:

E[d(W1, pw)] — E[d(W2, pw)] ICx @ M| - [|Cx, @ M|

ICz @ M|

Now, consider the possible deterministic answer which is gener- | gt c; ; ande; ; be the coefficient af'y; in ' andF, respectively.

ated by a deterministic instanéeof S. It is easy to see the answer
contain clause; if and only if ¢; is satisfied by the assignment
defined byS. According to the proof of Theorem 2, the median

answer is the possible deterministic answer containing maximum
number of tuples, which corresponds to finding the assignment that ICz @ M|

maximizes the number of satisfied clauseEl

4.2 Jaccard Distance
The Jaccard distance between two $atsSs is defined to be

|S1AS,|

|S1 U SQ|

Jaccard distance always lies[in 1] and is a real metric, i.e, sat-
isfies triangle inequality. Next we present polynomial time algo-
rithms for finding the mean and median worlds for tuple indepen-
dent databases, and median world for the BID model.

d](Sl, SQ)

LEMMA 1. Given an and/xor tree] and a possible world for
it, W (corresponding to a set of leaves ®f), we can compute
E[d(W, pw)] in polynomial time.

PROOF A generating functiot# 7 is constructed with the vari-
ables associated with leaves as follows: fat W (¢ ¢ W), the
associated variable is (y). For example, in a tuple independent
database, the generating function is:

Fla,y) = [] (Pr(=t) + Pr(t)z) T] (Pr(=t) + Pr(t)y)

tew t¢w
From Theorem 1, the coefficient ; of term x’y’ in generating

function F is equal to the total probability of the worlds such that
the Jaccard distance between those worldd&rid exactly‘W‘ —it

o Wi+5 °
. W ]—i+j
Thus, the distance &, ; cij - O

LEMMA 2. For tuple independent databases, if the mean world
contains tuple; but not tuplets, thenPr(t1) > Pr(ts).

It is not hard to se€;; = (¢} ;_1 — ci_1,;)p from (1) where
p = (Pr(=t1)Pr(t2) — Pr(t1)Pr(—t2)) > 0.

Then we have:
PZ ((Cfi,j—l - C;‘fl,j)mi’j)
i3

/
Py chi(miger —misy)
®

, (k—i+j+l k—i—1+j
pizj-:c”< F+j+l k+j

The proof follows because, for ary;j > 0, we have that:
k—itjtl _ k—izlti o
kj+1 k+j

O

The above two lemmas can be used to efficiently find the mean
world for tuple-independent databases, by sorting the tuples in the
decreasing order by probabilities, and computing the expected dis-
tance for every prefix of the sorted order.

A similar algorithm can be used to find the median world for the
BID model (by only considering the highest probability alternative
for each tuple). Finding mean worlds or median worlds under more
general correlation models remains an open problem.

5. TOP-K QUERIES

In this section, we consider top-k queries in probabilistic data-
bases. Each tuplg has a score(t;). In the tuple-level uncer-
tainty model,s(¢;) is fixed for eacht;, while in the attribute-level
uncertainty model, it is an random variable. In the and/xor tree
model, we assume that the attribute field is the score (uncertain
attributes that don’t contribute to the score can be ignored). We
further assume no two tuples can take the same score for avoiding
ties. We user(¢) to denote the random variable indicating the rank
of ¢t andr,.(t) to denote the rank of in possible worldpw. If ¢
does not appear in the possible wopld, thenr,.,(t) = co. So,



Pr(r(t) > 1) includes the probability thafs rank is larger thari
and thatt doesn't exist. We sa#; ranks higherthant, in possible
world pw if 7pw (1) < rpw(t2).

Finally, we use the symbat to denote a top-k ranked list, and
7% to denote the restriction of to the firsti items. We use-(4) to
denote the®”" item in the listr for positive integer, and(t) to
denote the position afe T'in 7.

5.1 Distance between Two Top-k Answers

Fagin et al. [18] provide a comprehensive analysis of the prob-
lem of comparing two top-k lists. They present extensions of the
Kendall’s tau and Spearman footrule metrics (defined on full rank-

ings) to top-k lists and propose several other natural metrics, such
as the intersection metric and Goodman and Kruskal’'s gamma func-

tion. In our paper, we consider three of the metrics discussed in
that paper: the symmetric difference metric, the intersection met-
ric and one particular extension to Spearman’s footrule distance.
We briefly recall some definitions here. For more details and the
relation between different definitions, please refer to [18].

Given two top-k lists;;1 andz, the normalized symmetric dif-
ference metric is defined as:

da(ri, ) = g |MAT| = g [(11\72) U (12\11)].
While da focuses only on the membership, the intersection met-
ric d; also takes the order of tuples into consideration. It is defined
to be:

di(m1,m2) = § Y, da(ri, 3)
Bothda () andd;() values are always betweérand1.

The original Spearman’s Footrule metric is defined adthdis-
tance between two permutationsandes. Formally,F'(o1,02) =
Y ierloi(t) — o2(t)]. Let £ be a integer greater thdn The
footrule distance with location parametérdenoted-"® general-
izes the original footrule metric. It is obtained by placing all miss-
ing elements in each list at positiérand then computing the usual
footrule distance between them. A natural choicé isfk + 1 and
we denoteF **t1) by d . It is also proven thadr is a real metric
and a member of a big and important equivalence cl§8].

Itis shown in [18] that:

dF(Tl,Tz) = (k—l— 1)|7‘1A7‘2|

+ Y In)—n® - Y nE - > ().

teETINTY teTy\ T2 teTa\ 11

PROOF Suppose- is fixed. We writeE[da (7, Tpw )] as follows:

E[da (7, Tpw)] = E[ZT S(t€TAtE Tpw) +O(t € Tpuw At ¢ 7)]
- t; E[5(t € Tpu)] + ; E[5(t & Tpw)]
- t; Pr(r(t) <k)+ ; Pr(r(t) > k)
- ;vz Pr(r(t) <k) =2 Pr(r(t) < k)

The first two terms are invariant with respect#o Therefore,
it is clear that the set of tuples with the largesPr(r(¢) < k)
minimizes the expectation.[]

To find a median answer, we essentially need to find the top-k an-
swer of some possible world such that,. Pr(r(t) < k) is
maximum. Next we show how to do this given an and/xor tree in
polynomial time.

We write P(t) = Pr(r(t) < k) for ease of notation. We can't
simply pick k tuples with the highesP(¢) values since some of
them may be mutually exclusive. We use dynamic programming
over the tree structure. For each possible attribute valgeA (A
value is used to rank the tuples in the deterministic settingy, fet
be the tree which contains all leaves with attribute value at least
We recursively compute the set of tuples® (v, i), which maxi-
mizes the valug_, . ., ;) P(t) among all possible worlds gen-
erated by the subtreg rooted atv and is of size, for each node
vin 7% andl < ¢ < k. We compute this for all different values,
and the optimal solution can be chosen tanex,, (pw®(r, k)).

Supposevs, ve, ..., v; arev's children. The recursion formula
is:

1. If visa® node,
pw®(v,i) = arg

i) 2 PO = e )
i pw

2. If vis a@® node,pw®(v,i) = Ui<;<;pw; such thapw; €
PW(T;), >, lpw;| = iandzteujpwj P(t) is maximized.

In the latter case, the maximum value can be computed by dynamic

Next we consider the problem of evaluating consensus answersPprogramming again as follows.

for these distance metrics.

5.2 Symmetric Difference and PT-k Ranking
Function
In this section, we show how to find mean and median top-k an-

swers under symmetric difference metric in the and/xor tree model.
The probabilistic threshold top-k (PT-k) query [26] has been pro-

posed for evaluating ranking queries over probabilistic databases,

and essentially returns all tuplefor which Pr(r(t) < k) is greater
than a given threshold. If we set the threshold carefully so that the
PT-k query returns exactly tuples, we can show that the answer
returned is the mean answer under symmetric difference metric.

THEOREM 4. If 7 = {7(1),7(2),...,7(k)} is the set ok tu-
ples with the larges®r(r(t) < k), thenr is the mean top-k answer
under metriada, i.e., the answer minimizé&gda (7, 7pw )]

3All distance functions in one equivalence class are bounded by

each other within a constant factor. This class includes several ex-

tensions of Spearman’s footrule and Kendall’'s tau metrics.

We denote byw* ([v: .. . vz], i) the setU?_, pw; such thapw; €
PW(TS), S0 Ipw;| =i andy,con_ u, P(t) is maximized.
pw®([vs, ..

p = arg max
0<p<i

.vs],1) can also be computed recursively. Let

>

teEpw?([vi...vp—1],p)Upwe (v, i—p)

P(t).

Then, we have
pw”([v1 ... vs],1) = pw([vr ... vh—1],p) U pw®(vs, 1 — p).

Finally, it is easy to sepw* (v, i) is simplypw®([v1, . .., v], ).

THEOREM 5. The median top-k answer under symmetric dif-
ference metric can be found in polynomial time for a probabilistic
and/xor tree.

5.3 Intersection Metric

Note that the intersection metrit; is a linear combination of
the normalized symmetric difference metdg. Using a similar



approach used in the proof of Theorem 4, we can show that:

E[d; (7, Tpw)] = ZE[dAT pr
k
1 1
_k;i<k

Thus we need to fing which maximizes the last term(7) =
S (33, Pr(r(t) < i)). We first rewrite the objective as
follows, using the indicatord) function:

Y(ter ))

( ZPr

1 ktef

= (ZZPr ) <) 26 J)))
( t=7(0)) Z Pr(r <z)>

k
€T j=1
The last equality holds sincEi:1 Zj’:l ai; = ijl Zf:j aij
The optimization task can thus be written asaasignment prob-
lem, with each tuple acting as an agent and each of the top-k po-
smons; as a task. Assigning taskto agentt gains a profit of

Z._] 1Pr(r(t) < i) and the goal is to find an assignment such

+ Z Pr(r(

teT

) <k)—2> Pr(r(t) < z‘))

tert

A(r) =

Mw

7

-

S

-

The second inequality holds because for non-decreasing sequences
ai(1 <i<mn)andc(l <i<n),

Yy aici > S (0, @) (0 ¢)

5.5 Spearman’s Footrule

For atop-k answer = {r(1),7(2),...,7(k)}, we define:
o Ti(t) =35, Pr(r(t) =)
o Yo(t) =35 Pr(r(t) =4) i
o Ty(t,i) =35, Pr(r(t) = j))li — j| + iPr(r(t) > k).

It is easy to se@1(t), Y2(t), T3(¢) can be computed in polyno-
mial time for a probabilistic and/xor tree using our generating func-
tions method.

A careful and non-trivial rewriting oE e pw [F* (7, Tpw )] ShOws
that it also has the form (Figure 2):

0+225 t,1)

teT i=1

EprPW[ (T pr

whereC' is a constant independentafandf (¢, :) is a function of

t andi that is polynomially computable. More specifically,
Ft,4) = Ts(t,4) + Ya(t) — 2(k + )Y ()

Figure 2 shows the exact derivation. Thus, we only need to min-
imize the second term, which can be modeled as the assignment

that each task is assigned to at most one agent, and the profit isproblem and can be solved in polynomial time.

maximized. The best known algorithm for computing the opti-
mal assignment runs iR (nky/n) time, via computing a maximum
weight matching on the bipartite graph [33].

5.4 Approximating the Intersection Metric
We define the following ranking function, whefg, = Zle 1/i

denotes thé‘" Harmonic number:
k

k
Z(Hk— i— 1)PI’ Z Pr

=1 =1

Tu(t) =

This is a special case of the parameterized ranking function pro-

posed in [31] and can be computedink log? n) time for all tu-
ples in the and/xor tree. We claim that the top-k answereturned
by T i function, i.e., thék tuples with the highest i values, is a

good approximation of the mean answer with respect to the inter-

section metric by arguing that; = {¢1,t2, ..., ¢} is actually an

approximated maximizer ofi(7). Indeed, we prove the fact that

Alte) > + A( *) wherer™ is the optimal mean top-k answer.
Let B(r ) > ier Yu(t) for any top-k answer. It is easy

to seeA(r*) < B(7*) < B(tm) sincery maximizes theB|()
function. Then, we can get:

vV
7
=

k
= YN Ta ) > L SN Y Tu e

i=1

5.6 Kendall's Tau Distance

ThenKendall's taudistance (also called Kemeny distande)
between two top-k listsy; and» is defined to be the number of
unordered pairst;, t;) such that that the order éfand; disagree
in any full rankings extended fromy, and 7., respectively. It is
shown thatdr anddx and a few other generalizations of Spear-
man’s footrule and Kendall's tau metrics form a big equivalence
class, i.e., they are within a constant factor of each other [18].
Therefore, the optimal solution fatr implies constant approxi-
mations for all metrics in this class (the constantdaris 2).

However, we can also easily obtair3 &2-approximation ford x
by extending the3/2-approximation for partial rank aggregation
problem due to Ailon [1]. The only information used in their algo-
rithm is the proportion of lists wherg is ranked higher thaty for
all 4, 7. In our case, this correspondsRe(r(t;) < r(t;)). This
can be easily computed in polynomial time using the generating
functions method.

We also note that the problem of optimally computing the mean
answer is NP-hard for probabilistic and/xor trees. This follows
from the fact that probabilistic and/xor trees can simulate arbitrary
possible worlds, and previous work has shown that aggregating
even 4 rankings under this distance metric is NP-Hard [16].

6. OTHER TYPES OF QUERIES
We briefly extend the notion of consensus answers to two other
types of queries and present some initial results.
6.1 Aggregate Queries
Consider a query of the type:
SELECT groupname, count(*)

FROM R
GROUP BY groupname



EF*(r,mpw)] = E|(k+D)ITA%0l+ > Ir) —mu®— > 76— > pr(t)}

teETNTpw tET\Tpw tETpw \T

= (k+DE[TATw|] + Y ES(t € 7N 7pw)|7(t) = Tpuw (t)]] = > E[S(t € 7\ mpu)7(1)] — E { > pr(t)]

teT teT tETpw \ T
k

k
= (k+DE[TAT|] + > > D E[5(t € TN 1puw)d(t = 1pw(8)3(t = 7(5))]i — j]

teT i=1j=1
k
fZZE[é(tGT\pr) (t =7(1))d] — Z Tolt
teT i=1 teT\7
k k k
= (k+ DE[rAmull+ D> (5@ =7(1)) Y _Pr(r(t) = 5)li — j|> D6t =T@)iPr(r(t) > k) — > Taft
teT i=1 Jj=1 teT i=1 teT\T

= (k+Dk+ > Ti(t)—2> Ti(t) +ZZ§ ))Ya(t,i) — > Taft

teT ter teT i=1 teT\7
= (k4 Dk+ > ((k+1)Ti(t) — T2(t) )+ZZ§ (1)) (T3(t, ) + Ta(t) — 2(k + 1)T1(2))
teT teT i=1

Figure 2: Derivation for Spearman’s Footrule Distance

We assume the dataset is represented by the BID model in whichcontaining:. We claim that there exists € V’ such thatr*[j] <

there aren potential groups (indexed by groupname) anthde- r[j] and there is aalternating pathP with respect ta\/ * connect-
pendent tuples with attribute uncertainty. The probabilistic data- ingi andj *. ThereforeM’ = M*AP = (M*\ P)U (P \ M™)
base can be specified by the matfix= [p; ;]nxm Wherep; ; is is also a valid matching. Suppoaé’ is ar’-matching. But:
the probability that tuplé takes groupnam@andz " by =1 L LA o
foranyl < i < n. A query result (on a deterministic relation) [r" =1l = Z(r [v] = r[v])
is am-dimensional vector where thei*" entry is the number of v=1
tuples having groupname The natural distance metric to use is UL e win o
the squared vector distance. = (" [v] = To])” — (e7[d] - ¥[i])” -
Computing the mean answer is easy in this case, because of lin- v=1
earity of expectation: we simply take the mean for each aggregate (r*[5] — f~[j})2 + (¢'[4] — f-[z‘])2 + (r'[j] — [y ])2
separately, i.er = 1P wherel = (1,1,...,1). We note the = ||r* = 5|5 — (" [i] — F[i]))* = (2*[5] — £[5])°
mean answer minimizes the expected squared vector distance to e i 2
any possible answer. +(r*[i] = 1 = F[i])* 4+ (c*[j] + 1 — F[5])
The median world requires that the returned answer be a possi- = |[t* — 5|3 +2 —2r"[q] + 2¢[i] + 2r"[j] — 2F[j]

ble answer. It is not clear how to solve this problem optimally in
polynomial time. To enumerate all worlds is obviously not com-
putationally feasible. Rounding entriesifo the nearest integers  This contradicts the assumptien is the vector closest to.
may not result in a possible answer. Now, we prove the claim. We growadternating path tregw.r.t.
Next we present a polynomial time algorithm to find a closest M *) rooted at in a Bread-First-Search (BFS) manfietetOdd C
possible answer to the mean worldThis yields ai-approximation V' be the set of nodes at odd depth (the root is at déptand
for finding the median answer. We can model the problem as fol- Fven C U the set of nodes at even depth. For any sulsset
lows: Consider the bipartite grapB(U, V, E) where each node  vertices, letNs(S) denote the set of neighbors §fin graphB.
in U is a tuple, each node iV is a groupname, and an edge It is easy to seeNg(Even) = Odd, Even C Np(Odd) and

< " —r||2.

(u,v),u € U,v € V indicates that tuple takes groupnamewith Y vcoaa T V] = |Even|. Supposer*[v] > ¥[v] for all v and
non-zero probability. We call a subgragh such thatlege (u) = r*[i] > t[:]. However, the contradiction follows since:
1 for all w € U anddeggs (v) = r[v], anr-matchingof B for
somem-dimensional integral vectar. Given this, our objective is  |Even| = Z r'v] > Z rlv] = Z Z Plu, v]
to find anr-matching ofB such that|r —¥||3 is minimized. Before ve0dd veOdd v€O0dd ue N (Odd)
presenting the main algorithm, we need the following lemma. _ Z Z — |Even|.

LeEmMA 3. The possible worlad* that is closest ta: is of the v€Odd u€ Even

following form: r*[¢] is either|F[¢]] or [F[¢]] for eachl < ¢ < m.
. o, . “An alternating path is a path with alternating unmatched and
PROOF. Let M~ be the corresponding™-matching. Suppose  matched edges [32].
the lemmais not true, and there exissich thafr™ [¢] — r[i]| > 1. SAn alternating path tree is a tree in which each path from the root
W.l.o.g, we assume™[:] > t[i]. The other case can be DfOVGd the to another node is an alternating path with its first edge being a
same way. Consider the connected compoiént {U’, V', E(U’, V') } matched edge[32].



Therefore, there must be a vertgxsuch thatr*[j] < [j] in the
alternating path tree. ]

With Lemma 3 at hand, we can construct the following min-cost
network flow instance to compute the vectdrclosest tor. Add
to B a sources and a sink. Add edgeqs, ) with capacity upper
bound1 for all w € U. For eachv € V andr[v] is not integer, add
two edges: (v,t) andez (v, t). e1(v,t) has both lower and upper
bound of capacity r[v]| andez (v, t) has capacity upper bourid
and cost([t[v]] — F[v])* — (|[F[v]] — F[v])?. If F[v] is a integer,
we only adde; (v,t). We find a min-cost integral flow of value
on this network. For any such thatez(v, t) is saturated, we set
r*[v] to be[r] and|r| otherwise. Such a flow with minimum cost
suggests the optimality of the vectst due to Lemma 3.

THEOREM 6. There is a polynomial time algorithm for finding
the vector™ tor such that* corresponds to some possible answer
with non-zero probability.

Finally, we can prove that:

COROLLARY 2. There is a polynomial time deterministic 4-
approximation for finding the median aggregate answer.

PROOF Suppose™ is the possible answer closest to the mean
answerr andr™ is the optimal median answer. Lebe the vector
corresponding to the random answer. Then:

Eld(r*,r)] < E[2(d(r",T)+d(T,1)
= 2

< 4E[d(F,r)]

a

6.2 Clustering

The CONSENSUS-CLUSTERING problem is defined as fol-
lows: givenk clustering<Cy, ..., Cx of V, find a clustering that
minimizesy_"_, d(C,C;). In the setting of probabilistic databases,
the given clusterings are the clusterings in the possible worlds,
weighted by the existence probability. The main problem with ex-

tending the notion of consensus answers to clustering is that the in-

put clusterings are not well-defined (unlike ranking where the score
function defines the ranking in any world). We consider a some-
what simplified version of the problem, where we assume that two
tuplest; and¢; are clustered together in a possible world, if and
only if they take the same value for the value attribdtéwhich

is uncertain). Thus, a possible wortdv uniquely determines a
clusteringC,.,. We define the distance between two clusteig
andC; to be the number of unordered pairs of tuples that are clus-
tered together i€y, but separated in the other (the CONSENSUS-
CLUSTERING metric). To deal with nonexistent keys in a possible
world, we artifically create a cluster containing all of those.

Our task is to find a mean clusteridgsuch thate[d(C, Cp.w)].
Approximation with factor of4/3 is known for CONSENSUS-
CLUSTERING [2], and can be adapted to our problem in a straight-
forward manner. Infact, that approximation algorithm simply needs
we, ¢, forall t;,¢;, wherewy, ., is the fraction of input clusters
that clustert; andt; together, and can be computed as; +; =
Daca Pri.A=aANjA=a).

7. CONCLUSION

We addressed the problem of finding a single representative an-
swer to a query over probabilistic databases by generalizing the
notion of inconsistent information aggregation. We believe this
approach provides a systematic and formal way to reason about
the semantics of probabilistic query answers, especially for top-k
queries. Our initial work has opened up many interesting avenues
for future work. These include design of efficient exact and approx-
imate algorithms for finding consensus answers for other types of
queries, exploring connections to safe plans, and understanding the
semantics of the other previously proposed ranking functions using
this framework.
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