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ABSTRACT
With large amounts of correlated probabilistic data being
generated in a wide range of application domains includ-
ing sensor networks, information extraction, event detection
etc., effectively managing and querying them has become
an important research direction. While there is an exhaus-
tive body of literature on querying independent probabilistic
data, supporting efficient queries over large-scale, correlated
databases remains a challenge. In this paper, we develop
efficient data structures and indexes for supporting infer-
ence and decision support queries over such databases. Our
proposed hierarchical data structure is suitable both for in-
memory and disk-resident databases. We represent the cor-
relations in the probabilistic database using a junction tree
over the tuple-existence or attribute-value random variables,
and use tree partitioning techniques to build an index struc-
ture over it. We show how to efficiently answer inference and
aggregation queries using such an index, resulting in orders
of magnitude performance benefits in most cases. In addi-
tion, we develop novel algorithms for efficiently keeping the
index structure up-to-date as changes (inserts, updates) are
made to the probabilistic database. We present a compre-
hensive experimental study illustrating the benefits of our
approach to query processing in probabilistic databases.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing ; H.2.4 [Database Management]: Physical De-
sign; G.3 [Mathematics of Computing]: Probability and
Statistics

General Terms
Algorithms, Design, Management, Performance

Keywords
Probabilistic Databases, Indexing, Junction Trees, Caching,
Inference queries
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1. INTRODUCTION
Large amounts of correlated probabilistic data are be-

ing generated in a variety of application domains includ-
ing sensor networks [14, 21], information extraction [20, 17],
data integration [1, 15], activity recognition [28], and RFID
stream analysis [29, 26]. The correlations exhibited by these
data sources can range from simple mutual exclusion depen-
dencies, to complex dependencies typically captured using
Bayesian or Markov networks [30] or through constraints on
the possible values that the tuple attributes can take [19, 12].
Although several approaches have been proposed for rep-
resenting complex correlations and for querying over corre-
lated databases, the rapidly increasing scale of such databases
has raised unique challenges that have not been addressed
before. We illustrate the challenges and motivate our ap-
proach by considering two application domains.

Event Monitoring:
Consider an RFID-based event monitoring application [29,
26] (Figure 1) that detects the occurrence of different types
of events based on the data acquired from the RFID read-
ers. Since the raw RFID data is noisy and incomplete, it is
typically subjected to probabilistic modeling which results
in generation of uncertain events, associated with occur-
rence probabilities. For instance, the event entered(Mary,

conf-room, 2:10pm) may be assigned a 0.6 probability of
actually having occurred (Figure 1). The uncertain events
are naturally highly correlated with each other. For exam-
ple, the event coffee(Bob, 2:05pm) is strongly positively
correlated with the event entered(Bob, lounge, 2:00pm),
whereas the events entered(Bob, lounge, 2pm) and en-

tered(Bob, conf-room, 2pm) must be mutually exclusive.
Additional correlations arise when compound events are in-
ferred from basic events. For instance, the occurrence of the
event business-meeting(conf-room) is directly dependent
on the events entered(Mary, conf-room, 2:10pm) and en-

tered(Bob, conf-room, 2:00pm). Such correlations are typ-
ically indicated by drawing a graph over the events and
adding (possibly directed) edges between correlated events
as shown in Figure 1. The nature of the correlation itself
can be quantified by associating probability distributions or
constraints over the corresponding events.

Given such data, an application or a user may ask queries
such as “how many business meetings occurred over the last
week?” (aggregate queries) or “what is the likelihood that
Bob and Mary attended a meeting given that John did not
attend?” (what-if queries). As has been observed in much
work before [30, 22, 26, 23], ignoring the correlations can



Entered (Bob, 
lounge, 2 pm)

Probabilistic Modeling
Event detection

Entered (Bob, 
conf, 2pm)

Business Meeting 
at conf room

coffee (Bob,  
2:05pm)

Entered (Mary, 
conf, 2:10pm)

Left (John, 
conf, 3pm)

... ...

...

...
...

...

...

Figure 1: RFID Event monitoring application

result in highly inaccurate results to such queries1.

Information Extraction (IE):

In an information extraction application [20, 17], a machine
learning algorithm automatically extracts structured infor-
mation from unstructured documents. A simple example of
IE is the identification of relationships, e.g., person X works
for company B (works(X,B)), from unstructured text such
as “Mr. X left Company A to join Company B”. Natu-
rally, an algorithm for this cannot be accurate all the time,
hence probabilities are attached to the relations detected.
A number of mutual exclusion based dependencies arise in
this application. For instance both the tuples works(X,A)
and works(X,B) cannot occur simultaneously. A number of
interesting queries may be posed on the relations generated,
e.g., “where does X work ?” or “how many employees work
in Company B ?”

In recent years, several approaches have been developed
for managing probabilistic data and for answering queries
over them (see, e.g., [10, 35, 1, 30, 31, 3, 2, 34]). The
methods proposed in that work can be used to both manage
tuple- or attribute-level uncertainties, and to process a rich
class of probabilistic queries over them. While some of that
work (e.g., [25, 30, 2]) has addressed the issues in represent-
ing and querying over complex correlations, their proposed
techniques are not scalable to large datasets.

The key challenge in evaluating queries over large-scale
correlated databases is that, simple queries involving a few
tuple or attribute variables may require accessing and ma-
nipulating the probability distributions in the entire database.
This is because even if two variables are not directly cor-
related with each other, they may be indirectly correlated
through a chain of other variables in the database. In Figure
1, the events entered(Bob, lounge, 2pm) and left(John,

conf-room, 3pm) are thus correlated, and hence a query
involving those two variables must process the correlations
among many other variables.

In this paper, we address the challenges in efficiently exe-
cuting different types of queries over correlated databases by
designing novel correlation-aware index data structures. We
focus on three types of queries, all of which require reason-
ing about the correlations: (1) inference (what-if) queries,

1For an aggregate query, although the expected value can
often be computed efficiently, computing a probability distri-
bution over the result requires reasoning about correlations.

where we are asked to compute a conditional probability dis-
tribution over a (typically small) subset of the variables in
the database given the values of another subset of variables
(where a variable may correspond to the existence of an un-
certain tuple or the value of an uncertain attribute); (2)
aggregate queries, where the desired output is a probability
distribution over the aggregate value (which in turn can be
used for answering decision support queries); (3) extraction
queries, where the goal is to extract the correlations over a
subset of the variables.

Our proposed data structure, called INDSEP, builds upon
the well-known junction tree framework, designed to an-
swer inference queries over large-scale probabilistic graphical
models (PGM). We utilize the equivalence between proba-
bilistic databases and probabilistic graphical models [30, 9]
for this purpose, by first building a junction tree over the
variables in the database. Although such a junction tree
over the probabilistic database can be adapted to answer
inference queries (as we will discuss in more detail later),
this naive approach can not avoid the problem mentioned
above, and hence to answer a simple query, we may have
to access and manipulate the entire junction tree. Our pro-
posed INDSEP data structure provides the indexing support
to answer these queries efficiently. In essence, the INDSEP
data structure can be seen as a hierarchy of junction trees,
each level subsuming the one below it, arranged in the form
of an n-ary tree with appropriate shortcut potentials main-
tained at different levels of the index. The shortcut poten-
tials are the key to the performance of INDSEP, using which
we can answer queries in time logarithmic in the size of the
database in most cases, depending on the correlation struc-
ture (as opposed to linear time or worse for the naive ap-
proach). Intuitively, the shortcut potentials allow us to skip
over large portions of the database when computing joint
distributions over variables that are correlated through long
chains of other variables. The key contributions of our work
can be summarized as:

1. We propose a novel hierarchical index structure, called
INDSEP, for large correlated probabilistic databases,
and introduce the idea of shortcut potentials which can
result in orders of magnitude performance improve-
ments.

2. We show how to answer various types of queries effi-
ciently using such a data structure.

3. We develop algorithms for constructing a space-efficient
index for a given database, using ideas developed in
the tree partitioning literature. We also design tech-
niques for keeping the index up-to-date in presence of
updates.

4. We present a comprehensive experimental evaluation
illustrating the performance benefits of our data struc-
ture.

The rest of the paper is organized as follows. We provide
a brief overview of junction trees and existing algorithms
for query processing over them in Section 3. In Section 4,
we provide details about our novel index data structure and
shortcut potentials. In Section 5, we discuss how we use
our index for query processing and in Section 6, we explain
how we handle updates. We conclude with our experimental
evaluation in Section 7.



2. RELATED WORK
Indexes for Probabilistic Databases:
Perhaps the most closely related work to ours is the recent
work on indexing Markovian streams by Letchner et al. [26].
The authors exploit the restricted correlation structure ex-
hibited by such streams to design a Markov chain index,
and show how to efficiently execute pattern identification
queries. The proposed index structure however requires the
Markovian property which significantly limits the types of
correlations that can be handled. Our index structure, on
the other hand, can handle arbitrary types of correlations
(as long as inference is not intractable). Several works [6,
33, 32] have developed indexing techniques for probabilistic
databases, based on R-trees and inverted indices, for effi-
cient execution of nearest neighbor queries and probabilistic
threshold queries. However, these techniques typically as-
sume independence between different data tuples, and focus
on a different query workload.

Inference in Graphical Models:
Efficiently evaluating inference queries has been a major re-
search area in the probabilistic reasoning community for
many years. A number of exact (e.g., junction trees [16],
variable elimination [8], cutset conditioning [27]) and ap-
proximate (e.g., loopy belief propagation [36]) techniques
have been developed for this problem. Our work builds
upon some of this work (in particular junction trees), and
we expect our techniques to be useful in answering infer-
ence queries over large-scale graphical models as well. Re-
cently Darwiche et al. [11] proposed a data structure called
DTree that has superficial similarities to our approach. A
DTree specifies a recursive decomposition of a probabilis-
tic graphical model (PGM) into its constituent probability
functions, and provides a recursive framework for execut-
ing inference queries. However the types of queries sup-
ported are limited to computing evidence probabilities (e.g.,
p(X1 = x1, X2 = x2, . . . , Xn = xn)). Also, DTrees are
in-memory data structures and cannot handle large, disk-
resident databases. Finally, a DTree is by definition a bi-
nary tree, which significantly restricts its performance ben-
efits; specifically, we may still need to access the entire tree
to answer an inference query (as the authors note, the key
benefit of a DTree over a junction tree is its lower memory
footprint and not necessarily lower querying times). We are
planning to investigate how to combine our approach with
a DTree-like approach in future work.

We note that our approach inherits the limitations of
the junction tree approach (which is an exact inference ap-
proach, and hence may be infeasible for arbitrary graphical
models). Extending our techniques to approximate query
answering in such cases (perhaps using the recently devel-
oped approximation approach by Choi et al. [7]) is a rich
area of further work.

Scalable Inference using Relational Databases:
Bravo et al. [5] address the problem of evaluating inference
queries (also called MPF queries) using relational database
techniques. They represent each conditional probability dis-
tribution as a separate relation, and show how to scalably
evaluate inference queries using relational operators. How-
ever, that approach is only suitable when the number of
variables is small, but the conditional probability distribu-
tions (that quantify the correlations) are large; we address
the complementary problem where the number of variables

is very large, but the probability distributions are relatively
small.

3. PRELIMINARIES
We begin with briefly presenting the relevant background

on probabilistic databases and their equivalent representa-
tion as PGMs. In addition, we describe the junction tree
representation of a PGM, and discuss how to execute vari-
ous types of queries using junction trees.

Probabilistic Graphical Models (PGMs):
PGMs comprise a powerful class of approaches that enable
us to compactly represent and efficiently reason about very
large joint probability distributions [8]. A PGM is typi-
cally represented using a directed or an undirected graph, in
which the nodes represent random variables and the edges
represent the direct dependencies/correlations between the
random variables. Figure 2(b) depicts a directed PGM on
a set of random variables {a, b, . . . , o}. Every node v in the
PGM is associated with a conditional probability distribu-
tion P (v|Pa(v)) (Pa(v) is the set of parents of v), which
denotes how the value of v depends on the values of its
parents. For example, node g in Figure 2(b) is associated
with the conditional probability distribution p(g|k, j) since
the parents of g are k and j; similarly, the node f is asso-
ciated with the conditional probability distribution p(f |g).
Nodes with no parents have prior marginal probabilities at-
tached to them. In Figure 2(b), the nodes l and m have no
parents and are associated with the prior probability func-
tions p(l) and p(m) respectively. The overall joint distribu-
tion over all the variables can be computed by multiplying
all the probability distributions in the PGM. Missing edges
encode the conditional independences between the random
variables. For example, in Figure 2(b), e is independent of
a if we know the value of the random variable d.

Probabilistic Databases as PGMs:
A probabilistic database may exhibit either tuple-existence
uncertainty, where the existence of a tuple in the database is
uncertain, or attribute-value uncertainty, where the value of
an attribute is not known for sure, or a combination of both.
Further, there may be complex correlations present in the
database at various levels and possibly across relations. All
of these can be modeled in a generic manner using PGMs by
introducing appropriate random variables and joint proba-
bility distributions over them [30, 13]. Tuple existence un-
certainty can be modeled by introducing a binary random
variable in the PGM, which takes value 1 if the tuple exists
and 0 otherwise. Attribute uncertainty can be modeled by
using a random variable to denote the value of the attribute.
Any correlations are then captured by adding appropriate
edges to the model, and by quantifying each node with the
probability distribution that specifies how the value of the
node is dependent on those of its parents.

Figure 2(a) shows a probabilistic database on two event
relations R1 and R2. R1 has both tuple uncertainty and
attribute uncertainty, while R2 only exhibits attribute un-
certainty. For example, the attribute V0 in relation R1 is
probabilistic, hence in tuple (2, c), c is a random variable
that denotes the value of V0. Also the tuple belongs to the
database whenever the random variable a takes a value 1.
Notice the correlation between tuples 1 and 2 in R1, i.e., ei-
ther both of them belong to the database together, or none
of them appear, depending on the value of the random vari-
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Figure 2: Running Example: (a) A probabilistic database Dp on two relations R1 and R2 exhibiting both tuple-existence and attribute-
value uncertainties (e.g. a indicates the random variable corresponding to the existence of the first tuple in R1); (b) The directed PGM
that captures the correlations in Dp, and (c) the junction tree representation of the PGM.

able a. Further, many more complex correlations can occur
among the random variables. Figure 2(b) shows one possible
set of correlations among the tuples in the database using a
PGM.

Given such a database with uncertainties captured using a
PGM, query execution can be seen as equivalent to inference
on an appropriately modified PGM (by adding new random
variables corresponding to the intermediate tuples generated
during execution) as shown in Sen et al. [30].

Junction Tree Representation of PGMs:
A PGM can be equivalently described using a junction tree
representation [16], also commonly known as a clique tree in
the graph theory literature.

Due to space constraints, we omit the full details involved
in the construction of a junction tree, and only discuss the
key properties of the junction tree and the algorithms used
for evaluating queries over junction trees. Briefly speaking,
we must first convert the directed graph corresponding to
the PGM into an undirected graph by moralizing the graph
(adding edges between all pairs of parents of a node if they
are not already connected) and by making all the edges undi-
rected. Then the graph is triangulated by possibly adding
further edges, and the junction tree is built over the maximal
cliques of the resulting graph.

In a junction tree, there are two types of nodes, clique
nodes and separator nodes. The clique nodes in the junc-
tion tree correspond to the maximal cliques in the undirected
PGM and the separator nodes correspond to the cut vertex
sets that separate the maximal cliques in the PGM. A junc-
tion tree satisfies the running intersection property: for a
variable v, if v ∈ C1 and v ∈ C2, then v is present on all the
cliques and separators in the path joining C1 and C2. After
the tree is constructed, we assign each of the conditional and
prior probability distributions corresponding to the nodes
of the PGM into a relevant clique in the junction tree. We
then multiply all the probability distributions within a single
clique and store it in the clique as its clique potential. Fol-
lowing this, we run a message passing algorithm [18] on the
tree, during which the cliques locally transmit information
about their distributions (also called beliefs) to neighboring
cliques, which the neighboring cliques use to modify their
potentials; the neighboring cliques in turn send their be-
liefs to their neighbors and so on. Typically the process is
started with choosing a pivot node from which the messages
are first sent outward, and then collected back inward. After
this step, the clique potential of a clique node will be equal
to the joint distribution of all the variables present in the
clique. Similar condition applies to the separator nodes as
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Figure 3: Path constructed for query {e,o}

well.
The overall joint distribution represented by the junction

tree can be computed as follow. Suppose we denote the
joint probability distribution of clique Ci by p(Ci) and that
of separator Sk by p(Sk). Then the overall joint distribution
is given by the equation:

p =
p(C1)p(C2)...p(Cn)

p(S1)p(S2)..p(Sk)

which is basically the product of all the clique potentials,
divided by the product of all the separator potentials. For
the junction tree shown in Figure 2(b), the value of the joint
distribution is:

p(ab)p(ac)p(ad)p(de)p(cfg) . . . p(ln)p(lo)

p(d)p(a)2p(c) . . . p(l)2

Query Processing:
There are three main types of queries that we may be inter-
ested in executing over a probabilistic database.

Extraction queries:
An extraction query is specified by a set of variables. The
output of the query is defined (informally) as a junction tree
that includes all the query variables and all the correlations
that exist among the variables. In other words, we are in-
terested in extracting the most relevant part for the query
variables from the huge junction tree. Extraction queries
are useful when we need to perform further query process-
ing and analysis on the selected random variables. Here,
extracting a small portion of the junction tree, while at the
same time retaining all the correlation information, would
be crucial for performance.

A naive algorithm to execute an extraction query is by
computing the smallest Steiner tree on the junction tree that
connects all the query variables of interest. Note that a
Steiner tree can be computed on a tree structured graph in



polynomial time. Consider an extraction query {g, k} on
the junction tree in Figure 2(c). On examining the junction
tree, we find that the clique g, j, k contains both the query
variables g and k. Hence the output to this query is just
the clique gjk. Note that since the clique contains the joint
distribution of gjk, it encodes all the correlations between g
and k. Now consider an extraction query {e,o} on the same
junction tree. For this case, we observe that e is contained
in clique de and o is contained in clique lo. The Steiner tree
for this query reduces to a simple path, which is shown in
Figure 3. If a query variable is present in multiple cliques,
then we choose the clique that reduces the overall size of the
Steiner tree. This can be performed as a post processing
operation after computing the Steiner tree by exploiting the
running intersection property – we can remove a leaf node
from the Steiner tree if its neighbor (in the tree) has all the
query variables present in the leaf node.

We note that the answer to an extraction query is not
unique – in fact, a major focus of our work here is developing
a technique that efficiently extracts the smallest possible
junction tree that still captures all the correlations among
the query variables.

Inference queries: An inference query is specified by a set
of variables and the result of the query is the joint distri-
bution over all the variables present in the set. The answer
to a what-if query can be computed by executing the infer-
ence query and later conditioning it to obtain the required
conditional distribution.

To execute an inference query, we first run the extraction
query over the set of variables and obtain a junction tree over
them. We then execute Hugin’s algorithm [8] for computing
the required joint distribution. We illustrate this with two
examples. Consider the inference query {g,k}. After execut-
ing the extraction query, we receive the clique gjk as shown
above, and then simply eliminate (sum out) the variable j
from the joint distribution p(g, j, k) and return p(g, k) to the
user. In other words, we compute:

p(g, k) = Σj p(g, j, k)

Now consider the inference query {e,o}. As before, we
run the extraction query and obtain the path shown in Fig-
ure 3. Using such a path, we can compute the joint distri-
bution over all the variables present in the path using the
formula discussed above, following which we can eliminate
the non-query variables and determine the answer, p(e, o).
However, the intermediate joint distribution computed will
be extremely large. We can instead execute the query more
efficiently by eliminating the unnecessary variables early on
using message passing. We now show the sequence of steps
for determining p(e, o). We first establish the direction of
message passing and the pivot node – the node to which all
the messages are sent. In this example, we assume that the
pivot is node lo, and the messages are sent along the path
from de to lo as shown in Figure 3. In the first step, clique
de sends a message m12 (See Figure 3) to clique ad which
is basically the value of the joint distribution p(d, e). After
receiving this messgae, the clique ad multiplies the message
with its potential p(a, d) and divides by p(d) to obtain the
joint distribution p(a, d, e). However, since d is not required
for future computation, it eliminates d from this distribu-
tion to determine the probability distribution p(a, e). The
clique ad sends message m23 = p(a, e) to clique ac to con-
tinue the message passing. Note that e is needed since it is

part of the query variables and also that a is required for cor-
rectness of the algorithm since it appears in the next edge.
Each clique determines the variables that are necessary by
looking at the neighbor to which it has to send a message
and the set of query variables. Once clique ac receives mes-
sage m23, it uses its potential p(a, c) to determine the joint
distribution p(a, c, e) and then eliminates a, generating mes-
sage m34 = p(c, e). This process is continued until we reach
the clique lo at which point, we eliminate all the non-query
variables and determine the value of p(e, o).

Aggregation queries: Aggregation queries are specified
using a set of random variables and the aggregation func-
tion, such as SUM, MIN, MAX etc. For computing aggregation
queries, we perform the extraction query and obtain a small
junction tree on the relevant variables from the underlying
junction tree. We can then construct the appropriate graph-
ical model for the aggregation function and use an inference
algorithm as described by Sen et al. [30] for computing the
probability distribution of the aggregate value. We discuss
aggregate query evaluation in more detail in Section 5.2.

As illustrated above, we reduce the problem of query pro-
cessing on probabilistic databases to the problem of Steiner
tree computation on trees (Since all 3 queries require to per-
form the extraction query first). However, the above algo-
rithms do not scale for very large junction trees mainly for
the following reasons. Firstly, for very large junction trees,
even searching for the cliques in the tree is expensive. Sec-
ondly, as shown for the inference query {e,o}, the size of
extracted junction tree can be very large, i.e., almost as big
as the underlying junction tree itself. To counter these is-
sues, we develop index data structures for faster searching,
and augment the index with shortcut potentials to reduce
the size of the extracted junction trees. We begin with de-
scribing our proposed indexing data structure.

4. INDSEP DATA STRUCTURE
In this section, we describe our INDSEP data structure

for indexing the junction tree that represents a probabilistic
database. To build the INDSEP data structure, we hierar-
chically partition the junction tree into connected subtrees
and subsequently construct the index. Before discussing the
exact algorithm for doing this, we specify the information
stored in the different nodes of our INDSEP data structure.

4.1 Overview of the INDSEP Structure
At a high level, INDSEP is a hierarchical data structure

that is built on top of the junction tree. Each index node in
INDSEP corresponds to a connected subtree of the junction
tree. Suppose we hierarchically partition the junction tree
of our running example in Figure 2(c) as shown in Figure
4(a). Here, we first split the tree into three parts denoted
I1, I2 and I3 (partitions are shown using large circles). Af-
ter this, each part is further subdivided into smaller parti-
tions. For instance, I1 is partitioned into parts P1 and P2

as shown in the figure with oval boundaries. The INDSEP
data structure for such a hierarchical partitioning is shown
in Figure 4(b). Here, the node I2 corresponds to the sub-
tree spanning the cliques cfg, gjk, fh and hi along with the
separator nodes c and j. Similarly, the node P5 corresponds
to the subtree spanning the cliques jlm and ln along with
separator nodes j and l. Note that separator nodes joining
two partitions together are included in both the partitions.
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Figure 4: (a) shows a hierarchical partition of the junction tree shown in Figure 2(c). Note that the separator nodes separating two
partitions are replicated in both the partitions. The corresponding INDSEP data structure is shown in (b). The contents of the index
node I2 is shown in part(c).

At a high level, each node in the data structure stores the
following information about the subtree that it represents.

• (C1) Set of variables of PGM that are present in the
subtree below this node. For example, I2 would store the
set {c, f, g, h, i, j, k}. We note here that we are storing
the random variables that are part of the PGM and not
the clique identifiers of the junction tree.

• (C2) Pointers to index nodes of the children and parent
pointers for index traversal.

• (C3) The set of separator potentials that join the children
together. The set stored in I2 is {p(c), p(f), p(j)}.

• (C4) The graph induced on its children. Note that the
separators that connect the children are also stored in this
graph. The graph stored in I2 is shown in Figure 4(c).

• (C5) Set of shortcut potentials corresponding to the chil-
dren of this node. We describe shortcut potentials in
Section 4.2.

We describe each of the constituent components in more
detail in turn.

(C1) Each node in the index structure needs to store the list
of variables present in the subtree of each of the children of
the node. The naive method of storing the list of elements of
the set or even storing them as a bitmap is not feasible; if we
had 1 million variables in the PGM, then each index node
would occupy at least 125KB (> 30 disk blocks) of space just
to store the variables, which is a huge overhead. Instead, we
store the set of variables under each child node using two
data structures - a range [min,max] and an addList, i.e.,
the node contains all the random variables whose ids are
either within the range [min,max] or if it is present in the
addList. This contiguous variable name property is the key
idea in reducing the amount of space taken by our index
structure. We achieve this property in the index using a
variable renaming step, which we illustrate while describing
the index construction algorithm. In fact, we also preserve
this property even while updates occur to the database, i.e.,
when new random variables are added to the database.

(C2) A node stores the pointers to the disk blocks that
contain the child nodes of that node. Since a child node
could either be another index node or a leaf, we also store
the type of the child along with its pointer. In Figure 4(b),
the root node stores pointers to index nodes I1, I2 and I3.

Similarly, I2 stores pointers to the disk blocks containing P3

and P4. A node also stores a pointer to its parent node.

(C3) A node stores the joint distributions of all the sepa-
rators that are connected to its child nodes. This includes
both the separators that separate the children of the node
from each other, and the separators that separate a child
node from a child node of the node’s sibling. For instance,
the node I2 stores the set {p(c), p(f), p(j)}.
(C4) In order to be able to perform path computation on
the junction tree, we need to store, in each node, the graph
induced on the child nodes. Since we are partitioning trees
into connected subtrees, the induced graph is also singly
connected. For simplicity, we also store the separator cliques
that separate the child nodes from each other. The node I2
in Figure 4(b) stores the induced tree shown in Figure 4(c).
As shown in the figure, each child subtree is treated as a
virtual node and then the edges are determined between
the virtual nodes and the separator nodes, i.e., P3 and P4

are treated as virtual nodes and they are connected via the
separator node f . A path between i ∈ P3 and k ∈ P4 should
necessarily pass through f .

4.2 Shortcut Potentials
In this section, we describe shortcut potentials, a novel

caching mechanism which we have developed, that can pro-
vide orders of magnitude reduction in query time. Consider
the graph shown in Figure 5, which represents a path con-
necting the variables X and Y in a junction tree. As shown
earlier (Section 3), we can compute p(X,Y) using the follow-
ing sequence of messages from the clique C1 towards C3.

m12(C,X) =
P

A,B p(A,B,C,X)

m23(D,X) =
P

C,E,F p(C,D,E, F )m12(C,X)

p(X,Y ) =
P

D m23(D,X)p(D,Y )

However, there is some unwanted computation going on
above, which can be avoided. For instance, the variables
E,F in the above equations are merely summed out in the
message m23 and are not required to pass information about
the interesting variable X to C3. Since the size of the prob-
ability distributions are exponential in the number of the
operands, the presence of these unnecessary variables can
lead to increase in query processing times. Instead, if we
had the joint distribution p(C,D) stored in the above ex-
ample, the computation can be faster: we would replace the
computation of the message m23 with
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Figure 5: Illustrating overlays and shortcut potentials. Using
the cached potential p(C, D) allows us to shortcut the clique C2

completely.

m23(D,X) =
P

C p(C,D)m12(C,X)

p(C,D) worked well for this example because it was the joint
distribution of all the separators of the clique C2, i.e., it had
enough information to shortcut the clique C2 completely.
While the above example was trivial and the savings quite
minimal, we realize the full power of these caches by in-
troducing the notion of shortcut potentials. We define the
following notion of a shortcut potential that would be ben-
eficial for our purposes.

Shortcut Potential:
The shortcut potential for a node I in the index data struc-
ture is defined as the joint distribution of all the separator
nodes that are adjacent to the node I. A shortcut potential
for I allows us to short cut the subtree represented by I
completely.
For example, in Figure 4(b), the shortcut potential for the
node I2 is given by the joint distribution p(c, j). Similarly,
the shortcut potential for the partition P3 is the joint dis-
tribution p(c, j, f). The separator nodes adjacent to a node
are exactly the leaves in the induced child tree stored in
the node. The size of a shortcut potential is the product of
the domains of all the variables belonging to the set. Every
index node stores the shortcut potentials for all of its chil-
dren. Node I2 stores the shortcut potentials for P3 (p(c,f,j))
and P4 (p(f)). Note that storing the shortcut potentials for a
node in its parent allows us to avoid accessing the node when
the shortcut potentials have enough information. Whenever
the size of a shortcut potential is larger than the size allot-
ted for the index node (which is 1 disk block), we resort to
approximating the shortcut potential, described next.

Approximate Shortcut Potentials:
We provide 3 levels of approximations of shortcut potentials.
Suppose the separators of node I are {s1, s2, . . . sk}. In the
approximation scheme A2 we store the joint distributions
of every pair of separators, i.e.,

S
i 6=j p(si ∪ sj) (for a total

of
`

k
2

´
joint distributions). In the approximation scheme

A3 we store the set of joint distributions of every triple of
separators. When the exact shortcut potential is larger than
the block size, we try to use schemeA3; whenA3 also exceeds
the block size, we resort to A2. When A2 also exceeds the
block size, we store a random subset of pairwise separators
(scheme A1). For example, in partition P3, we may choose to
maintain the set {p(c, j), p(j, f), p(c, f)} if joint distribution
over all the three variables is larger than the block size. We
note here that using the approximation scheme A3 will only
enable us to shortcut the subtree for 3 variable queries and
A2 will enable us to shortcut the subtree only for 2 variable
queries. In Section 6, we describe how to update shortcut
potentials efficiently when updates occur to the database.

4.3 Index Construction
We now describe the steps involved in constructing the

INDSEP data structure, given a junction tree and a target
disk block size (each INDSEP node must fit in one disk
block).

4.3.1 Hierarchical Partitioning
Our first step is to partition the junction tree into sub-

trees, each of which are smaller than the size of a disk block.
We first assign a weight to each clique and each separator
in the junction tree as the product of the domains of its
constituent variables (i.e., the size of its joint distribution).
The size of a partition is given by the sum of the sizes of
the cliques and separator nodes that are present in the par-
tition. Our objective function is to find the fewest number
of partitions such that each partition can fit in a disk block
(i.e., the space required to store the joint probability distri-
butions corresponding to the partition is less than the size
of the disk block). This problem is identical to the tree
partitioning problem considered in Kundu et al. [24].

We directly use the linear algorithm presented in their
paper for constructing the partitions. At a high level, the
algorithm first performs a depth first search on the tree and
assigns level numbers to each node. After this, the algo-
rithm iterates through the nodes starting from the lowest
level (highest level number) of the tree and each node com-
putes the weight of the subtree below itself. Once the weight
of some node u exceeds the block size, we start removing
the children below this node (children with highest sub-
tree weight are removed first) and create a new partition for
each of them, subsequently reducing the subtree weight of u.
The algorithm continues until we reach the root. Kundu et
al. [24] prove that the number of partitions generated using
this algorithm is minimum.

After partitioning the junction tree, we treat each parti-
tion created as a virtual node and construct an overlay graph
that is created on the virtual nodes. We also add the sep-
arator nodes that connect the partitions with each other to
the overlay graph, and it is weighted as before. Each virtual
node is weighted with the sum of the size of its shortcut po-
tential (See Section 4.2) and the set of separator potentials
that belong to it. At this point, we approximate the short-
cut potential with approximation schemes A1, A2 or A3 if
necessary.

We now perform Kundu’s tree partitioning algorithm again
on the overlay tree and recursively continue this process un-
til we are left with exactly 1 virtual node, at which point,
we create the root index node and complete the hierarchical
partitioning. During the construction of the new partitions
and index nodes, we also remember the disk blocks in which
they were written and fill out the parent and child block
pointers for each node in the data structure accordingly.

4.3.2 Variable Renaming
We perform a variable renaming step after the hierarchical

partitioning step in order to achieve the contiguous variable
name property described earlier. We sort the leaves of the
index tree (which correspond to tree partitions) in an in-
order fashion and assign ids to the variables in the leftmost
partition and proceed further to the next partition. Start-
ing from 0, whenever we identify an unassigned variable, we
give it an id equal to 1 higher than the previously assigned
variable. After this step, each partition contains variables



that are either contained in a closed interval [min, max] or
belong to the set of previously numbered variables, which
we store in the addList. The variables in the addList are
exactly equal the set of variables in the separator that con-
nected the previous partition with this. (The proof for this
is quite trivial: Each partition is assigned a sequence of ids
from min to max for the newly seen variables in the parti-
tion, the already existing variables will be in the addList,
these are exactly the ones in the separator. The running in-
tersection property of the junction tree guarantees this.) The
number of variables in the addlist are therefore much smaller
when compared to the clique sizes. By performing variable
renaming, we have effectively reduced the space consumed
by the index node from 125 kB (for storing 1 million vari-
ables, see Section 4.1) to just a few bytes. We note here that
we store the mapping between the old variable names and
the new names in another relation, which may be indexed
using B+-trees or hash indexes.

4.3.3 Assigning range lists and add lists
After each leaf of the index data structure is assigned the

range lists and the add list, we recursively update the index.
For each internal node in the index data structure, we assign
its range list by merging the range lists of its children. Also,
we scan the addLists of the child nodes and include the
nodes which do not belong to the range of the node in its
addList. In addition, we assign the shortcut potentials of
child nodes to the current node. We continue this recursion
till we reach the root, at which point all the index nodes
have been updated.

Note that once the index is constructed using the above
approach, it is guaranteed to be balanced, owing to the bottom-
up nature of the algorithm. However, when updates occur
to the database, it is difficult to guarantee that the index
remains balanced. We currently propose to periodically re-
organize the index to keep it balanced.

5. QUERY PROCESSING
In this section, we provide algorithms for executing in-

ference queries, aggregation queries and extraction queries
over a probabilistic database by exploiting the INDSEP data
structure.

5.1 Inference/Extraction Queries
As illustrated earlier (Section 3), inference queries can be

solved by constructing a tree joining all the query variables
and then running Hugin’s algorithm over it. We use our
INDSEP data structure to determine a small tree joining the
query variables by exploiting the relevant shortcut potentials
that are present in INDSEP, i.e., we replace large sections
of the trees with shortcut potentials whenever possible.

Our query processing algorithm is shown in Algorithm
1. It is a recursive algorithm on the INDSEP data struc-
ture. We first access the root block of the index and search
for the query variables in the separator potentials. If they
are not all present here, then we look for the query vari-
ables in the child nodes by making use of the range lists and
the addLists present in the root. At this step, each query
variable is assigned to a child node of the root. We mark
each of these child nodes as Steiner nodes and compute the
smallest Steiner tree S connecting the Steiner nodes in the
induced child tree of the root node. Now we recurse along
each node of the Steiner tree, and concatenate their outputs

together to compute the temporary graphical model as fol-
lows. For each index node I in the Steiner tree, we compute
the set of query variables that have been assigned to it, de-
note by I(V ). We also compute the quantity neighbors(I),
which represents the set of random variables that belong to
the separators adjacent to node I in the Steiner tree. If
I(V ) = φ, we determine if there is a shortcut potential P
which contains all the variables present in neighbors(I). In
that case, we just marginalize the shortcut potential to in-
clude only neighbors(I) and return it. Otherwise, we recurse
along that node with query variables I(V ) ∪ neighbors(I).
After constructing the temporary graphical model, we elim-
inate the non-query variables from it and return the joint
distribution over the query variables.

The algorithm for extraction queries is almost identical
to that of inference queries, the only difference being that
we do not execute step 18 of the algorithm described above,
i.e., we do not eliminate the non-query variables inside the
recursion.

Algorithm 1 query(inode,vars)

1: for i = 1 to vars.length() do
2: found[i] = search(vars[i], inode.children)
3: if ∀i, found[i] = c then
4: if inode.children[c].type = separator then
5: return p(vars) from the separator clique
6: else
7: return query(inode.children[c], vars)
8: else
9: Tree t = SteinerTree(inode.childTree, found)

10: Initialize: GraphicalModel gm = null
11: for every index node I in t do
12: nrs = neighbors(I)
13: I(V) = query variables in I
14: if I(V ) = φ & ∃ shortcut P s.t. nrs ∈ P then
15: gm.add(I.shortcutpotential(nrs))
16: else
17: gm.add(query(I, I(V) ∪ nrs))
18: Eliminate non-query variables from gm & compute

probability distribution p(vars)
19: return p(vars)

Example: Suppose we are given the inference query {e,o}
on the junction tree in Figure 2(c). We now describe the
sequence of steps followed in the recursive procedure. In
the first step, we discover that e ∈ I1 and o ∈ I3, hence we
determine the Steiner tree joining I1 and I3. This is shown
in Figure 6(a). After this, we pose the query {e,c} on node
I1, query {c,j} on node I2 and {j,o} on node I3 to continue
the recursion. When the query {e,c} is posed on I1, we again
compute the Steiner tree joining the cliques containing e and
c, shown in Figure 6(b), after which the query {a,c} is posed
on partition P1 and {a,e} is posed on partition P2. When
the query {c,j} is posed on node I2, we discover that it is
present in the shortcut potential of the root and hence, we
can directly compute the probability distribution of {c,j}.
When the query {j,o} is posed on the node I3, we obtain the
Steiner tree shown in Figure 6(c), following which we pose
query {j,l} on P5 and query {l,o} on P6. The final graphical
model computed for the corresponding extraction query is
shown in Figure 6(d). Notice that the graphical model is
much smaller than the one shown in Figure 3 (which was



constructed without the index).

5.2 Aggregate Queries
Aggregate queries are specified using a set of variables S

and the aggregate function f . Our aggregate semantics is
based on possible world semantics. Suppose that f is MIN.
In each possible world, values are assigned to all the ran-
dom variables, and we determine the value of the minimum
in each world. Then we sum up the probabilities of all the
worlds which yield this value to the minimum and compute
the probability distribution of the minimum. We currently
support decomposable aggregates - f is a decomposable ag-
gregate for a set of random variables S = {s1, s2, . . . sn}, if
it satisfies the following condition.

f(s1, s2, s3, . . . , sn) = f(f(s1, s2), s3, . . . , sn))

Informally, if we can apply the aggregate function piece
by piece incrementally over the set of random variables,
then the aggregate function is decomposable. In previous
work [22], we showed how to exploit decomposability of ag-
gregates to efficiently execute aggregation queries for the
special case of Markov sequences. Here, we develop an ex-
tension of that technique for probabilistic data with arbi-
trary correlations.

The naive method of executing aggregate queries is by first
running the extraction query, thereby obtaining the graphi-
cal model containing all the input variables and in the second
step, constructing the graphical model corresponding to the
aggregate function and inferring the value of the aggregate.
However, this approach does not exploit the conditional in-
dependences that might exist among the input variables.
Instead we propose the following approach, where we push
the aggregate computation inside the index.

We describe the intuition behind our algorithm for aggre-
gation by illustrating it with an example. Suppose we want
to compute the sum of the values of the attribute V1 in the
relation R1 in Figure 2(a). This corresponds to computing
the aggregate of the random variables {b,c,d,k,n,o}. In the
naive method (Section 3), we run an extraction query over
these random variables and extract a junction tree contain-
ing these variables. However, the junction tree extracted in
this case is almost as big as the original junction tree. On
carefully analyzing the graph, we see that b, c, and d are
independent of k, n, and o given the value of c. Similarly
n & o are independent of k given the value of j. Suppose
we first define random variables Y1 = b + c + d, Y2 = k
and Y3 = n+ o. Then, if we know the distributions of each
of these random variables along with the separators, i.e.,
p(Y1, c), p(c, Y2, j) and p(j, Y3), then we can construct the
aggregate value exactly from these functions. In essence,
our algorithm is going to “push” the aggregate computation
inside the index, extracting only probability functions such
as above.

The algorithm we have designed is a recursive algorithm
just as for inference queries. We illustrate the working of
our algorithm for the above query. In the first step, the al-
gorithm determines that b, c and d are present in node I1
and that k is present in I2 and that n, o are present in I3.
A recursive call is made on I1 with two sets of parameters:
{b,c,d} and {c} which means that we need to compute and
return the distribution between b + c + d and c, we denote
this by agg-inf(I1,{b,c,d},{c}). Now, this induces further re-
cursive calls on the partitions agg-inf(P1, {b,c}, {c,a}) and
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Figure 6: The Steiner trees generated at different index nodes
while executing the inference query {e,o} on the junction tree in
Figure 2(c) is shown in (a), (b), (c). (d) shows the final graphical
model generated as a result of the extraction query {e,o}. The
junction tree generated by the aggregation query is shown in (e)

agg-inf(P2,{d},{a}). The final call is just an inference query
on P2. We perform the aggregation algorithm on the parti-
tion simply by first doing the inference query and then using
the joint probability distribution function to determine the
distribution of the aggregate. The results from P1 and P2

are then multiplied to obtain the probability distribution
p(b+ c, d, c), which is then processed to obtain p(b+ c+d, c)
= p(Y1, c). The recursive call from I2 leads to an inference
query agg-inf(P3, {k}, {c,j}). Similarly the recursive call on
I3 leads to two inference queries agg-inf(P5, {n}, {j,l}) and
agg-inf(P6, {o}, {l}), which are then processed as before to
obtain the probability distribution function p(j, Y3). The fi-
nal top-level junction tree that we obtain as result is shown
in Figure 6(e). The size of this output graphical model con-
structed is much smaller than the naive model generated
from the inference query, resulting in significant savings in
query processing times.

6. HANDLING UPDATES
In this section, we describe the algorithms that we have

developed for modifying the index in response to updates
to the underlying probabilistic database. Our system sup-
ports the following two kinds of updates to the probabilistic
database.

• The first is a modification of the existing data, i.e., mod-
ification of a probability distribution, or the assignment
of a deterministic value to an existing random variable.
For instance, if we verify the occurrence of the tuple with
gid=2 in the probabilistic database of Figure 2(a), then
we need to set the value of random variable a to 1 in the
database.

• The second is an insertion/deletion of a new tuple into
the probabilistic database. This occurs when we need
to add a new compound event, which is correlated with
already existing events in the database. Here, we need to
construct a new clique for the new random variable and
add it to the database.

6.1 Updates to Existing Potentials
Updating the potential of a random variable v requires us

to appropriately modify the potentials of all the cliques in



the junction tree. The naive technique for updating a junc-
tion tree involves the message passing algorithm in which we
transmit the knowledge of the update to every node in the
tree through messages that are sent from the modified node
to every other node. In the first step, we identify a clique,
say C, to which the random variable belongs and modify its
clique potential to reflect the knowledge of the update. In
the next step, the clique sends out a message to inform all
of its yet uninformed neighbors about the update. Each of
the neighbors then uses the message received, updates its
potential and recursively sends messages to its neighbors;
the process continues until all of the nodes have the knowl-
edge of the update. After having completely updated the
cliques in the junction tree, we can now update the shortcut
potentials of every index node in the database. Since this
algorithm spans the entire junction tree, it is clearly infea-
sible to perform this for large trees for every new update.
Instead, we exploit the presence of shortcut potentials to de-
velop a lazy strategy for efficiently updating both the index
and the junction tree. This enables a pay-as-you-go frame-
work in which future queries over the probabilistic data bear
the cost for the updates. We illustrate our approach below.

In the first step, we use the index structure to efficiently
identify a clique that contains the random variable to be
updated and the partition containing it. Suppose we receive
an update for a variable in the partition P . We load that
partition into memory and perform the message passing al-
gorithm over P alone and determine the correct probability
distributions for every clique in P . In addition, we also up-
date the shortcut potential of P based on Hugin’s algorithm
(Section 3). Next, we load the parent node I of P and up-
date the shortcut potentials of all the children of the node I
and the separator potentials stored in I. We then load I ′s
parent and continue the same process recursively until we
reach the root node. Updating the rest of the index and the
junction tree is carried out whenever we get new queries on
the database. When a query is posed on an index node, it
verifies that the separator potentials and the shortcut po-
tentials stored in the index node is up-to-date. Otherwise,
it updates them first using the message passing algorithm
and then continues with the query processing. We note here
that each query only updates those index nodes and only
those partitions that are required for computing the answer
to the query. We illustrate our algorithm with the following
example.

Example: Suppose we receive an update i = 0 in our run-
ning example. We will now indicate the sequence of updates
we perform for this case. In the first step, we locate and
load partition P4 into memory, following which, we update
the probability distributions of the cliques hi and fh. In the
next step, we update the shortcut potential p(f) of partition
P4. We then load the index node I2 and using p(f), we up-
date the shortcut potential of P3, p(c, j, f) and the separator
potentials p(g), p(j) and p(c). After this, we determine the
new shortcut potential of I2, p(c, j). We then load the root
node and determine the new shortcut potentials of I1 and
I3. Suppose we now receive a query on variable e. When we
recurse along the index node I1, we first update the shortcut
potential of P1, p(a, c) and that of P2, p(a) and then load
the partition P2 into memory. We then update P2 com-
pletely and determine the probability p(e) as required by
the query. Note here that we have only updated the parti-
tion P2. We did not even need to update the partition P1, we
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Figure 7: We generate the Markov sequence database using the
schema shown in (a). The junction tree structure of the Markov
sequence is shown in (b)

just updated its shortcut potential. This provides us with
an efficient approach for updating the index. The gains are
even more substantial when the partitions are much larger.

6.2 Inserting New Data
We now consider the problem of adding new data tuples

to the database. In our setting, this problem corresponds to
the problem of adding new random variables to the junction
tree, given its correlated variables. Formally, we are given
a node X and the set of edges that connect this node to its
correlated variables S = {s1, s2, . . . , sk}, and a joint distri-
bution of all the nodes in S ∪{X}. In the underlying PGM,
this corresponds to just modifying the graph by adding a
new node to the graph along with the edges. On the junc-
tion tree, we have to create a new clique node for the new
variable X and update the cliques that are modified as a
result of the addition of new edges.

We propose a two step process for this. In the first step,
we modify the junction tree to reflect the addition of this
new data tuple and in the subsequent step, we make the
junction tree consistent using message passing using the lazy
approach described in the previous section.

Creating a new clique for the new node: The algorithm
first searches for the neighbor s1 of the new random variable
using the index data structure. After loading the relevant
partition into memory, it computes the relevant clique con-
taining s1. We make a new clique containing the new ran-
dom variable and s1. But we first need to assign an id for
the new random variable introduced.

Assigning a new Id to the new variable: To add a new
variable to the junction tree, we need to first issue a unique
id to the variable. We can extend the range of the partition
by 1 and assign this value to the new variable. But this does
not work since another variable could already possibly have
this id assigned to it. The alternative is to assign the id equal
to one higher than the previously assigned highest variable
id. However, assigning such an new id to this variable results
in the violation of the contiguous variable name property
(See Section 4), i.e., the id of the new variable will exceed
the max value of the range lists for this partition. In order to
deal with this problem, while we assign ids to the variables
after the hierarchical partitioning, we add gaps in the ranges
between one partition to the next, these gaps act as holes
for subsequent addition of newer variables. Also we increase
amount of gap exponentially (in the number of children in
the index structure) as we go to higher levels in the index
structure (if we cross an index node). Whenever the gap



between two partitions P1 and P2 is filled completely, we go
to their parent index node and request more gap between
the partitions and renumber the variables in the partition
P2 to account for the newly inserted gap. If no more gaps
are available in the parent, then we recursively go up the
tree looking for a node that has sufficient gaps. Note that
we also have to update the range lists and addLists for every
index node that had its ids modified, hence we recursively
update the index (range lists, add lists, separators) starting
from the partition in which the new variable was inserted.
Now, we modify the junction tree to reflect the addition of
edges between the new variable and its neighbors.

Adding neighbors: To reflect the addition of the new
neighbors of the variable, we use the following approach.
For each neighbor si, we compute the shortest path joining
the clique containing si to the new clique. We add the new
variable to every clique and every separator along this path.
In addition, we remove any clique that becomes a subset of
a newly created clique. The resulting graph is a valid junc-
tion tree as shown in Berry et al. [4]. To update the index,
we only need to add the new variable id to every partition
along the path.

Writing partitions back to disk: As more and more
insertions happen to our database, the sizes of the partitions
will increase since the sizes of every clique that had a new
variable inserted increases. Hence, whenever we write back
an index node or a partition back to disk, we determine its
size and if it exceeds the block size, we use the partitioning
algorithm and split it into smaller subtrees which fit into
a disk block. We construct a new index node in place of
the disk block and accordingly assign the parent and child
pointers.

6.3 Deletions
Deletions can also be viewed as insertions of new data el-

ements. For instance, deleting a tuple X from the database
is equivalent to adding a new boolean random variable VX

that specifies whether to consider X or not. For this, we
connect the random variable VX to every random variable
which is connected to X in the PGM. We set VX to zero
to delete X, in case we need to insert X again, we set the
variable back to 1. This particular method of deletion is
not efficient since over time, deletions would continuously
increase the size of the database. We are currently devel-
oping more efficient methods for deleting variables from the
database.

7. EXPERIMENTAL EVALUATION
In this section, we present a comprehensive experimental

evaluation using a prototype system that we have built. Our
results show that using our proposed index can result in
orders of magnitude performance improvements compared
to the prior approaches in most cases. We also study the key
properties of the index structure itself, and the overheads of
keeping it up-to-date. We begin with a brief description of
the experimental setup.

7.1 Implementation Details
We implemented a prototype system using Java that sup-

ports the INDSEP data structure, querying using the index,
and updating the index. We simulated the disk as an array
of disk blocks, each of which is a serialized byte array of size

BLOCK SIZE (a parameter). Any read, write access to the
disk is made via the disk manager, a singleton class and a
constantly running module, that manages the disk blocks.
Each index node (leaf or interior) is stored in a single disk
block. To simulate the disk behavior as closely as possible,
the data is read and written in the units of block sizes. For
example, to add a new clique to a partition P , we first read
off the disk block containing P into memory and then add
the new clique and write the entire block back into the orig-
inal location of P . The other software components in the
system are the query processor, and the update manager,
both of which use the disk manager for accessing the index
and the partitions containing the junction tree.

7.2 Experimental Setup
All of our experiments were carried out on a machine with

a 2.4 GHz Intel Core 2 Duo processor and 2GB memory. We
evaluate the performance of our index on the following two
probabilistic databases.

• General probabilistic database: We generate a prob-
abilistic database on 2 relations that is representative of
a typical event monitoring application (see Section 1).
The database contains a total of about 500,000 tuples
corresponding to detected events. It exhibits attribute
uncertainty, tuple uncertainty and tuple correlations. We
simulate arbitrary correlations in the PGM, by connect-
ing each random variable to k neighbors, where k itself
is randomly chosen between [1, 5]. We then construct the
junction tree equivalent of the PGM and then bulk-loaded
the database and the index blocks. We also allow contin-
uous updates to the database corresponding to the new
events being detected.

• Markov Sequence database: We generate a Markov
sequence database [22] with schema shown in Figure 7(a).
We bulk load the database with a total of 1 million time
slices, which corresponds to 3 million nodes in the junc-
tion tree. Updates continue to occur periodically in the
database with the new node Xt+1 being inserted with
neighbor Xt, and Yt+1 being inserted with neighbors Yt

and Xt+1.

Query & Update Workloads:
We generated 4 different workloads of queries based on the
size of the spanning tree that needs to be constructed for
executing the query. Each query is over 2 to 5 variables.
Each workload consists of a total of 25 queries. We use
the information from the partitioning of the tree in order to
generate the workload.

• W1: Shortest-range queries. These are queries that have
a span of about 20% of the junction tree.

• W2: Short-range queries. These have a span of 40% of
the junction tree.

• W3: Long-range queries. These have a span of 60% of the
junction tree.

• W4: Longest-range queries. Each query in W4 spans at
least 80% of the tree.

We use each of the above workloads for both inference and
aggregate queries. Similar to the above query workloads, we
generate 4 different update workloads (for the first proba-
bilistic database). Each newly added variable has a set of
neighbors, the size of which is uniformly chosen between 2
and 4. Based on the distances between the neighbors, they
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Figure 8: Illustrating query performance in terms of number of blocks accessed and cpu time for workloads W1, W2, W3 and W4 when
index data structure is absent, index is present without shortcut potential, both index and shortcut potential are present. (a) & (b)
correspond to the event database, while (c) & (d) correspond to the Markov sequence database. We note that the graph is in logarithmic
scale, so the gains are substantially more than what is apparent.
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height of the tree increases in a logarithmic-like fashion as the size of the database increases. Part (c) shows that as the disk block size
increases, the amount of approximation reduces, i.e., less than 20% for 4kB block size.

are classified into 4 update workloads W1, W2, W3 and W4

just as described above.

Comparison Systems:
We compare our INDSEP data structure against two other
approaches:

• No index: In this case, we do not maintain any in-
dexes in the database and perform query processing
using the naive technique described in Section 3.

• Index without caches: In this case we maintain the
index over the junction tree, but do not maintain any
shortcut potentials. The key advantage of this ap-
proach over the naive approach is that we can reduce
the number of disk blocks accessed significantly, but
the overall performance remains linear.

7.3 Results
Effectiveness of the Index:
For our first experiment, we ran each of the query work-
loads W1, W2, W3 and W4 for the three comparison systems
and computed the average number of disk blocks accessed
in order to answer the inference query. We also measured
the average wall clock CPU times for each of the workloads.
We plot our results as a bar graph in Figure 8(a) & (b).
As shown in the figure, we obtain an order of magnitude
improvement both in the number of disk blocks accessed as
well as in the CPU cost. Notice that the y-axis is in loga-
rithmic scale, so the gains are substantially more than what
is apparent.

We also note the benefit of our shortcut potentials for
workloads W3 and W4, which are primarily responsible for
reducing the number of disk blocks accessed and the CPU
cost in this case. Using indexes alone does prove useful for
short range queries in the workloads W1 and W2, but for
longer range queries, using shortcut potentials reduces the
computational time even further. In fact, for the Markov Se-
quence database which generates a junction tree with very
large diameter (graph-theoretic) of about a million, using
just the index can actually be more expensive for long range
queries as shown in Figure 8(c). The overhead occurs since
the query processor needs to traverse every disk block in the
database along with almost all the index blocks. Augment-
ing the index with shortcut potentials reduces the number
of disk blocks accessed and the CPU time by more than a
factor of 1000 (Figure 8(d)).

Study of the Index Structure:
Here, we study the structure of the INDSEP data structure
and provide details of its shortcut potentials. We first gen-
erate 10 different event datasets ranging from 50,000 cliques
to 500,000 cliques and construct the index data structure
for each of the data sets. We first measure the time take to
construct the index as a function of the size of the database.
Using a block size of 1 kB, we measure the amount of time it
takes to fully construct the index. We plot our results in Fig-
ure 9(a). As shown in the figure, the time taken increases
linearly as the size of the database increases as expected.
We attribute the sudden jump in the time taken to build
the index for 500,000 nodes to thrashing.
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We now determine the height of the hierarchical index
structure as a function of both the size of the database and
the block size. We use a range of block sizes starting from
0.4kB to 40kB. We plot the results in Figure 9(b). As shown
in the figure, the height of the index structure increases with
the size of the graph, but quite slowly. Also, for a reasonable
block size of 4kB-8kB, the height of the tree is about 7 even
for quite a large tree of around 500,000 nodes.

We now study the structure of the shortcut potential, i.e.,
we want to identify the percentage of shortcut potentials in
the index structure that use approximations, as a function of
block size. We construct our index data structure on a junc-
tion tree of size 500,000 nodes for different values of block
size and compute the percentage of index nodes that store
the complete joint distribution (no approximation), the first,
second and third approximations to the shortcut potentials.
The results are plotted in Figure 9(c). As shown in the fig-
ure, for smaller values of block sizes below 4kB, only about
40% of the index nodes contain the full joint distribution,
while larger block sizes allow many more index nodes to store
the complete joint distribution in their shortcut potentials.
For a reasonable block size between 4-8kB, less than 20% of
the index nodes approximate their shortcut potentials.

Study of Query Processing Performance:
In this section, we take a closer look at the performance of
inference queries for different values of the index parameters.
We first vary the block size and analyze the performance of
the query for each case. We used block size values between
0.4 kB and 16 kB. The results are plotted in Figure 10(a).
As the size of each disk block increases, we observe that the
number of disk blocks that needs to be accessed reduces as
expected, but it remains fairly constant after the block size
exceeds a certain size.

In the next experiment, we study the effect of the shortcut
potentials on the query performance. As described earlier,
updates to a variable need to be propagated to the entire
database. In our lazy update implementation, we modify
only the shortcut potentials of certain nodes in the tree while
updating the other potentials on demand from the queries.
To formally study this case, we arbitrarily set x% of the
shortcut potentials in the Markov sequence database to be
out of date and then measure the query processing perfor-
mance as a function of x. We plot the results in Figure 10(b)
& (c). As shown in the Figure, as the value of x increases,
more blocks need to be updated by the query which results

in drop in the query performance. But we note here that
once the first query subsequent to the update, updates the
index nodes and shortcut potentials relevant to it, further
queries that access the same data can again use the valid
shortcut potentials and obtain a performance closer to the
ones shown in Figure 8(a),(b).

Study of Update Performance:
Here, we study the performance of index when the database
is subjected to updates. For each of the update workloads,
we determine the average number of disk blocks that need
to be read and modified in order to completely update the
database (not the lazy version). We compare the perfor-
mance of our INDSEP data structure with the comparison
systems (1) & (2). We plot the results in Figure 10(d). As
shown in the figure, with minimal overhead, we can update
the index data structure - particularly the add lists, this is
indicated by the middle bars. Updating the shortcut poten-
tials requires us to read in all the index blocks, since all the
shortcut potentials need to be updated, which is also quite
small compared to the size of the database.

8. CONCLUSION
In recent years, there has been an increase in the amount

of uncertain probabilistic data which is correlated both spa-
tially and temporally owing primarily to the proliferation
of sensor networks and other measurement infrastructure
and the increasing use of machine learning techniques for
processing their data. Developing scalable query processing
techniques over such data has become an important task in
database research. In this paper, we developed an index
data structure for correlated probabilistic databases which
allows for efficient processing of decision support queries –
including inference queries and aggregation queries. Our
techniques are based on tree partitioning algorithms that
enables us to hierarchically partition the junction tree corre-
sponding to the probabilistic database, thereby generating
an n-ary search tree data structure. In addition, we in-
troduce novel shortcut potentials that further reduce query
processing time by orders of magnitude. We also develop
efficient techniques for keeping the index up-to-date in re-
sponse to updates. Our experimental results demonstrate
the benefits of our indexing mechanisms for query processing
in probabilistic databases. We are currently in the process
of integrating the INDSEP data structure with a full-fledged



probabilistic database system that supports specifying and
manipulating correlations using a declarative language.

Our work so far has raised many interesting research chal-
lenges that we are planning to pursue in future. The IND-
SEP data structure, since it is based on the junction tree
approach (an exact inference technique), inherits the lim-
itations of that approach, and is not feasible for perform-
ing inference on models with large treewidths. One of the
interesting questions is whether we can incorporate an ap-
proximate inference technique (like loopy belief propagation)
into the index structure. Another option to handle large
treewidth models is to approximate the model by systemat-
ically reducing its treewidth [7]. Other research directions
we are planning to pursue include sharing computation be-
tween multiple inference queries, and developing more ele-
gant techniques for handling deletions.
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