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ABSTRACT
There has been a recent surge in work in probabilistic databases,
propelled in large part by the huge increase in noisy data sources —
from sensor data, experimental data, data from uncurated sources,
and many others. There is a growing need for database manage-
ment systems that can efficiently represent and query such data.
In this work, we show how data characteristics can be leveraged
to make the query evaluation process more efficient. In particular,
we exploit what we refer to asshared correlationswhere the same
uncertainties and correlations occur repeatedly in the data. Shared
correlations occur mainly due to two reasons: (1) Uncertainty and
correlations usually come from general statistics and rarely vary
on a tuple-to-tuple basis; (2) The query evaluation procedure it-
self tends to re-introduce the same correlations. Prior work has
shown that the query evaluation problem on probabilistic databases
is equivalent to a probabilistic inference problem on an appropri-
ately constructed probabilistic graphical model (PGM). We lever-
age this by introducing a new data structure, called therandom
variable elimination graph(rv-elim graph) that can be built from
the PGM obtained from query evaluation. We develop techniques
based on bisimulation that can be used to compress the rv-elim
graph exploiting the presence of shared correlations in the PGM,
the compressed rv-elim graph can then be used to run inference.
We validate our methods by evaluating them empirically and show
that even with a few shared correlations significant speed-ups are
possible.

1. INTRODUCTION
Many real-world applications produce large amounts of uncer-

tain data and there is a need for systems that can store, retrieve
and query such data. Traditional database systems are geared to-
wards storing exact data and are not suited for storing uncertain
data. Probabilistic databases, on the other hand, are designed to
handle uncertainty expressed in terms of probabilities and provide
an attractive option to store data with uncertainty. Applications for
probabilistic databases include information retrieval [6, 24], rec-
ommendation systems [21, 22], mobile object data management
[5], information extraction [15], data integration [1] and data man-
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agement for sensor networks [9].
Probabilistic databases based on possible worlds semantics present

a particularly attractive brand of probabilistic databases because of
their intuitive query semantics, and a lot of recent work has been de-
voted to these formulations [6, 22, 3, 24, 7, 26]. It has been shown
that query processing in probabilistic databases based on possible
worlds semantics can be reduced to probabilistic inference prob-
lems in probabilistic graphical models (PGMs) [24]. At a broad
level of abstraction, this observation suggests that a query proces-
sor for probabilistic databases may consist of two components:

1. Take the user-submitted query and the uncertain data in the
database to construct a PGM.

2. Run probabilistic inference on the constructed PGM to com-
pute the result.

However, even for queries that lead to easy∗ probabilistic inference
problems, there is still a large gap between the time required to con-
struct the PGM and the time spent to run inference, with time spent
to run inference dominating the overall runtime by a fair margin in
most cases.

We aim to bridge this gap by leveraging on special properties
of the uncertain data at hand to reduce the complexity of inference
during query evaluation for probabilistic databases. One such prop-
erty is the presence ofshared correlationsor shared factors. Con-
sider the small probabilistic relation shown in Figure 1 (a) contain-
ing pre-owned car ads. The first tuple shows an ad with theColor
of the car missing, the third tuple shows one with theMake miss-
ing and the second tuple represents an ad with both attributes miss-
ing. Figure 1 (a) also shows the probability distributions associated
with these missing values, more specifically,fmakedefines the dis-
tribution over missingMake values in the database (assuming our
universe can contain only two makes Honda and Toyota) andfcolor
defines the distribution over missingColor values (assuming our
universe contains only black and beige cars). Note that the dis-
tributions make no reference to any tuple specific information. In
other words, no matter how many tuples with missingColor are
present in the relation, their uncertainty will still be defined by the
same distribution represented byfcolor and along withfmake, these
distributions are examples ofshared correlations.

Such shared correlations are ubiquitious in practice, and arise
because, in most cases, the uncertainty in the data is defined us-
ing general statistics thatdo notvary on a per-tuple basis. Various
earlier works have also described applications with shared correla-
tions. For instance, Andritsos et al. [1] describe a customer rela-
tionship management application where the objective is to merge

∗Even though inference is #P-complete in general [6], for graphical models
with low treewidth it is still feasible [23].



AdID Make Color Price
1 Honda ? 9,000$
2 ? ? 6,000$
3 ? Beige 8,000$
...

...
...

...

Color fcolor
Black 0.75
Beige 0.25

Make fmake
Honda 0.55
Toyota 0.45
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Figure 1: (a) Pre-owned car ads with missing values. (b) A 2-relation database with uncertainty and (c) evaluating∏C(S./B T) on it.

data from two or more source databases and each source database
is assigned a probability value based on the quality of the informa-
tion it contains. Even here, probabilities don’t change from tuple
to tuple, since tuples from the same source are assigned the same
source probability.

Another source of shared correlations in probabilistic databases
is the query evaluation approach itself. As we showed in our earlier
work [24], constructing the PGM corresponding to a query to be
evaluated over a probabilistic database requires the introduction of
small factors that depict probability distributions and correlations
introduced on the fly. For instance, if tuplest andt ′ join to produce
join tuple r, then we need to introduce a factor that encodes the
correlation thatr exists iff botht andt ′ exist (an∧-factor). More
importantly, such a factor is introduced wheneveranypair of tuples
join, thus leading to repeated copies of the same∧-factor, thus in-
troducing additional shared correlations. Our aim, in this paper, is
to exploit such shared correlations to make exact probability com-
putation for query evaluation in probabilistic databases more effi-
cient.

Most probabilistic database formulations require general proba-
bilistic inference at some level of abstraction. Several query eval-
uation approaches construct boolean formulas (sometimes called
lineage) that can be seen as special cases of PGMs that we con-
struct [12, 22, 7]. The techniques and ideas we develop in this
paper should be of use to the above mentioned works. Our general
goal is to go beyond the currently known set of queries that can be
efficiently evaluated (e.g., safe plans [6]). Given that we already
know general inference is a #P-complete problem [6], the only way
we can achieve this is to utilize the special properties of the data
at hand, shared correlations being one such property. We make the
following contributions in this paper:

• We introduce the concept of shared correlations and shared
factors using simple motivating examples and enrich our prob-
abilistic database model to explicitly represent them.

• We introduce a novel graph-based data structure, referred to
as therv-elim graph, that helps identify shared factors in the
PGM, and we show how to construct it from the PGM.

• We develop an approach based on bisimulation [17] that takes
an rv-elim graph and compresses it using its shared factors.

• We show how to perform inference efficiently on the com-
pressed rv-elim graph.

• We validate our approach empirically and show that signifi-
cant speedups are possible even in the presence of just a few
shared factors.

The rest of the paper is organized as follows: In the next sec-
tion, we introduce a motivating example that shows how standard
inference algorithms fail to exploit shared correlations; in Section

3 we review definitions and introduce the notation which will be
used for the rest of the paper; Section 4 and Section 5 describe
our approach to inference with shared correlations; in Section 6 we
describe our experimental results; in Section 7 we discuss related
work and finally, we conclude with Section 8.

2. MOTIVATING EXAMPLE
We start with a simple motivating example and describe how at-

tribute and tuple uncertainty are represented and illustrate how, for
a given query, we can construct a PGM to compute the results.

Consider the small two-relation database shown in Figure 1 (b)
where every tuple has an uncertain attribute value. We denote an
uncertain attribute value by its domain where each entry in the do-
main is followed by the probability with which the attribute value
can take the assignment, and these are, essentially, random vari-
ables. For instance,s2.B can be assigned the value 1 with proba-
bility 0.2 and the value 2 with probability 0.8. We represent such
uncertain information using small functions over the correspond-
ing random variables which we refer to as factors (we define all
terms introduced here formally in the next section). For instance,
for the three random variables in Figure 1 (b) we would define fac-
tors fs1.B(s1.B), fs2.B(s2.B) and ft1.B(t1.B) as follows:

s1.B fs1.B
1 0.2
2 0.8

s2.B fs2.B
1 0.2
2 0.8

t1.B ft1.B
2 0.6
3 0.4

In addition to the random variables that denote the potential at-
tribute values, we can introduce tupleexistencerandom variables
s1.e, s2.e, andt1.e, to capture tuple uncertainty. These are boolean-
valued random variables and can have associated factors. In the
example, we assume the tuples are certain, so we don’t show the
existence random variables for the base tuples.

A probabilistic database with uncertainty represents a probabil-
ity distribution over posssible databases (also refered to aspossi-
ble worlds). The probability associated with a possible world is
the probability of the joint assignment of the attribute value vari-
ables and tuple existence random variables that is consistent with
the possible world. For instance, the probabilistic database shown
in Figure 1 (b) represents a distribution over 23 = 8 possible worlds
and each possible world’s probability can be obtained by extracting
the appropriate probabilities from the factors, multiplying them to-
gether and normalizing if necessary. For instance, for the possible
world obtained by the assignments1.B = 1, s2.B = 2, t1.B = 2 the
probability is 0.2×0.8×0.6 = 0.096.

The result of evaluating a user-submitted query (expressed in
some standard query language such as relational algebra) over such
a probabilistic database is defined as the collection of result tuples
produced by running the query against all possible worlds, and the
probability of each result tuple is simply the sum of probabilities
of the possible worlds that return the tuple as a result. This is bet-
ter explained through an example. Suppose we want to execute the



µ(r.e) = ∑
O

fr.e(r.e, i1.e, i2.e) fi1.e(i1.e,s1.B=2, t1.B=2) fi2.e(i2.e,s2.B=2, t1.B=2) ft1.B=2(t1.B=2, t1.B)

fs1.B=2(s1.B=2,s1.B) fs2.B=2(s2.B=2,s2.B) ft1.B(t1.B) fs1.B(s1.B) fs2.B(s2.B)

= ∑
O\{s1.B,s2.B}

fr.e(r.e, i1.e, i2.e) fi1.e(i1.e,s1.B=2, t1.B=2) fi2.e(i2.e,s2.B=2, t1.B=2) ft1.B=2(t1.B=2, t1.B) ft1.B(t1.B)

∑
s1.B

fs1.B(s1.B) fs1.B=2(s1.B=2,s1.B)︸ ︷︷ ︸
ms1.B(s1.B=2)

∑
s2.B

fs2.B(s2.B) fs2.B=2(s2.B=2,s2.B)︸ ︷︷ ︸
ms2.B(s2.B=2)

= ∑
O\{s1.B=2,s2.B=2,s1.B,s2.B}

fr.e(r.e, i1.e, i2.e) ft1.B=2(t1.B=2, t1.B) ft1.B(t1.B)

∑
s1.B=2

fi1.e(i1.e,s1.B=2, t1.B=2)ms1.B(s1.B=2)︸ ︷︷ ︸
ms1.B=2(i1.e,t1.B=2)

∑
s2.B=2

fi2.e(i2.e,s2.B=2, t1.B=2)ms2.B(s2.B=2)︸ ︷︷ ︸
ms2.B=2(i2.e,t1.B=2)

Figure 2: How variable elimination proceeds to solve the query evaluated on the database shown in Figure 1 (b).O denotes the
elimination order used{s1.B,s2.B,s1.B=2,s2.B=2, t1.B, i1.e, i2.e, t1.B=2}.

query∏C(S./B T) on the database in Figure 1 (b). The result is the

single tupler =
C

c
, since each possible world either returns this

result tuple or not. Among all the possible worlds, the ones that
return the result tuple have at least one ofs1.B or s2.B assigned to
2 in addition to havingt1.B assigned to 2 (otherwise the join will be
empty). Of the 8 possible worlds, the ones that satisfy this property
correspond to the following joint assignments:

• s1.B = 2, s2.B = 1, t1.B = 2 (prob. = 0.096)

• s1.B = 1, s2.B = 2, t1.B = 2 (prob. = 0.096)

• s1.B = 2, s2.B = 2, t1.B = 2 (prob. = 0.384)

Thus the probability associated with the result tuple is 0.096+
0.096+0.384= 0.576.

Unfortunately, since the number of possible worlds is propor-
tional to the product of the domain sizes of all the random vari-
ables contained in the database, evaluating queries directly using
the above definition will be feasible only for the smallest of prob-
abilistic databases. One way to get around this issue is to cast the
query evaluation problem as a probabilistic inference problem. In
order to achieve this we need to introduce new random variables
and factors which capture the dependencies among the interme-
diate tuples and random variables produced while evaluating the
query [24]. For instance, to solve the above query using this ap-
proach we would have to perform the following operations:

• Notice that the common entry in the domains of the join at-
tribute values (S.B andT.B) is 2; hence only those possible
worlds whereS.B=2 andT.B=2 can produce an intermediate
join tuple. We capture this by introducing three intermediate
random variabless1.B=2, t1.B=2 ands2.B=2 each of which
is boolean-valued and assigned the value true when the cor-
responding base tuple attribute value is assigned the value 2.
We enforce these equalities by introducing factors such as:

fs1.B=2(s1.B=2,s1.B) =
{

1 if s1.B=2⇔ (s1.B == 2)
0 otherwise

In essence, this factor says thats1.B=2 is true iff s1.B is
assigned the value 2. Similarly,fs2.B=2(s2.B=2,s2.B) and

ft1.B=2(t1.B=2, t1.B) are introduced for the other two inter-
mediate random variables.

• Next we introduce two intermediate tuples,i1 (resulting from
the join betweens1 andt1), andi2 (from the join betweens2
andt1). These join tuples are not produced by every possible
world, and we will capture their existence uncertainty using
two boolean-valued existence random variablesi1.e andi2.e
respectively. Having introduced the three intermediate ran-
dom variables in the previous step, it is now easy to describe
the conditions wheni1 and i2 exist. i1 is produced, ori1.e
is true, in only those possible worlds where boths1.B=2 and
t1.B=2 are true. Similarly,i2.e is true only when bohs2.B=2
andt1.B=2 are true. We capture these correlations by intro-
ducing two factors, fork = 1,2:

fik.e(ik.e,sk.B=2, t1.B=2)=
{

1 if ik.e⇔ sk.B=2∧ t1.B=2
0 otherwise

• Finally, we introduce a random variable to capture the exis-
tence uncertainty of the result tupler. r exists, orr.e is true,
in only those possible worlds where eitheri1.eor i2.eor both
are true. This correlation is captured by introducing the fac-
tor:

fr.e(r.e, i1.e, i2.e) =
{

1 if r.e⇔ i1.e∨ i2.e
0 otherwise

The query evaluation procedure, along with the intermediate ran-
dom variables and factors introduced, is shown in Figure 1 (c).

Now, to compute the result of the query all we need to do is
to compute the probability ofr.e. We can do this by multiplying
all the factors (fs1.B, fs2.B, ft1.B from the database and the ones
introduced above) and summing over all random variables forr.e
using any standard probabilistic inference algorithm. This can help
avoid the prohibitive cost of summing over possible worlds.
Variable Elimination : One possible inference algorithm that we
can use for this purpose is variable elimination (VE) [27]. VE runs
by first choosing an elimination order which specifies the order in
which to sum over (eliminate) the random variables. It then re-
peatedly picks the next random variable from the order, pushes the



corresponding summation as far into the product of factors as pos-
sible, sums it out and proceeds in this fashion. In Figure 2 we
show the first few steps of how VE would proceed when used to
compute the probability ofr.e using the elimination orderO =
{s1.B,s2.B,s1.B=2,s2.B=2, t1.B, i1.e, i2.e, t1.B=2} (variables are elim-
inated left to right). For instance in Figure 2, to eliminates1.B
we first multiply factorsfs1.B(s1.B) and fs1.B=2(s1.B=2,s1.B), and
then sum out random variables1.B to produce the new factorms1.B(s1.B=2).

2.1 Limitations of Naive Inference Algorithms
The main issue with VE (or any other standard probabilistic in-

ference algorithm) is that it does not exploit shared correlations.
For instance, in Figure 2, in the process of computing the probabil-
ities for r.e we produce intermediate factorsms1.B=2(i1.e, t1.B=2)
andms2.B=2(i2.e, t1.B=2). If we take a closer look at both of these
factors, we notice that they both map exactly the same inputs to the
same outputs:

i1.e t1.B=2 ms1.B=2

True True 0.8
True False 0
False True 0.2
False False 1

i2.e t1.B=2 ms2.B=2

True True 0.8
True False 0
False True 0.2
False False 1

This indicates that we went through the exact same multiplica-
tion and summation steps to compute bothms1.B=2(i1.e, t1.B=2) and
ms2.B=2(i2.e, t1.B=2). In fact, these areshared factors(which will
be defined more precisely in the next section), and this repeated
computation is what we will be trying to avoid.ms1.B(s1.B=2) and
ms2.B(s2.B=2) are also shared factors, and we are performing re-
dundant computations in this case as well.

In hindsight, it is not really surprising thatms1.B(s1.B=2) and
ms2.B(s2.B=2) turned out to be virtual copies of each other. Let us
take a closer look at these factors:

• ms1.B(s1.B=2) was computed by multiplyingfs1.B(s1.B) with
fs1.B=2 (s1.B=2,s1.B) followed by a summation operation,

• ms2.B (s2.B=2) was computed by multiplyingfs2.B(s2.B) with
fs2.B=2 (s2.B=2,s2.B) followed by a summation operation.

Now, fs1.B(s1.B) and fs2.B(s2.B), and fs1.B=2(s1.B=2,s1.B) and
fs2.B=2(s2.B=2,s2.B) were pairs of shared factors. It is a similar
situation withms1.B=2 (i1.e, t1.B=2) andms2.B=2(i2.e, t1.B=2), the
factors involved in the generation of these intermediate factors were
pairs of shared factors thus giving rise to more shared factors. We
need to recognize and take advantage of such symmetrybefore we
actually compute these shared factorsand, in Section 4, we de-
velop an approach to do so. In the next section, we review some
definitions and introduce the notation we need for the rest of the
paper.

3. PRELIMINARIES
Let X denote a random variable anddom(X) denote its domain.

DEFINITION 3.1. A factor f (X) is a function over a (small) set
of random variablesX = {X1, . . .Xm} such that f(x) ≥ 0, ∀x ∈
dom(X1)× . . .×dom(Xm).

DEFINITION 3.2. A probabilistic graphical model(PGM)P =
〈F ,X 〉 defines a joint distribution over the set of random variables
X via a set of factorsF , where∀ f (X)∈F , X ⊆X . Given a com-
plete joint assignmentx ∈ ×X∈X dom(X), the joint distribution is

ms1.B=2

args.:i1.e, t1.B=2

func.:


T,T→0.8
T,F→0.0
F,T→0.2
F,F→1.0

ms2.B=2

args.:i2.e, t1.B=2

func.:


T,T→0.8
T,F→0.0
F,T→0.2
F,F→1.0

Figure 3: Pair of shared factors (T, F denoteTrue, False, resp.).

defined by P(x) = 1
Z ∏ f∈F f (x f ) wherex f denotes the assign-

ments restricted to arguments of f andZ = ∑x′ ∏ f∈F f (x′f )
†.

Given a PGM, it is useful to define the following operation:

DEFINITION 3.3. Given a PGMP = 〈F ,X 〉 and a random
variable X∈ X , themarginal probabilityassociated with the as-
signment X= x, where x∈dom(X), is defined asµ(x) = ∑x∼x P(x),
where P(x) denotes the distribution defined by the PGM andx∼ x
denotes a joint assignment toX where X is assigned x.

In this paper, we are interested in computing marginal proba-
bility distributions of random variables from a PGM that contains
shared factors and for this we need to take a closer look at the defi-
nition of a factor (Definition 3.1). A factor consists of two distinct
parts: (1) the list of random variables it takes as arguments, and (2)
the function that maps input assignments to outputs. Thus, it may
be possible for two factorsf1 and f2 to have different arguments
lists but use the same function to map inputs to outputs.

DEFINITION 3.4. Two factors f1 and f2 are shared factors, de-
noted f1∼= f2, if they both consist of the same function component.

Figure 3 shows two factors from the previous section where we
have clearly separated their arguments and function components.

Let R denote a probabilistic relation or simply, relation, and let
attr(R) denote the set of attributes ofR. A relationR consists of a
set of probabilistic tuples or simply, tuples, each of which is a map-
ping fromattr(R) to random variables. Lett.a denote the random
variable of tuplet ∈Rsuch thata∈ attr(R). Besides mapping each
attribute to a random variable, every tuplet is also associated with
a boolean-valued random variable which captures the existence un-
certainty oft and we denote this byt.e.

DEFINITION 3.5. Aprobabilistic databaseor simply, adatabase,
D is a pair 〈R,P〉 whereR is a set of relations andP denotes a
PGM defined over the set of random variables associated with the
tuples inR.

LetX denote the set of random variables associated with database
D = 〈R,P〉. As we indicated in the previous section,D is sim-
ply a distribution over deterministic databases or possible worlds
each of which is obtained by assigningX a joint assignmentx ∈
×X∈X dom(X)‡. The probability associated with the possible world

†Note that since we allow factors to return 0, technically, there is a possi-
bility of Z being 0. This only happens when we are dealing with a PGM
P that encodes the trivial joint probability distribution which maps all joint
assignments to 0. As long as there exists at least one joint assignmentx
such that∏ f∈F f (x f ) > 0 this case should not arise.
‡Note that not all joint assignments are legal. A legal joint assignment
should satisfy:t.e⇒ (t.a = /0), ∀t ∈ R,∀a ∈ attr(R),∀R∈R whereR
denotes the set of relations inD and /0 is a special “null” assignment. In
other words a tuple’s attributes cannot be assigned values unless it exists.
It is easy to define the factors in such a way that all illegal assignments are
assigned 0 probabilities.



obtained from the joint assignmentx is given by the distribution de-
fined by the PGMP .

Given a user-submitted queryq the query result is defined to be
the set of all results obtained by runningq against each possible
world augmented with the corresponding possible world’s proba-
bility. As we discussed earlier, executing this definition directly
will be feasible only for the smallest of databases since the number
of possible worlds is the product of all domain sizes of the random
variables associated with the database. One way to circumvent this
problem and (possibly) alleviate the computational complexity is
to return only marginal probabilities associated with the random
variables of the result tuples appearing in the query result [6]. One
way to achieve this is to augment the PGM associated with the
database by introducing new factors as we showed in the previ-
ous section when we introduced new factors to evaluate the query
q = ∏C(S./B T). In general, to answer a queryq on a databaseD
it is possible to build a (augmented) PGM on the fly and compute
the marginal probabilities of random variables associated with the
relevant result tuples from it§. Speeding up this computation by
exploiting shared factors is the subject of this paper.

4. INFERENCE WITH SHARED FACTORS
We assume that we are given a random variableX whose marginal

probabilities need to be computed from a PGMP = 〈F ,X 〉 con-
structed by running a query on a database. We also assume that
every f ∈F is associated with an id denoted by id( f ) such that for
any pair of factors id( f1) = id( f2)⇔ f1 ∼= f2.

The basic idea behind our approach is to represent a run of the
inference algorithm explicitly as a labeled graph. Once we do that,
we then show that it is possible to examine the graph and identify
the shared intermediate factors that are generated during the infer-
ence process. To explain our approach, we first define the seman-
tics associated with the edges of the labeled graph by introducing
an operator that forms the basis of most exact probabilistic infer-
ence algorithms (e.g., variable elimination [27] and junction tree
algorithm [16]).

4.1 TheELIMRV Operator
Theelimrvoperator (which stands for ELIMinate a Random Vari-

able) is the basic operator that is used repeatedly while running
inference to compute marginal probabilities. It essentially takes
a random variableY and a collection of factorsF each of which
involvesY as an argument and sumsY out from the product of
all factors inF to return a new factor. We denote the resulting
(intermediate) factor produced bymY followed by its list of argu-
ments, if they are not clear from the context. For instance, when we
were computingµ(r.e) for the example in Section 2, to sum over
s2.B=2 we had to first multiply the collection of factors formed
by fi2.e(i2.e,s2.B=2, t1.B=2) andms2.B(s2.B=2) and then sum over
s2.B=2 from the product to produce the new intermediate factor
ms2.B=2(i2.e, t1.B=2). Note thatF may contain intermediate factors
produced by earlier applications of the elimrv operator.

We first note a few properties about elimrv operator. The or-
der in which the factors appear inF is important. For instance,
suppose we want to sum overX2 from the collection formed by
fa(X1,X2) and fb(X2,X3). Then we would produce the product
fc(X1,X2,X3) and perform the summation to producefd(X1,X3).
In other words, there is an implicit assumption of ordering the argu-
ments in the product by scanning the arguments of the input factors

§Exactly what factors need to be introduced to evaluateq depends on the
operators inq. In earlier work [24], we describe the necessary steps in
detail, including aggregation operators, for tuple-uncertainty databases.

from left to right and this affects the resulting factor produced after
the summation operation. If instead, we had multipliedfb(X2,X3)
and fa(X1,X2), then we would first produce a factorf ′c(X2,X3,X1)
and then producef ′d(X3,X1) after the summation. In addition, the
way the arguments overlap across the input factors (in the above
case, the second argument offa overlaps with the first argument
of fb) and the position of the argument that is being summed over
also matter. We would like to make these points about the elimrv
operator clear, and for this purpose, we feed the operator an explicit
label that specifies the above described information.

EXAMPLE 4.1. For the examples that follow we use the follow-
ing simple format for constructing labels that specify the argument
order, how the arguments overlap and which argument is being
summed over. We begin by choosing three distinct special symbols,
we will use #, * and %. For eachelimrv operation, we go through
the list of factors inF assigning each argument a unique id if it
hasn’t been seen before. Then we construct the label by travers-
ing the list of factors again, writing the id of the argument that
appears separated by # (the first symbol), separating the lists of
arguments of each factor by * (the second symbol) and finally, ap-
pending a % (the third symbol) followed by the id of the argument
being summed over. For the above example involving X2, fa(X1,X2)
and fb(X2,X3), the label turns out to be 1#2*2#3%2 using this for-
mat.

We can now define the elimrv operator as follows:

DEFINITION 4.2. Theelimrv(Y,F, l) operator takes as input a
random variable Y , an ordered list of factorsF and a label l, and
computes a new factor∑Y ∏ f∈F f according to the label l.

Variable Elimination : The variable elimination inference algo-
rithm (VE) can now be seen as applying a sequence of elimrv op-
erations. Essentially, VE begins by collecting all factors fromF
in a pool and repeatedly applying the elimrv operator to sum over
a random variable picked from an elimination order. Each time we
pick a random variableY to eliminate, we collect all factors that in-
cludeY as an argument from the pool, perform the corresponding
elimrv operation, add the resulting intermediate factormY back to
the pool, and continue in the same fashion until we have exhausted
all random variables.

4.2 TheRV-ELIM Graph
For the purposes of introducing our graph-based data structure,

we will assume that we are given, besidesX andP = 〈F ,X 〉, an
elimination orderO that contains all random variables involved in
X except forX. In the next section (Section 5), we discuss in detail
how to construct such an elimination order that suits our purposes.
The rv-elim graph (which stands for Random Variable ELIMina-
tion graph) essentially encodes the sequence of elimrv operations
encountered during the run of inference using a labeled graph.

DEFINITION 4.3. The rv-elim graph G= (V,E) is a directed
graph with vertex labels l(v),∀v∈V, and edge labels l(e),∀e∈ E,
that represents a run of inference on a PGMP = 〈F ,X 〉 accord-
ing to elimination orderO such that:

• Every v∈ V represents a factor. If v is a root, then it rep-
resents a factor fromF and l(v) = id( f ); if v is not a root
then it represents an intermediate factor mY =elimrv(Y,F, l)
produced during the run of inference and l(v) = l.

• For each mY = elimrv(Y,F, l) produced during inference, for

the ith factor in F, we add an edge vf
i→ vmY where vf de-

notes the vertex corresponding to f and vmY denotes the ver-
tex corresponding to mY, and i is the label on the edge.
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Figure 4: (a) rv-elim graph for the example from Section 2 and (b) its compressed version obtained using bisimulation. The rv-elim
graph on the left is a vertex-labeled, edge-labeled graph. The edges are labeled with integers (in this case, 1 or 2) and denote the order
in which the parent factors are present in the elimrv operation. The vertices are labeled with strings and these are shown alongside
the vertex, if the vertex is a root then the label is a letter (e.g.,a for the first root in the top left corner), or a string if it is a vertex
with parents denoting how the arguments overlap for the elimrv operation that created the intermediate factor corresponding to this
vertex (for instance, 1#2*2%2 for the leaf in the rv-elim graph). The compressed rv-elim graph on the right is also an edge-labeled,
vertex-labeled graph with the extent of every vertex depicted next to it in square braces. Note that the compressed rv-elim graph in
this case consists of 11 vertices whereas the rv-elim graph itself contains 17 vertices, a significant reduction considering we have such
a small running example.

Figure 4 (a) shows the rv-elim graph for our running example
using the same elimination order we defined in Section 2. One
point to note about the rv-elim graph is that, in general, it can never
contain a directed cycle (in other words, it has to be a directed
acyclic graph (DAG)).

4.3 Identifying Shared Factors
The advantage of representing a run of inference as a graph is

that we can now identify exactly when two vertices in the graph
represent shared factors. Denote byfv the factor represented by
vertexv in an rv-elim graph.

CLAIM 4.4. For rv-elim graph G= (V,E), two vertices v1,v2∈
V are shared factors fv1

∼= fv2 if:

• l(v1) = l(v2).

• ∀u1
i→ v1,∃u2

i→ v2 and fu1
∼= fu2.

• ∀u2
i→ v2,∃u1

i→ v1 and fu1
∼= fu2.

Essentially, what the claim says is that two intermediate factorsfv1

and fv2 generated during inference (using elimrv operations) are
shared if:

• they were produced by multiplying sets of factors containing
the same function components (the parents are shared)

• the argument orders, argument alignments and the argument
being summed over, all match (the labels onv1 andv2 are the
same)

Note that for a given internal vertex in the rv-elim graph all incom-
ing edges from parents are assigned distinct edge labels since we
label the edges with the index indicating the position of the factor
represented by the parent inF of the corresponding elimrv opera-
tion and two factors cannot be at the same position (Definition 4.3).

We can now use Claim 4.4 to determine the intermediate shared
factors that get generated during the inference process. The impor-
tant thing to realize is that we can do thiswithout actually comput-
ing these intermediate factors. For instance, recall that in Section 2
we showed that during the run of inference for our running exam-
ple,ms1.B andms2.B were intermediate factors that turned out to be
shared (shown in dashed boxes in Figure 4 (a)). By looking at the
rv-elim graph (Figure 4 (a)) this is now easy to see since:

• They have the same vertex label 1*2#1%1.

• Both ms1.B andms2.B have parentsfs1.B and fs2.B, resp., via
edges labeled 1, andfs1.B

∼= fs2.B since they have the same
vertex label (viz.,a) and are roots.

• Both ms1.B andms2.B have parentsfs1.B=2 and fs2.B=2, resp.,
via edges labeled 2, andfs1.B=2

∼= fs2.B=2 since they have the
same vertex label (viz.,b) and are also roots.

Thus by Claim 4.4,ms1.B
∼= ms2.B. Once we have found out that

ms1.B
∼= ms2.B, we can also determine thatms1.B=2

∼= ms2.B=2 by fol-
lowing similar logic. This is another pair of intermediate factors
that we noticed were shared in Section 2.

Given a graph (like the rv-elim graph shown in Figure 4 (a))
and a property (such as the one specified in Claim 4.4), there exist
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reasonably fast algorithms that can partition the set of vertices into
disjoint sets such that every pair of vertices in each set satisfies the
property. These algorithms are generally referred to asbisimulation
[17] or computing therelational coarsest partition[19]). Given the
special case of the graph being a DAG, there exist algorithms that
run in time linear in the size of the graph [10].

Dovier et al. [10] describe one such algorithm that runs on an
edge-labeled, vertex-labeled graph and not only partitions the set
of vertices but also returns another (smaller) graph where each dis-
joint set in the partition is represented by a vertex and the edges
between verticesp1, representing one disjoint set in the partition,
andp2, representing another disjoint set in the partition, are the re-
sult of taking the union of all edges between all vertices from the
input graph inp1 and all vertices fromp2. We will refer to each
resulting disjoint set of the vertices of the rv-elim graph as anextent
and the resulting graph returned as a result of running bisimulation
on the rv-elim graph as thecompressed rv-elim graph. Figure 4 (b)
shows the compressed rv-elim graph returned as a result of running
bisimulation on the rv-elim graph shown Figure 4 (a). Notice how
vertexA represents both factorsfs1.B and fs2.B. We show this in
Figure 4 (b) by indicatingA’s extent in square braces next to it.
More interestingly, both pairs of intermediate shared factors that
we identified earlier have also been collapsed into one single ver-
tex each in the compressed rv-elim graph:D representsms1.B and
ms2.B, andE representsms1.B=2 andms2.B=2.

Unfortunately, we cannot apply the bisimulation algorithm de-
scribed in Dovier et al. directly to our problem because we have
not discussed how to choose the order in which the factors appear
in each elimrv operation. Recall that the order in which the factors
appear affects the results (Section 4.1). Traditional exact inference
algorithms simply choose an order for multiplying the factors arbi-
trarily. However, in our case, Claim 4.4 actually uses the order of
the parents of the vertices in the rv-elim graph to determine which
ones represent shared factors. Figure 5 illustrates how we may lose
compression if we do not choose orders judiciously. In Figure 5,
instead of ordering the parents ofms2.B with fs2.B as the first parent
and fs2.B=2 as the second, we have placedfs2.B=2 as the first par-
ent and fs2.B as the second. A direct consequence of this is that
the labels on the vertices representingms1.B andms2.B in the rv-
elim graph are now different, which means that using Claim 4.4 we
cannot decree them to form a pair of shared factors.

The problem is that even though factor multiplication is a com-
mutative operation, different orders lead to rv-elim graphs with
varying degrees of symmetry. We need to choose those orders that
lead to rv-elim graphs with more symmetry (consisting of more
shared factors). One approach is to try all possible parent order-
ings but this will likely be too expensive. Instead, we introduce a
novel heuristic for choosing better orderings. Our bisimulation al-
gorithm, based on Dovier et al., requires a different interleaving of
the steps, so for completeness we first present our bisimulation al-
goirthm, and then the heuristic we developed for ordering parents.

Algorithm 1 : Bisimulation for rv-elim graphs
input : rv-elim graphG = (V,E) with roots labeled

rank(v) =
{

0 if v is a root
1+max{rank(v′)|v′→ v∈ E} o.w.

ρ ←max{rank(v)|v∈V}
B0,l = {v∈V|v is a root∧ l(v) = l} ∀l labels on roots inG
C = {B0,l}
Bi = {v∈V|rank(v) = i},∀i = 1. . .ρ
for i = 1. . .ρ do

foreachv∈ Bi do
o← choose order onv’s parents
constructl(v) based ono
construct keykv usingl(v) and all( j,b j ) whereb j is
the block-id of thejth parent

construct blocksBi,k = {v∈ Bi |kv = k}
add{Bi,k} thus constructed toC

return final partitionC

4.4 Bisimulation for RV-ELIM Graphs
We will assume that we are given an rv-elim graphG = (V,E)

for computing marginal probabilities of random variableX from
PGMP using the elimination orderO. Each rootv∈V is labeled
by the id( fv) where fv denotes the factor fromF represented byv,
we will assign the remaining vertex labels (for the internal vertices)
and the the edge labels inG dynamically through the bisimulation
algorithm we present.

A partition denotes a division of the set of vertices of the rv-
elim graph into disjoint sets; each disjoint set is denoted ablock.
The full algorithm is described in Algorithm 1. The bisimulation
algorithm starts by computing ranks for each vertex in the rv-elim
graph (using a simple depth-first search). After computing ranks,
the algorithm starts by assigning the roots in the rv-elim graph to
the blocks formed by their labels. After this it goes through the
vertices at ranki, partitioning them into blocks. Note that when we
are dealing with vertices at ranki, we only need the partitioning
on the vertices at ranksi′ < i since according to Claim 4.4, the
partitioning of a vertex only depends on its label and its parents’
partitioning and the parents of vertices at ranki can only have ranks
i′< i (the rank computation scheme guarantees this). The nested for
loops basically achieve this. They take all vertices at ranki, choose
orders for each vertices’ parents (we will discuss how this is done
shortly), forms the label and the key based on this ordering and
partitions these vertices based on the constructed key. See Dovier
et al. [10] for proof of correctness when the vertex and edge labels
can be statically allocated.
Parent ordering heuristic: We now discuss the parent ordering
heuristic we developed. Recall that Claim 4.4 requires both the
labels to match and the parent sets of both vertices to be aligned
before we decree verticesv andv′ to represent shared factors. Our
heuristic simply orders the list of parents by their block-ids before
constructing the label for the vertex. This helps align the parent
vertices.

Algorithm 1, by itself, is reasonably efficient. Its time complex-
ity, assuming we use the heuristic that orders based on block-ids,
is O(|V|+ |E|) (to compute ranks in step 1)+ ∑v∈V dv logdv + dv
(to order the parents and form the key) wheredv is the in-degree of
v (ignoring the time spent to constructl(v)) + O(|V|) to partition
vertices at ranki into blocks based on their key. Adding up, this
gives usO(∑vdv logdv + |V|) = O(|E| logD + |V|) whereD is the
maximum in-degree of any vertex in the rv-elim graph.



4.5 Performing Inference on the Compressed
RV-ELIM Graph

Having computed the partitioning of the vertices using Algo-
rithm 1, we can now construct the compressed rv-elim graph as
described earlier in Section 4.3 by representing each block in the
partition using a vertex, copying the label on the vertices to the
label on the block, and introducing an edge with labeli between
two blocks if there exists a pair of vertices that have an edge with
label i. These definitions are consistent because the blocks of the
partition correspond to particular keys constructed by Algorithm 1
which contain the vertex labels and edge labels, and all vertices in
block have the same key.

We can now perform inference on the compressed rv-elim graph.
To seed the inference, we simply copy the function components of
the factors corresponding to roots of the rv-elim graph to the roots
in the compressed rv-elim graph. Then we call a depth-first search
procedure (dfs) from the leaf in the compressed rv-elim graph that
begins by looking at the parents, the labels on the edges and the
vertices and applies the elimrv operator to compute the functions
on the child. If a parent’s functions haven’t been computed yet
then we make the dfs call on the parent before applying elimrv
on the child. Finally, we will have the (unnormalized) marginal
distribution computed at the leaf of the compressed rv-elim graph.

The inference procedure presented in this section is fairly flex-
ible and a number of extensions are possible. We can use our in-
ference procedure to compute, besides single-node marginal prob-
abilities, multiple marginal probability distributions at once but in
this case the compressed rv-elim graph may have multiple leaves.
Another extension is to use it to compute maximum-a-posteriori
(MAP) assignments instead of marginal probabilities for which we
simply need to switch from the sum-product elimrv operator to the
max-product operator.

5. COMPUTING ELIMINATION ORDERS
One of the important steps in performing probabilistic inference

is to choose a good elimination order that helps run inference with-
out producing large intermediate factors (in terms of number of
arguments) during the run of inference. This can make the differ-
ence between inference being tractable or intractable since the size
of a factor is proportional to the product of the domain sizes of its
argument random variables. In our case, since we are interested
in exploiting shared factors, and since the elimination order affects
the rv-elim graph constructed, we would like to construct elimi-
nation orders that produce smaller factorsand, at the same time,
produce rv-elim graphs that can be compressed using bisimulation.
Unfortunately, even without the consideration of shared factors this
problem is known to be NP-Hard [2]. Thus, as is done in traditional
inference algorithms, we resort to heuristics. In this section, we first
review the popular minimum size heuristic [18] that is often used
to construct elimination orders for traditional exact inference algo-
rithms, then we describe our approach that uses a modified version
of the minimum size heuristic to construct effective elimination or-
ders that lead to symmetric rv-elim graphs.

5.1 Minimum Size Heuristic
Traditional minimum size heuristic (MSH) is a greedy heuristic

that returns a list of the random variables that need to be eliminated
for inference. The concept ofneighborhoodis central to MSH.
Given a random variableX and a collection of factorsF, we de-
fine the neighborhood ofX to be the set of random variables with
which it appears as arguments inF. MSH begins by collecting all
the factors in the PGM over which we want to run inference. In

Algorithm 2 : Minimum Size Heuristic
input : PGM 〈F ,X 〉, random variableX
initialize empty listO
while ∃Y ∈X s.t. Y 6= X do

pick Y 6= X with minimum sized neighborhood
addY to O
//updateF
delete fromF all factors that containY as an argument
add the factor introduced by eliminatingY
/*note that we only introduce a placeholder, we do not

actually compute the factor produced by eliminatingY */
addX to O
return O

each iteration, MSH greedily picks the random variable with the
smallest-sized neighborhood, updates the collection of factors by
deleting the factors where the random variable appears as an argu-
ment and adding the new factor produced by the elimination op-
eration, and repeats these steps until all the random variables that
need to be eliminated have been picked. Algorithm 2 shows the
complete algorithm.

5.2 Elimination Orders for RV-ELIM Graphs
Unfortunately, simply applying MSH to compute elimination or-

ders may not work well in our case because the elimination orders
constructed by MSH may not lead to symmetric rv-elim graphs. To
this end, we generate elimination orders in two phases:

1. We first identify sets of “similar” random variables. This
should help construct elimination orders that lead to rv-elim
graphs which can be compressed better.

2. We then use a modified version of MSH with a novel neigh-
borhood definition to complete the construction of elimina-
tion orders.

Finding Similar Random Variables: We first explain how deter-
mining similar random variables leads to symmetric rv-elim graphs.
Recall from our running example that we eliminateds1.B=2 first
followed bys2.B=2. If instead we had eliminatedt1.B=2 after elim-
inatings1.B=2, then we would have created an intermediate factor
m′t1.B=2

(i1.e, i2.e,s2.B=2, t1.B) which is unlike any other factor we
encountered during the inference run in that example, and thus the
rv-elim graph constructed would have less symmetry. Finding sets
of similar random variables that occur in shared factors and elimi-
nating them one after another should help generate rv-elim graphs
with better compression properties. Fortunately, we can easily rep-
resent a PGM as a graph where the random variables are repre-
sented using vertices and correlations are represented using edges
(Figure 6 (a) shows the PGM graph for our running example) and
we can use this PGM graph to find similar random variables simply
by labeling the vertices using the ids of the factors from the PGM
(if the random variable is present in multiple factors then aggre-
gate their ids using some operation such as max or sum, assuming
the ids are numbers). Then we run a bisimulation on the PGM
graph to compute a partition on the random variables of the PGM
and the corresponding compressed PGM graph (Figure 6 (b) shows
the compressed PGM graph for our running example). Each extent
thus obtained after bisimulation contains similar random variables.
Bisimulation algorithms for general graphs (with cycles) are avail-
able [10].
Modified Minimum Size Heuristic : Having constructed the sets
of similar random variables we would now like to ensure that we
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Figure 6: (a) Example PGM graph (b) its compressed version.

eliminate those random variables one after another and that we
avoid generating large factors in the process. One simple way to
do this is to produce an ordering on the vertices of the compressed
PGM graph and then expand the entries in that ordering using the
extents. In addition, producing an ordering on the vertices of the
compressed PGM graph is likely to be faster since the compressed
graph is likely to contain less vertices compared to the number of
random variables in the PGM.

To produce an ordering over the vertices in the compressed PGM
graph, we could use MSH by replacing the definition of neighbor-
hood presented earlier with the neighborhood of a vertex in the
compressed PGM graph. Unfortunately, this is unlikely to work
well. This is easily seen from the compressed PGM graph we con-
structed for our running example. The vertex containingt1.B=2
in its extent (D) is connected to only one other vertex (E). This
may cause MSH to place D early in the ordering produced from
the compressed PGM graph, which would causet1.B=2 to appear
early in the final elimination order. We just saw that this might lead
to a 4 argument intermediate factor. The situation becomes worse
if we imaginet1 joining with not 2 (as in our example) butk > 2
tuples. The problem here is that the neighborhood of a vertex in
the compressed PGM graph is not a good indicator of the size of
the intermediate factor produced by an elimination. In the above
case, the neighborhood of D is 1 but when we eliminatet1.B=2 we
actually involve at least as many random variables in the interme-
diate factor as there are in the extent of E. This leads us towards
defining a new neighborhood criterion that involves not only the
neighborhood in the compressed PGM graph but also the extents of
the vertices in the neighborhood. Defineavg. neighborhood sizeto

be= ∑v′∈N (v) |extent(v′)|
|extent(v)| whereN (v) denotes the neighborhood ofv

in the compressed PGM graph. Essentially, avg. neighborhood as-
sumes that there are as many neighbors to vertexv as there are ran-
dom variables in all neighbors’ extents summed up. It essentially
tries to estimate the neighborhood of the vertex with respect to the
uncompressed PGM graph, and it compensates for the case whenv
itself has a large extent by dividing by the extent size. Thus it tries
to make MSH behave as if we are running it on the uncompressed
PGM graph but actually runs on the compressed PGM graph thus
making it more efficient. Algorithm 3 shows the final modified
minimum size heuristic that we used in our implementation.

6. EXPERIMENTAL EVALUATION

Algorithm 3 : Modified minimum size heuristic
input : compressed PGM graphG = (V,E), and vertexvX that

containsX (whose marginals we need) in its extent
intialize empty listO
while ∃v∈V s.t. v 6= vX ,v /∈O do

pick vertexv 6= vX with the smallest avg. neighborhood
addv to O
introduce an edge between every pair of neighbors ofv

constructO by expanding entries inO with their extents
add extent(vX)\{X} to O
return O

Our experiments were designed to answer the question: When is
it worthwhile to apply our bisimulation-based approach to a query
evaluation problem? Note that standard inference algorithms take a
PGM and a random variable, and simply begin multiplying factors
and summing over random variables (after computing the elimina-
tion order). Instead, our approach first constructs the rv-elim graph,
applies bisimulation to compress it, and then begins multiplying
function components of factors and summing over arguments from
them. So it is plausible that there may be cases where our approach
may perform poorly because it spends too much time before actu-
ally getting to the point where it can perform (a hopefully smaller
set of) multiplications and summations.

We compare against a baseline exact inference algorithm, de-
noted BatchVE, which is a modified version of variable elimination
(VE) except that if the PGM contains multiple random variables
whose marginal probabilities we are interested in, then it avoids
multiple passes through the PGM like standard VE does [27]. We
refer to our approach, which constructs a compressed PGM which
exploits shared factors, as SharedInf.
Our experimental results suggest the following:

• In most cases, SharedInf is significantly faster than BatchVE.

• In a small number of cases, SharedInf loses out to BatchVE;
but in these cases the difference between the time it took to
run SharedInf and BatchVE was not large.¶

For each experiment we report 5 numbers:

• Relational algebra operations(Rel. alg. ops): time taken
to perform the relational algebra operations in the query to
construct the PGM.

• BatchVE arithmatic operations (BatchVE arith. ops.): time
taken to multiply factors and sum over random variables dur-
ing inference for BatchVE.

• BatchVE remaining operations (BatchVE rem.): time re-
quired to perform the remaining BatchVE operations such as
determining the elimination order.

• SharedInf arithmatic operations (SharedInf arith. ops.):
time spent multiplying functions and summing over argu-
ments (on the compressed rv-elim graph) for our approach.

• SharedInf remaining operations(SharedInf rem.): time taken
to perform the remaining operations for our approach. This
includes the bisimulation and the time spent to determine the
elimination order from the compressed PGM graph.

¶Note that early stopping techniques are possible, such as once we run
bisimulation on the PGM graph and find out that the extents of the com-
pressed PGM graph are small then we can switch our inference engine and
resort to BatchVE, but for our experiments we did not include this approach.



For each experiment we report three bars (except for Figure 7 (e)):
the first bar reporting the rel. alg. ops. time; the second, time
spent by BatchVE; and the third, time spent by SharedInf. See the
legend (top left in Figure 7) for more details. Note that no single
bar reports the actual time to run the query. To find out the total
time taken to run the query we need to add the rel. alg. ops. time
to the second bar or the third bar, depending on the algorithm.

All our experiments were run on a dual processor Xeon 3 GHz
machine with 3GBytes of RAM. Our implementation is in JAVA
and the numbers we report were averaged over 10 runs.

6.1 Car DB Experiments
For our first set of experiments, we developed the pre-owned

car ads example further and randomly generated data and factors
to illustrate how the performance of the two algorithms vary with
different characteristics of the data. In addition to the relation con-
taining the various advertisements (Ad) described in Figure 1 (a),
we added another relation which denotes the source websites from
which the ads were pulled (S). Each tuple inS is an uncertain tu-
ple with an associated probability of existence which depends on
how reliable the website’s information is. For these experiments,
we ran the following query:∏AdID ((σColor=cAd) ./SID S) where
c denotes a specific color andSID is a primary key inS and acts
as a foreign key inAd. Besides the uncertain tuples inS, we set
theColor attribute values to be uncertain and these were correlated
with the correspondingMake attributes. A car of a certainMake
can have one of 4 distinctColors. The parameters that we varied
for these experiments ared (domain size ofMake, default was 50),
n (the number of attribute uncertainty tuples inAd, default value is
1000) and fanout (the number of tuples inAd that each tuple from
S joins with, default value is 1000).

In Figure 7 (a), we show how SharedInf and BatchVE perform
when we varyn from 100 to 1000. Notice that SharedInf signif-
icantly reduces the time spent performing arithmatic operations.
Note that on the x-axis in Figure 7 (a), we report the size ofAd
in terms of number of uncertain tuples to help the reader compare
with previous work on probabilistic databases since our formula-
tion can deal with both attribute uncertainty and tuple uncertainty
but most recent work can handle tuple uncertainty only. To convert
data with attribute-level uncertainty to tuple-level uncertainty, one
simple approach is to compute all possible joint instantiations of
every tuple present in the attribute-level uncertainty database. This
transformation “flattens” out a relationR with uncertain attributes
into n×d1×d2× . . .d|attr(R)| tuples, wheren is the number of at-

tribute uncertainty tuples anddi is the domain size of theith un-
certain attribute inR (assuming all uncertain attribute values have
the same domain size). For our experiment, this gives us a size of
n×d×4d for theAd relation in tuple-uncertainty format.

Figure 7 (b) shows the performance of the two inference algo-
rithms with varying domain sizes. Notice how atd = 10, SharedInf
performs worse (because small domain sizes means small factors
and therefore, less time spent on arithmatic operations) but the dif-
ference between its time and BatchVE’s time is not large.

The third experiment we ran (Figure 7 (c)) is the most interesting
experiment in this subsection. Here we varied the fanout from 1 to
10 to vary the symmetry in the PGMs produced by the query (but
kept the number of tuples inAd fixed). At fanout 1, we have no
symmetry and no shared factors in the base data since every tuple
from Shas a unique existence probability but the shared factors in-
crease as we increase fanout. Thus, at fanout 1 SharedInf should
perform worse, and it does, but not by a huge margin. At fanout
2, where we have a slight amount of symmetry in the query (every
tuple fromS joins with exactly 2 tuples fromAd) SharedInf is al-

ready doing better than BatchVE. At fanout 10 it does much better
than BatchVE.

In Figure 7 (d), instead of keeping the fanout constant for all tu-
ples inS, we sampled it from a Poisson distribution with parameter
λ . In this case however, we kept the number of tuples inS fixed.
Note that atλ = 1, most fanouts sampled turn out to be 1, but some
samplings produce 2, 3. . . numbers greater than 1 and SharedInf
utilizes this to do better than BatchVE even atλ = 1. At λ = 10,
SharedInf performs much better.

Until now we had kept the existence probabilities of tuples in re-
lationSdistinct: in the next experiment we introduced some shared
factors here by dividing the tuples inS into buckets. Two tuples in
the same bucket had the same existence probability. The number
of tuples inSwere fixed to 600, so at 600 buckets (right end of the
plot), we have exactly 1 tuple belonging to each bucket. Figure 7 (e)
shows how SharedInf’s performance deteriorates when the number
of buckets increase. Note that we do not show the time taken by
BatchVE in this case since it would obscure the trend of SharedInf
(BatchVE took around 25 seconds for this experiment).

6.2 Experiments with Uncertain Join Attributes
The next two plots, Figure 7 (f) and Figure 7 (g), relate to a

two relation join betweenS andAd where the join attributeSID
itself was uncertain. This relates to the case of link uncertainty
or structure uncertainty [13], where we are unsure about the pri-
mary/foreign key values in the data. For instance, we may have an-
other relation in our database which stores the id of the person who
posted the pre-owned car ad. We may want to join with that relation
so we can take into account the reliability of the seller while trying
to return to the user cars of her/his interest. But we may not know
the seller’s identity as this information may not have been properly
extracted or is simply unavailable (s/he used the guest login). Joins
on uncertain attributes give rise to very complicated PGMs and to
keep some control over the complexity of the PGM, we setup this
experiment in the following fashion. First we constructedk key
values, then for each tuple in either relation we polled from this
pool of keysm distinct keys randomly to include in the domain of
the uncertain join attribute value. Finally we padded each attribute
value’s domain with unique key values so that the total domain size
is 50. Thus increasingk makes it less likely that two tuples from
the two relations join, on the other hand, increasingm increases
the chance that two tuples join. Note that if two tuples join then
this may be due to multiple entries being common in their domain.
Figure 7 (f) shows that increasing the value ofm (k was held con-
stant at 100) both algorithms’ times increase, although BatchVE
has a more pronounced dependency on the value ofm. Figure 7 (g)
shows how increasing the value ofk (m was held constant at 2)
helps reduce SharedInf’s times more drastically than BatchVE’s.

6.3 Experiments with TPC-H Data
Following previous work, we also ran experiments based on the

TPC-H schema. We picked Q5 from the TPC-H specification since
this involves a join among six relations, of which we made 4 re-
lations (customer, lineitem, supplier and order) probabilistic. The
query tries to determine how much volume of sales is being gener-
ated in various regions. Each customer placesk1 orders, each order
is broken down intok2 sub-orders each of which is a lineitem en-
try, each sub-order is then diverted to a supplier. Each tuple from
customer is uncertain and these were divided intop1 buckets such
that tuples from the same bucket had the same existence probabili-
ties: similarly, the supplier tuples were also divided intop2 buckets.
Moreover, each customer sub-order is usually (with 95% probabil-
ity) routed to one ofc suppliers, else the supplier is chosen ran-
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Figure 7: Plots for experiments on synthetic and TPC-H data. The legend is shown in the top left corner.

domly. For the lineitem and order relations, we made the discount
attribute uncertain (domain size 4d) and correlated with part being
ordered’s type (domain sized), and the orderdate attribute uncer-
tain (domain sized). We set the parameters in the following man-
ner:k1∼ poisson(2), k2∼ poisson(3), p1 = p2 = 5, c= 3, d = 50.
We defined the scale factor to be the number of tuples in lineitem in
tuple-uncertainty format divided by 6×106. The results are shown
in Figure 7 (h). The results showed similar trends for other param-
eter settings, for instance the execution time for SharedInf went
down when we decreasedc and increasedd and so on.

In almost all our experiments, we noticed significant speedups
ranging from 200% to 700%. Even in cases where there was no
symmetry, SharedInf performed only slightly worse than BatchVE,
incurring about 25% extra time to compress rv-elim graphs. Given
that the datasets we generated were extremely simple in their cor-
relation structure, we believe we will do even better on real-world
data with richer correlation structure containing shared factors.

7. RELATED WORK
Our work on exploiting shared correlations is closely related to

recent work on lifted inference [20, 8] done in the artificial intel-
ligence community. Most of the work in lifted inference assumes
the presence of a PGM described using a first-order probabilistic
model (see [14] for an introduction). The goal of lifted inference
is to run inference efficiently by utilizing the shared correlations
clearly specified by the first-order description. In our work, we did
not assume the presence of a first-order description. This is because
the query evaluation approach for probabilistic databases does not
provide it and it is not straightforward to redefine the query evalu-

ation approach to do so. Instead, we showed how to automatically
discover the symmetry in the PGM by using a bisimulation-based
algorithm. To the best of our knowledge, our approach is the first
general lifted inference approach that can be applied to any PGM,
and our approach is more widely applicable than the case-based
special-purpose algorithms on which other work on lifted inference
have concentrated [20, 8].

Probabilistic databases have a lot in common with probabilistic
relational models (PRMs) [11, 13] since both define a probabilistic
model on relational data, although there are some differences. Most
of the work on PRMs have concentrated on how to specify and
learn a class-level probabilistic model for relational data. Unlike
the work on probabilistic databases, answering queries expressed
in a standard query language (e.g., relational algebra or SQL) was
not their main focus. We believe that the best way to view our work
described in this paper is to look upon it as taking the best of these
two worlds. PRMs define a concise class-level probabilistic model
on relational data, which by definition provides shared factors, and
our approach exploits these shared factors to speed up inference for
query evaluation in probabilistic databases.

Other work has also tried to make query evaluation in probabilis-
tic databases efficient. Das Sarma et al. [7] (Trio) describe mem-
oization techniques in which every time a tuplet ’s existence prob-
ability (they only deal with tuple-level uncertainty) is computed,
Trio caches its result, and this can then be used if some other tu-
ple’s probability of existence requirest ’s probability of existence.
In contrast, our approaches reuse computation at a finer level by
computing each intermediate factor once and reusing it for every
shared intermediate factor that is generated during the run of infer-



ence. Trio does not attempt to exploit shared correlations. Other
approaches to faster query processing include using index struc-
tures [25], but these only help in data retrieval, and not in speed-
ing up the inference process itself, and approximate query process-
ing [21], where the assumption is that the user is only interested
in finding the correct ranking of result tuples and not the exact
probabilities. In contrast, for this work, we were more interested
in computing exact probabilities. On a side note, Bravo and Ra-
makrishnan [4] suggest representing factors as relations so that we
can take the external memory algorithms already implemented in a
traditional RDBMS to efficiently implement the elimrv operation.
In our query evaluation procedure, we tend to produce numerous
small factors (a 3 argument∧-factor involving three exists random
variables consists of only 23 = 8 rows) and representing each of
them as a separate relation will be infeasible. It may be interesting
to see how their methods of representing large factors using rela-
tions can be combined with our current approach of representing
factors as objects.

Finally, on the bisimulation front, Kanellakis and Smolka [17]
defined this problem in the context of testing equivalence of two
finite state processes and provided anO(|V||E|) time algorithm,
Paige and Tarjan [19] improved upon their result to provide an
O(|E| log|V|) time algorithm and Dovier et al. [10] provided an al-
gorithm that runs on DAGs inO(|V|+ |E|) time besides describing
simple extensions to handle labeled graphs.

8. CONCLUSION
In this paper, we showed how to exploit shared correlations to

speed up probabilistic inference during query evaluation for proba-
bilistic databases. Shared correlations are likely to exist in many
probabilistic databases since probabilities and correlations often
come from general statistics learnt from (large amounts of) data and
rarely vary on a tuple-to-tuple basis. In addition, the query evalu-
ation approach itself tends to introduce shared correlations. We
introduced a new graph-based data structure and explained how to
build it from the probabilistic graphical model. We then showed
how the graph can be compressed using an algorithm based on
bisimulation. We empirically evaluated our approach and showed
that even in the presence of a few shared correlations, we do signif-
icantly better than naive inference approaches. Avenues for future
work include developing approximate inference algorithms that ex-
ploit shared factors and developing algorithms that utilize the first-
order description of probabilistic models to build rv-elim graphs
if such a description is available in the probabilistic database. We
hope that further development of techniques that specifically tar-
get PGMs arising out of probabilistic databases will drastically im-
prove query evaluation times beyond the current state of the art.
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