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ABSTRACT
Ranking is a fundamental operation in data analysis and decision
support, and plays an even more crucial role if the dataset being
explored exhibits uncertainty. This has led to much work in un-
derstanding how to rank uncertain datasets in recent years. In this
paper, we address the problem of ranking when the tuple scores are
uncertain, and the uncertainty is captured using continuous proba-
bility distributions (e.g. Gaussian distributions). We present a com-
prehensive solution to compute the values of a parameterized rank-
ing function (PRF ) [18] for arbitrary continuous probability dis-
tributions (and thus rank the uncertain dataset); PRF can be used
to simulate or approximate many other ranking functions proposed
in prior work. We develop exact polynomial time algorithms for
some continuous probability distribution classes, and efficient ap-
proximation schemes with provable guarantees for arbitrary proba-
bility distributions. Our algorithms can also be used for exact or ap-
proximate evaluation of k-nearest neighbor queries over uncertain
objects, whose positions are modeled using continuous probabil-
ity distributions. Our experimental evaluation over several datasets
illustrates the effectiveness of our approach at efficiently ranking
uncertain datasets with continuous attribute uncertainty.

1. INTRODUCTION
Ranking and top-k query processing are important tools in decision-

making and analysis over large datasets and have been a subject of
active research for many years in the database community [14]. In
recent years, the rapid increase in the amount of uncertain data in a
variety of application domains has led to much work on efficiently
ranking uncertain datasets. The need for ranking or top-k process-
ing in presence of uncertainty arises in many application domains.
In financial applications, we may want to choose the best stocks
in which to invest, given their expected performance in the future
(which is uncertain at best). In data integration and information ex-
traction over the web, uncertainty may arise because of incomplete
data or lack of confidence in the extractions, and these uncertainties
must be taken into account when returning the “best” answers for a
user query (Figure 1(i)). In sensor networks or scientific databases,
we may not know the “true” values of the physical properties being
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Figure 1: (i) An automatically extracted Car Ads database may
contain many uncertainties, which translate into uncertainties
over user scores; (ii) Sensor data unavoidably contains com-
plex, continuous uncertainties.
measured because of measurement noises or failures [9] (Figure
1(ii)). Similarly, in any learning or classification task, we often
need to choose the best “k” features to use [30]. All of these ap-
plications exhibit resource constraints of some form, and we must
somehow rank the entities or tuples under consideration in order to
select the most relevant objects to focus our attention on.

Ranking uncertain datasets is unfortunately much harder than its
counterpart in deterministic datasets, mainly because of the com-
plex trade-offs introduced by the score distributions and the tuple
uncertainty. This has led to a plethora of ranking functions being
proposed in prior literature all of which appear natural at the first
glance (we review some of those in the related work section). In
prior work [18], we analyzed many of these ranking functions and
found that they returned wildly different answers over the same un-
certain dataset. To unify the prior ranking functions, we proposed
the notion of parameterized ranking functions (PRF s), which can
simulate or approximate a variety of ranking functions with appro-
priate parameter choices. We also proposed learning the parameters
of the function from user feedback or training data. The algorithms
developed there can be used for ranking probabilistic datasets con-
taining tuple uncertainty or discrete attribute uncertainty, but they
can not be used to handle continuous distributions directly.

However continuous attribute uncertainty arises naturally in many
domains. In most of the applications discussed above (Figure 1),
the attributes of interest, and therefore user scores computed us-
ing those attributes, are associated with continuous probability dis-
tributions. For instance, sensor values, locations (measured using
GPS), and feature vectors (in classification applications), are of-
ten represented using uniform or Gaussian distributions [9, 3, 4].
Mixtures of Gaussians are widely used in sensing and financial ap-
plications [27]. Piecewise polynomial distributions are often used
to approximate more complex distributions. Prior work on ranking
in probabilistic databases (or more generally, query processing in
probabilistic databases with some exceptions) has largely proposed
somewhat simplistic solutions to handling continuous distributions.



Cormode et al. [6] suggested discretizing the continuous distribu-
tions to an appropriate level of granularity. Soliman et al. [24] made
the first attempt to deal with continuous score distributions directly;
however, their main technical tool is the Monte Carlo method which
can only obtain an approximate solution in most cases.

In this paper, we address the problem of ranking in presence of
continuous attribute uncertainty by developing a suite of exact and
approximate polynomial-time algorithms for computing the rank
distribution for each tuple, i.e., the probability distribution over
the rank of the tuple. The rank distributions can be used to order
the tuples according to any PRF function, but may be of inter-
est by themselves. For example, Taylor et al. [26] and Guiver et
al. [12] treat document scores in an Information Retrieval context
as Gaussian random variables, and explicitly compute the rank dis-
tributions, which they use to smooth the ranked results. Our main
technical contributions in this paper can be summarized as follows:
• We present polynomial-time exact algorithms for computing rank

distributions for uniform and piecewise polynomial distributions
using the generating functions technique (Sections 3 and 4).
• We develop a numerical approximation framework to deal with

arbitrary density functions based on our polynomial-time algo-
rithm for piecewise polynomial distributions, by utilizing the
spline technique. We also present theoretical analysis comparing
the spline technique to the discretization method and the Monte
Carlo method (Section 5).
• We present polynomial-time algorithms for computing expected

ranks [6] for several important distributions including uniform,
Gaussian and exponential distributions. We also propose an effi-
cient approximation scheme, based on Legendre-Gauss Quadra-
ture, for computing the values of a PRF e function (an important
special case of PRF ) for arbitrary densities.
• As an application of PRF , we show how to translate a k-nearest

neighbor (k-NN) query over uncertain objects into a PRF query.
This simple observation yields exact or approximation schemes
for answering k-NN queries.
• We conduct a comprehensive set of experiments over several

synthetic datasets to demonstrate the effectiveness and efficiency
of our algorithms, and compare them with prior proposed meth-
ods (Section 6 and Appendix C).

Due to space constraints, we focus on the first two contributions
(and the experimental study) in the body of the paper. The algo-
rithms for PRF e and expected ranks are presented in the appendix.

2. PRELIMINARIES
We begin with introducing some background and notation, and

by formally defining the problem.

2.1 Probabilistic Database Model; Notation
We assume that we are given a probabilistic dataset consisting of

n tuples T = {t1, . . . , tn}, and our goal is to rank the tuples ac-
cording to a score function s, specified as a function of the tuple at-
tribute values. In a deterministic database, each tuple is associated
with a single score value, and tuples with higher scores are ranked
higher. However, we assume that the database contains significant
uncertainty, both tuple existence uncertainty (a tuple may or may
not exist in the database) and attribute value uncertainty (wherein
we are provided with probability distributions over the values of the
attributes). We mainly focus on continuous attribute uncertainty in
this paper. We assume that the uncertain tuples and attribute values
are independent of each other.

For each tuple ti, we denote its existence probability by p(ti) or
pi for short. We assume that the attribute value uncertainties are

si Random variable denoting the score of ti
µi Probability density function (pdf) of si

supp(µi) Support of µi (i.e. {x | µi(x) 6= 0, x ∈ R})
ρi, ρ̄i Cumulative density function (cdf) of si

ρi(`) =
R l
−∞ µid`, ρ̄i = 1− ρi

Pr(r(ti) = j) Positional prob. of ti being ranked at position j
PRF Parameterized ranking function

Υω(t) =
P
i>0 ω(t, i)Pr(r(t) = i)

PRFω(h) Special case of PRF : ω(t, i) = wi, wi = 0,∀i > h

PRF e(α) Special case of PRFω: wi = αi, α ∈ C
PRF ` Special case of PRFω: wi = n− i

I = [lI , uI ] A small interval and its range

Table 1: Notation

transformed into a single probability distribution over the score of
the tuple. If an attribute does not contribute to the score, its uncer-
tainty can be ignored for ranking purposes. For tuple ti, we denote
by si the (random) variable corresponding to its score. si may be
distributed according to a variety of probability distributions, e.g.,
uniform, piecewise polynomial, Gaussian (Normal) etc.

We denote by µi the probability density function (pdf) of si. The
support of µi is defined to be the set of reals where µi is nonzero,
i.e., supp(µi) = {x | µi(x) 6= 0, x ∈ R}. The cumulative den-
sity function (cdf) of si is defined to be: ρi(`) = Pr(si ≤ `) =R `
−∞ µi(x)dx. Let ρ̄i(`) = 1− ρi(`).

The set of all possible worlds corresponding to the probabilis-
tic dataset is denoted by PW . Note that we have an uncountable
number of possible worlds if there is any continuous attribute un-
certainty. We use rpw : T → {1, . . . , n}∪{∞} to denote the rank
of the tuple t in a possible world pw according to s. If t does not ap-
pear in the possible world pw, we let rpw(t) =∞. We say t1 ranks
higher than t2 in the possible world pw if rpw(t1) < rpw(t2). For
each tuple t, we define a random variable r(t) which denotes the
rank of t. In other words, Pr(r(t) = k) is the probability measure
of the set of possible worlds where t is ranked at position k.

DEFINITION 1. The positional probability of a tuple ti and po-
sition j is defined to be the probability that ti is ranked at position
j, i.e., Pr(r(ti) = j).

2.2 Parameterized Ranking Function
In this paper, we focus on ranking the tuples in an uncertain

dataset using a parametrized ranking function (PRF ), introduced
in recent work to integrate different approaches to ranking uncer-
tain data [18]. As illustrated in that prior work, PRF s can approx-
imate a variety of different ranking functions through appropriate
choices of the parameter values. That prior work also provides al-
gorithms for learning the parameter values from user preferences
or training data. In this paper, we assume that the PRF function
is already chosen or learned, and we focus on computing the PRF
function values for all tuples in presence of continuous attribute
uncertainty. We begin with a brief review of PRF s.

DEFINITION 2. Let ω : T × N → C be a weight function that
maps a tuple-rank pair to a complex number. The parameterized
ranking function (PRF), Υω : T → C in its most general form is
defined to be:

Υω(t) =
X
i>0

ω(t, i)Pr(r(t) = i). (1)

A top-k query returns the k tuples with the highest |Υω| values.

We identify several special cases of the PRF function.



• PRFω(h): One important class of ranking functions is when
ω(t, i) = wi (i.e., ω is independent of t) and wi = 0, ∀i > h
for some positive integer h. Such ranking functions are often
used in domains such as information retrieval and machine
learning. For instance, the weight function ω(i) = ln 2

ln(i+1)
is

often used in the context of ranking documents in information
retrieval [15]. Further, the probabilistic threshold top-k (PT-
k) [13] can be seen as a special case of PRFω(h).

• PRF e(α): PRF e is a special case of the PRFω function,
where wi = ω(i) = αi, where α is a constant and may
be a real or a complex number. As argued in [18], PRF e

are highly suitable for ranking in probabilistic databases be-
cause of the exponentially decreasing weight function (assum-
ing |α| < 1), and they admit very efficient algorithms.

• PRF `: Finally, PRF ` (PRF linear) is another special case
of the PRFω function, where wi = ω(i) = n− i.

The PRF ` function bears a close similarity to the notion of ex-
pected ranks [6], and the expected rank can be easily computed
using the PRF ` value assuming independence. In fact, if we only
have attribute uncertainty, then the two produce an identical rank-
ing (see Appendix B for more details).

2.3 Problem Definition
Given the above, we can formally define the problem that we

address in this paper: given (1) a probabilistic dataset containing
tuples ti, i = 1, ..., n, and for each tuple its existence probability
pi, and a (continuous) probability density function µi of its score
si, and (2) a weight function ω : T × N → C, find the ranking of
the tuples according to the PRF function.

In most cases, we actually solve the problem of evaluating the
positional probabilities, Pr(r(ti) = j), ∀i,∀j, i.e., for each tuple
ti and each rank j, we compute the probability that ti is ranked at
position j across the possible worlds. Given these, we can compute
the PRF function values quite easily, after which ranking only
takes O(n log(n)) time. As expected, the problem is very hard to
solve in its full generality, in large part because we need to perform
complex numerical integrations on arbitrary probability densities.

3. EXACT ALGORITHMS
We begin with presenting efficient polynomial-time algorithms

for exact computation of the PRF functions when the probability
distributions on the scores are either uniform or piecewise polyno-
mial. We begin with showing that the generating functions frame-
work proposed in [18] can be extended to handle continuous dis-
tributions. We consider only attribute value uncertainty in this sec-
tion, and discuss tuple uncertainty in the next section.

3.1 Generating Functions Framework
Let us begin with looking at the formula for computing positional

probability Pr(r(ti) = j) closely. If we were trying to explicitly
write the formula for positional probability, it would end up being a
high dimensional integral, which is typically expensive to evaluate.
However, the following states that we can represent the n positional
probabilities compactly using their generating function, which is a
single 1-dimensional integral. This critical transform makes exact
algorithms possible for uniform and piecewise polynomial distri-
butions and also makes the problem more amenable to numerical
approximation techniques.

S2 S3

S4

S5S1

l1 u1 l5 u5
l4 u4

l2 u2
l3 u3

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11
} Small intervals

} Support intervals

} PDFs

Figure 2: Illustration of support intervals and small intervals
for five tuples with uniform probability distributions

THEOREM 1. For any tuple ti, define

Fi(x, `) =
Y
j 6=i

“
ρj(`) + ρ̄j(`)x

”
, and (2)

zi(x) = x

Z ∞
−∞

µi(`)Fi(x, `)d` (3)

Then, zi(x) is the generating function for the sequence {Pr(r(ti) =
j)}j≥1, i.e., zi(x) =

P
j≥1 Pr(r(ti) = j)xj .

In light of Theorem 1 (proof is presented in the appendix), we
can see that the task of computing the positional probabilities re-
duces to expanding the polynomial zi in terms of xjs and obtain-
ing the coefficients.

3.2 Uniform Distribution
In this section, we consider the case where µi is uniform over its

support interval [li, ui]. In that case, the cdf of si is a piecewise
linear function, i.e., ρi(`) = Pr(si ≤ `) = 0, for ` < li; ρi(`) =
`−li
ui−li

, for li ≤ ` ≤ ui; ρi(`) = 1, for ` > ui.

3.2.1 Expanding z(x)

For clarity, we assume that all numbers in ∪nj=1{lj , uj} are dis-
tinct throughout the paper. The general case where not all points
are distinct can be handled easily. Those 2n points partition the
real line into exactly 2n+ 1 intervals (see Figure 2 for an example
with 5 tuples). For ease of exposition, we call these intervals small
intervals (in contrast to the support intervals [li, ui]).

For the small interval I , let lI and uI denote its left and right
endpoints respectively. Denote the set of small intervals (from left
to right) by I = {Ij}2n+1

j=1 and the subset of those contained in
support interval [li, ui] by Ii, i.e., Ii = {I | lI ≥ li ∧ uI ≤ ui}.

EXAMPLE 1. In the example shown in Figure 2, I2 = {I4, I5},
whereas I3 = {I5, I6, I7}.

Since I is a disjoint partition of the real line and since µi(l) is
equal to 1

ui−li
in the interval [li, ui] and 0 otherwise, we have that:

zi(x) =
x

ui − li

X
I∈Ii

Z uI

lI

Fi(x, `)d` (4)

Thus to be able to expand zi(x), we just need to be able to
expand

R uI
lI
Fi(x, `)d` for all small intervals I .

Now, it is not hard to see that ρ̄j(`) and ρj(`) are linear functions
for all 1 ≤ j ≤ n in each small interval I . Thus, for ` ∈ I , we can
write:

ρj(`) + ρ̄j(`)x = aI,j + bI,j`+ cI,jx+ dI,jx`.

In particular, we have:

(aI,j , bI,j , cI,j , dI,j) =

8<:
(1, 0, 0, 0), uI ≤ lj ;

1
uj−lj

(−lj , 1, uj ,−1) , I ∈ Ij ;
(0, 0, 1, 0), lI ≥ uj .



Hence, within each small interval I:

Fi(x, `) =
Q
j 6=i

“
aI,j + bI,j`+ cI,jx+ dI,jx`

”
can be easily expanded in the form of

P
j,k αI,i,j,kx

j`k in polyno-
mial time. Therefore, we can write:Z uI

lI

Fi(x, `)d` =
X
j,k

„
αI,i,j,k

Z uI

lI

`kd`xj
«

=
X
j,k

„
αI,i,j,k

1

k + 1

`
uk+1
I − lk+1

I

´
xj
«
.

Summing over all intervals in Ii, and combining with Theorem 1
and equation l(4), we can get

Pr(r(ti) = j) =
1

ui − li

X
I∈Ii

X
k

αI,i,j,k
k + 1

`
uk+1
I − lk+1

I

´
(5)

3.2.2 Implementation and Analysis of Running Time
For each small interval Ij ∈ I, let Mj (M ′j or M ′′j ) be the set

of tuples whose score interval contains (lies to the left or right) Ij .
i.e., {ti | Ij ⊆ Ii} ({ti | uIj ≤ li} or {ti | lIj ≥ ui}). Let
mj = |Mj |, m′ = |M ′j |, m′′ = |M ′′j | and m =

P
jmj . We call

mj the overlap number on Ii
Naively constructing eachFi(x, `) in each small interval and ex-

panding the polynomial from scratch is too expensive (we need to
expand at most O(n2) polynomials and expanding each of them
could take up to O(n3) time). We notice the significant similar-
ity of the polynomials that we can take advantage of to reduce the
running time. For example, in a interval I , Fi(x, `) and Fj(x, `)
differ in only two multiplicative terms.
Consider a tuple i and a small interval Ij ∈ Ii. Define

F̃Ij (x, `) =

nY
j=1

“
ρj(`) + ρ̄j(`)x

”
=
Y
j∈Mj

“−lj + `+ ujx− x`
uj − lj

”
xm
′′
j

From (2), we can see that on interval Ij ,

Fi(x, `) = F̃Ij (x, `)
ui − li

−li + `+ uix− x`
(6)

Our algorithm first constructs and expands F̃j(x, `) for each
small interval Ij ∈ I in a straightforward manner. This can be
done inO(m3

j ) time. Then, we compute the expansion forFi(x, `)
for each i ∈ Mj , for small interval Ij , based on 6, which needs
O(m2

j ) time. We summarize the overall steps in Algorithm PRF-
UNIFORM. It is not hard to see that this process takesO(

P
jm

3
j )

time, provided the intervals I are already computed and sorted.

4. EXTENSIONS
Due to space constraints, we briefly list several significant ex-

tensions and generalizations of the basic algorithm above in this
section. The details can be found in the appendix. Table 2 summa-
rizes the running time complexity of these algorithms.

Computing PRFω(h): Since ω(j) = 0 for all j > h, we only
need the probability values Pr(r(ti) = j) for j ≤ h. There-
fore, we only need to expand zi(x) up to the xh term. Since
h is typically much smaller than the number of tuples n, the
improvement can be significant.

Computing PRF e: As in [18], we have the same relationship be-
tween the generating function and the PRF e(α) value:

Υ(ti) =
P
j≥1 Pr(r(ti) = j)αj = zi(α).

Hence, instead of expanding Fi(x, `) as a polynomial with two

Algorithm 1: PRF-UNIFORM
Sort ∪nj=1{lj , uj} in an increasing order and construct1
intervals Ij , 0 ≤ j ≤ 2n;
F̃0(x, `) = 1;2
for t = 1 to 2n do3

Expand F̃t(x, `) ;4
for each ti ∈Mt do5

Expand Fi(x, `) according to (6); (Note that we can6
obtain coefficients αIt,i,j,ks in this step);

Compute Υ(ti) according to (5) and (1);7
Return k tuples with largest |Υ| values;8
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Figure 3: Approximating a Gaussian distribution using a Cubic
Spline with 6 pieces (e.g. in the interval [−2,−1], the approxi-
mation is done using 1

6
(2 + x)3).

variables x and `, we can substitute the variable x with the nu-
merical value α and expand Fi(α, `) instead by treating it as a
polynomial with a single variable `.

Computing Expecting Ranks and PRF `: Recall that PRF ` is
a special case of the PRF function where the weight function
is linear, i.e., wi = ω(i) = n − i. Aside from being a natural
weight function, another key reason to study PRF ` is its close
relationship to expected ranks. In Appendix B, we describe a se-
ries of algorithms for efficiently ranking according to PRF ` or
expected ranks for a variety of continuous distributions includ-
ing Gaussian, exponential, piecewise polynomial, and uniform.

Combining with Tuple Uncertainty: The results described so far
can be easily extended to handle tuple uncertainty. Let pi de-
note the existence probability associated with tuple ti. All we
need to do is to replace the definition of ρi(`) with: ρi(`) =
Pr(ti does not exist or si ≤ `) = (1− pi) + pi

R
−∞ µi(x)dx

and still let ρ̄i(`) = 1 − ρ′i(`). It can be seen that Theorem 1
still holds. Hence, all algorithms developed can be applied with
the new definitions. The running time is reported in Table 2.

Piecewise Polynomial Distributions: Finally, and perhaps most
importantly, this is the last polynomially solvable case that we
have been able to identify for computing general PRF func-
tions. However, this class of distributions allows us to connect
to the rich literature of approximation theory from which we
can borrow powerful techniques to approximate arbitrary den-
sity functions. We elaborate on that in the next section.

For a piecewise polynomial pdf, the density function is expressed
using different (typically low-degree) polynomials in different
intervals. Figure 3 shows an example (it is also a very good
approximation to a Gaussian distribution).



PRF PRFω(h) PRF e PRF `

Uniform O(
P
j m

3
j ) O

`P
j(m

2
j min(mj , h))

´
O(
P
j m

2
j ) O(

P
j mj)

Uniform+TU O(
P
j m

2
j (mj +m′′j )) O

`P
j

`
m2
j min(mj +m′′j , h)

´
O(
P
j mj(mj +m′′j )) O(

P
j mj)

P-Poly(γ) O(γ2
P
j m

3
j ) O

`
γ2
P
j(m

2
j min(mj , h))

´
O(γ2

P
j m

2
j ) O(γ2

P
j mj)

P-Poly(γ)+TU O(γ2
P
j m

2
j (mj +m′′j )) O(γ2

P
j m

2
j min(mj +m′′j , h)) O(γ2

P
j mj(mj +m′′j )) O(γ2

P
j mj)

Table 2: Running Times. TU means tuple uncertainty and P-Poly(γ) indicates piecewise polynomial distributions with maximum
degree γ. We assume that all small intervals are already sorted. Otherwise, we have another additive factor of |I| log(|I|) for each
entry. The summation is over all small intervals. Recall mj is the overlap number for small interval Ij .

The algorithm for computing the PRF values given that all tu-
ples have piecewise polynomial pdfs, is quite similar to the one
for uniform distribution. We partition the real line into small
intervals such that the density function of each tuple can be rep-
resented as a single polynomial in each small interval. Con-
sider the small interval I = [lI , uI ]. Assume the pdf of si is
µi(x) =

Phi
j=0 ai,jx

j for all x ∈ I . By indefinite integra-
tion, the cdf of si over I is ρi(x) =

Phi
j=0

ai,j
j+1

xj+1 + Ci,I
where Ci,I is a constant which can be determined by the equa-
tion ρi(lI) =

R lI
−∞ µi(x)dx. Thus, we know that every term

inside the integral in (3) is a polynomial of x and `, and their
product can be easily expanded in polynomial time. The rest is
the same as in the uniform distribution case and we can use a
similar technique to (6) to improve the running time. See Ta-
ble 2 for the exact running time.

We finally note that discrete distributions (or a mixture of above
cases) can be handled in the same way since their cdfs are also
piecewise polynomials (in fact piecewise constants).

5. ARBITRARY PROBABILITY DENSITIES
For arbitrary probability density functions, the term inside the

integral of (3) is not a polynomial any more, and in fact may not
even have a closed form expression. This is true for one of the most
widely used probability distributions, namely the Gaussian distri-
bution. For most such distributions, the best we can hope for is an
efficient approximation. In this section, we first present a general
framework for approximate ranking in presence of arbitrary den-
sity functions through use of piecewise polynomial approximations
(specifically, cubic spline approximation). We then analyze the ap-
proximation quality of our cubic spline technique and compare it
with the discretization method and the Monte Carlo method.

5.1 A Generic Approximation Framework
The class of piecewise polynomials, also called splines, is known

to be very powerful at approximating other functions. There are
many different types of splines and the study of them has a long
history with a huge body of literature. In this paper, we focus on
the perhaps most widely used one, cubic spline, in which each piece
of polynomial is of degree at most 3.

The high level idea of our approximation framework is very sim-
ple: For each tuple, we use one cubic spline to approximate the
probability density function of its score, then we apply the ex-
act polynomial-time algorithm developed in the previous section
to compute the PRF values.

Now, we briefly discuss how to use cubic spline to approximate
an arbitrary function µ(x). We assume µ(x) is defined over a
closed interval [l, u] and we can evaluate the value of µ(x) and
the first derivative dµ

dx
(x) at any l ≤ x ≤ u. We choose k equally-

spaced breaking points τi such that l = τ1 < τ2 < . . . < τk =
u and τi+1 − τi = u−l

k−1
for all i. For each interval [τi, τi+1],

we construct a polynomial Pi(x) of degree at most 3 such that
the value and the first derivative of Pi(x) agree with µ(x) at τi

and τi+1, i.e., Pi(τi) = µ(τi),
dPi
dx

(τi) = dµ
dx

(τi), Pi(τi+1) =

µ(τi+1), dPi
dx

(τi+1) = dµ
dx

(τi+1).
It can be shown that (see e.g., [8, pp. 40] for the derivation)

Pi(x) = ci,1 + ci,2(x− τi) + ci,3(x− τi)2 + ci,4(x− τi)3

where the coefficients can be computed as: ci,1 = µ(τi), ci,2 =
dµ
dx

(τi), ci,4 = 1
(τi+1−τi)2

`
dµ
dx

(τi)+ dµ
dx

(τi+1)−2
µ(τi)−µ(τi+1)

τi−τi+1

´
,

ci,3 = ci,4(τi+1 − τi) + 1
τi+1−τi

`µ(τi)−µ(τi+1)

τi−τi+1
− dµ

dx
(τi)
´

We can easily see that the running time to construct a spline ap-
proximation for one tuple is only linear in the number of breaking
points. In general, more breaking points implies better approxima-
tion quality, however, this will also increase the running time for
both constructing the splines and in particular, of the exact algo-
rithm for computing PRF . We empirically evaluate this trade-off
in Section 6. It is possible to use higher order splines or unequal
length partitions which, sometimes, are better choices for approxi-
mation. Exploring these opportunities is left for future work.

5.2 Theoretical Comparisons
Here we compare the asymptotic behavior of convergence of the

spline approximation with other two methods that have been con-
sidered in prior work, the Monte Carlo method and the discretiza-
tion method. Our analysis reveals interesting precision-complexity
trade-offs among various methods and suggest that spline approx-
imation is more advantageous when a high precision is required,
while the Monte Carlo method is more efficient otherwise.

For completeness of the paper, we briefly describe the Monte
Carlo method and the discretization method. Monte Carlo simula-
tion is a widely used and much simpler method to approximate a
variety of quantities such as probability, expectation etc., and it can
be used to approximate PRF functions as well. To approximately
rank a dataset using Monte Carlo simulation, we draw N indepen-
dent random samples from the probabilistic database D (each sam-
ple being a possible world), and sort every sample. Let ri(t) be the
rank of tuple t in the ith sample. Our estimate of Υω(t) is simply:

Υ̃ω(t) = 1
N

PN
i=1 ω(t, ri(t)).

The method of discretizing continuous distributions has been
suggested in [6], however, no further detail and analysis is pro-
vided. We consider the following natural discretization: We parti-
tion the supp(µi) intoN equal-length intervals Ii,1, Ii,2, . . . , Ii,N .
The number N depends on the granularity we decide to use. Then,
ti is replaced by a set of x-tuples (the set of tuples are mutually
exclusive) t′i,1, . . . , t

′
i,N such that t′i,j has a fixed score si,j =

midpoint of Ii,j and existence probability Pr(ti,j) =
R
Ij
µi(x)dx.

Another popular choice to approximate general continuous distri-
butions is to use histograms, where we partition the domain into in-
tervals and use a uniform distribution to approximate the true distri-
bution in each interval. It can be seen as another way of discretiza-
tion and also a degenerate case of piecewise polynomial method
where each piece is just a constant.

In order to prove anything interesting, we have to make some
assumptions; we discuss their generality and applicability later.



Assume that for each i, supp(µi) is an interval of length O(1)
and µi(x) and its first four derivatives are bounded for all x ∈
supp(µi). We stick with the cubic spline approximations.

THEOREM 2. We partition each supp(µ) into small intervals
such that the maximum length ∆ of any small interval is O(n−β)
for some β > 3

8
where n is the number of tuples. If we use cubic

spline to approximate µi based on the partition and compute the
approximation bΥω(t) by the algorithm in Section 3, then:

|bΥω(t)−Υω(t)| ≤ O(n3/2−4β).

The proof can be found in Appendix E.
Assuming bounded length of the support and continuity of the

first derivative of µi for each i, we can prove the following asymp-
totic convergence for the discretization method. The proof is simi-
lar to Theorem 2 and can be found in the full version of the paper.
We note that the same bound also holds for the histogram method.

THEOREM 3. If we replace the continuous distribution µi with
a discrete distribution over O(nβ) points (in the way described
above) for some β > 3/2, and we compute the PRF value bΥω(t)
for the discrete distribution. Then, we have:

|bΥω(t)−Υω(t)| ≤ O(n3/2−β).

On the other hand, the following fact about the Monte Carlo
method is a well known folklore (see [20, Ch.11]) : With N =
Ω( 1

ε2
log 1

δ
) samples, we can get a approximated Υω(t) value within

an additive error εwith probability at least 1−δ. To better compare
it with the other two methods, we rephrase this fact as follows:

THEOREM 4. WithN = Ω(nβ log 1
δ
) samples, the Monte Carlo

method yields an approximation Υ̃ω(t) of Υω(t) such that

Pr
“
|Υ̃ω(t)−Υω(t)| ≤ O(n−β/2)

”
≥ 1− δ

For ease of comparison, we use N to denote (1) the number of
small intervals into which we partition the support of one tuple for
the spline technique, (2) the number of discrete points which we
use to approximate a continuous pdf for discretization method, and
(3) the number of samples we take for Monte Carlo method. Dou-
bling N is roughly equivalent to doubling the execution time for
each method. With Theorems 2, 3 and 4, the precision-complexity
trade-offs of the three methods become clear: spline method has
a relatively high overhead O(

P
jm

3
j ), the discretization method

has anO((nN)2) implementation [18], while Monte Carlo method
only needs O(n logn) time for each sample. However, roughly
speaking, doubling N increases the precision by 24 = 16 times
for the spline method, 2 times for discretization, but only by

√
2

times for Monte Carlo method. Therefore, the spline method starts
to outperform the other two when higher precision is required. See
Figure 4 for a clearer illustration of the trade-off.

In many applications, very high precision is often required. We
give a contrived but still simple example here. Consider the prob-
lem of ranking a subset of 10 tuples {ti}10i=1, in a database which
has 20 tuples {ti}20i=1, by their probability of being the top an-
swer, i.e., Pr(r(t) = 1) (this is a special case of PRFω). As-
sume the score si of ti is certain and around 6 for 11 ≤ i ≤ 20.
The other 10 tuples are the ones we want to rank and their scores
follow Gaussian distribution with mean around 0 and standard de-
viation around 1. By a rough analytic estimation, we can show that
Υ(ti) = Pr(ti = 1) for all 1 ≤ i ≤ 10 are in an order of mag-
nitude 10−11, and it is likely that the Monte Carlo estimates for
them are all zero with even 109 samples, thus requiring an astro-
nomical number of samples for accurate estimates. However, by
partitioning [−10, 10] into 105 small intervals (β = 4), the spline
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Figure 4: Asymptotic precision-complexity trade-offs for vari-
ous methods. Note the meaning of the axes: N = nx, & preci-
sion is of order 1/ny (thus, a steeply increasing curve indicates
that approximation quality increases rapidly with higher N ).
Legendre-Gauss method for approximating PRF e is discussed
in the appendix. Constants hidden in O() are ignored.

approximation can give us an estimate with a 10−14 error by The-
orem 2, which should be a fairly good estimate of Υ(ti).

Now, we discuss the assumptions we made for Theorem 2 and
Theorem 3. For some distributions, for example, the Gaussian dis-
tribution, the support is not bounded. However, we can truncate
the distribution and ignore the tail with minuscule probability. For
example, for a random variable x following the standard Gaus-
sian distribution N (0, 1), the probability that x > 6 is less than
2 × 10−9. Note that the truncation needs to be done by taking
the precision requirement into consideration. In fact, we can eas-
ily show that the total estimation error is at most the sum of the
approximation error and the truncation error. The assumption that
|supp(µi)| = O(1) captures the fact that (most of) the probabil-
ity mass of a distribution concentrates within a bounded range and
does not scale with the size of the database. For instance, the vari-
ance of the temperature reported by a sensor does not scale with
the number of sensors deployed and the number of readings that
are stored. Assuming certain continuity of the density function and
its derivatives is necessary for most approximation techniques with
provable bounds, and is usually met in practice.

Finally, we would like to remark that all analyses done here are
worst case analyses; better bounds may be obtained if more infor-
mation about the dataset is provided. For example, if the variances
of the PRF values are small, less samples are needed to obtain an
approximation with the prescribed error bound (see e.g. [7] 1).

6. EMPIRICAL EVALUATION
In this section, we present results from an extensive empirical

study over several datasets to illustrate the effectiveness and ef-
ficiency of our algorithms and to compare them with the Monte
Carlo method and other heuristics proposed in prior work.
Datasets: We mainly use several synthetic datasets with various
distributions and deviations to study our algorithms.
• UNIFM-n-d: We have 40 datasets, each of which contains a

mixture of certain tuples and uncertain tuples with uniformly
distributed scores. All scores are between [0, 10000]. n(=
10000, . . . , 100000) is the number of tuples and d(= 1, 2, 3, 4)
indicates the degree of “variance” of the data. Specifically, for
d = 1 (2, 3, 4 resp.), we have 10% (%30, %50, %90 resp.)
uncertain tuples and the average length of the support inter-
vals is 2 (5, 10, 20 resp.).

• GAUSS-n-d: We have 40 datasets which is a mixture of cer-
1Actually, the main result of [7] is an estimation with a relative
error bound. It is straightforward to translate the result in terms of
additive error. However, the worst case is the same as in Theorem 4.
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Figure 5: The comparison of various methods for computing general PRF (weight function ω(t, j) = 1/j). Solid lines indicate the
running times (with axes drawn on the right hand side), whereas dashed lines indicate the Kendall distance (an error measure).

tain tuples and uncertain tuples with normally distributed scores.
All scores and the means of Gaussians are uniformly chosen
between [0, 1000]. n(= 1000, . . . , 10000) and d(= 1, 2, 3, 4)
have the same meaning as in the uniform case. Specifically,
for d = 1 (2, 3, 4 resp.), we have 10% (%30, %50, %90 resp.)
uncertain tuples and the average standard deviation of the un-
certain scores is 2 (5, 10,20 resp.).

• ORDER-d: There are 5 datasets that are specially designed
to test the convergence of various methods. Each of them
has 1000 tuples {t1, . . . , t1000}. All scores are normally dis-
tributed with the same standard deviation 1. In ORDER-d
(where d = 0, 1, 2, 3, 4, 5), the mean of the score of ti is
i · 10−d. Note that as d increases, the Gaussian distributions
have means very close to each other, and become harder to
separate from each other.

Setup: All the algorithms were implemented in C++, and the ex-
periments were run on a 2GHz Linux PC with 2GB memory. We
compare the following algorithms with varying parameters:
• SPLINE: The exact algorithm for uniform and spline distributions

(developed in Section 3.2) and the spline approximation. For
spline approximation, we run the algorithms on various granu-
larities, i.e., the maximum length of the small intervals.

• DISC: The discretization method (outlined in Section 5.2). The
parameter is the number of discrete points that we use to replace
a continuous distribution. After discretizing the continuous dis-
tributions, we use the algorithm developed in [18] to compute
PRF value for x-tuples.

• MC: We run the Monte Carlo method (outlined in Section 5.2)
with different number of samples.

To measure the approximation quality of an algorithm, we use
the Kendall’s tau distance between the true ranking and the rank-
ing obtained by the algorithm. Kendall’s tau distance between two
rankings is defined to be the number of reversals, i.e., tuple pairs
that are in different order in the two rankings [16].

6.1 Spline vs. Monte Carlo vs. Discretization
We begin with considering the speed of convergence of various

approximation methods by varying the granularity or the number
of samples. Our first set of experiments is to approximate an ar-
bitrary PRF function for the GAUSS datasets using SPLINE, DISC
and MC. The weight function we use is ω(ti, j) = 1/j. Since no
polynomial-time algorithm is known to compute PRF values with
such a weight function for general distributions, there is no easy
way to know the true (ground) ranking. We however take the pre-
sumed truth to be the ranking obtained by SPLINE with a very fine
granularity (the length of each small interval is 0.005). As we can
see from Figure 5(a), when the granularity is finer than 0.5, SPLINE
converges to a fixed ranking. We also check the changes of the ac-
tual PRF value for the tuples – when the granularity is finer than

0.1, is less than 10−10. Therefore, we can be confident that the
presumed true ranking is actually the true ranking. We note that the
running time of SPLINE depends heavily on the overlap numbers.

Figure 5(c) shows the convergence rate and running time of MC.
We can see that MC converges slower than SPLINE in all cases, es-
pecially when the average standard deviation becomes larger. This
is not quite surprising since the convergence rate of MC highly de-
pends on the variance of the random variable – a higher variance
in general implies a slower convergence rate. A closer look at the
actual approximated PRF values reveals that the changes are in a
order of magnitude of 10−3 ∼ 10−5 even when more than 10000
samples are used. The running time of MC is roughly linear in the
number of samples, and does not depend on the overlap number as
oppose to SPLINE. So, the running time curves for all GAUSS-1000-
d datasets are roughly the same and we only plot one of them. From
Figure 5(b), we can see that the convergence of DISC is slower than
SPLINE, but much faster than MC. By replacing a Gaussian with a
distribution over only k = 5 discrete points, we can get an approx-
imate ranking with less than 200 reversals w.r.t. the true ranking.

Next we compare the behaviors of three algorithms on ORDER-
datasets. Since all Gaussian distributions have the same standard
deviation, a Gaussian distribution with a higher mean stochastically
dominates one with a lower mean, thus having a higher Υω value
for any positive decreasing weight function ω. So we know the true
ranking is {t1000, t999, . . . , t1}. Both SPLINE and DISC can find the
exact ranking, with even the coarsest granularity, so we omit their
curves. This phenomena may be due to the regularity in the datasets
and the approximation algorithms, which result in homogeneous
errors in the estimation of PRF values, thus the correct order is
preserved. On the other hand, MC behaves drastically differently
from other datasets (Figure 5(d)). MC can find the exact ranking
with a reasonable number of samples, for ORDER-0 and ORDER-
1, where the means of the tuples are well separated. However, when
the means of tuples become closer, so do their PRF values, which
makes it really hard for the randomized strategy MC to separate and
rank them. We can see the convergence rate of MC on ORDER-5 is
particular slow: with 100000 samples, the approximate ranking is
not much better than a random permutation. We also tested several
other weight functions and observed similar behavior. We omit
those curves due to space constraints.
Summary: Overall, SPLINE typically converges faster than MC,
but has a higher overhead compared to MC. DISC lies somewhere
between SPLINE and MC. Therefore, if we face a situation where a
high precision is needed to rank the tuples and MC needs too many
iterations to achieve that precision (the number of iterations can be
roughly estimated from Theorem 4), we can recommend using the
Spline technique.
6.2 Execution Times for Exact Algorithms

Figure 6(a) shows the execution time of SPLINE, for the UNIFM-
datasets, for different dataset sizes and variances. Recall in all
UNIFM-datasets, the scores are in [0, 10000]. So generally speak-
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Figure 6: Execution times for (a) SPLINE on UNIFM-datesets,
PRF ` on UNIFM-datasets and (b)PRF ` on GAUSS-datasets.

ing, the higher the variance d is, the larger the overlap numbers
are. The execution time is directly related to the overlap number,
thus increases with d. We can also see the execution time does not
scale linearly with the number of tuples. Again, the reason is that
an increasing number of tuples results in larger overlap numbers.
The execution time of SPLINE for piecewise polynomial was shown
in the experiment of approximating PRF for GAUSS-datasets (the
time for constructing splines for each Gaussian distribution is much
smaller compared to computing PRF values for spline distribu-
tion). For PRF ` function (see Appendix B for the details of the
algorithm), the execution time is faster than the general SPLINE
method. Figures 6(b) and (c) show the execution time of PRF `

on UNIFM- and GAUSS- datasets. As we can see, the running
time increases with d on UNIFM-datasets (O(

P
jmj)) and is in-

dependent of d on GAUSS-datasets (O(n2)).

7. RELATED WORK
There is large body of literature on the area of ranking and top-k

queries (see, for example, Ilyas et al.’s survey [14]). Recently, rank-
ing over probabilistic databases has also drawn many researchers’
attentions, and there have been several different proposals for rank-
ing functions, including U-Top and U-Rank (Soliman et al. [23],
Yi et al. [28] ), probabilistic threshold top-k (PT-k) (Ming Hua et
al. [13]), Global-Topk (Zhang and Chomicki [29]), and expected
rank (Cormode et al. [6]). Ge et al. [10] study the score distri-
butions and propose the notion of typical top-k queries. We refer
the reader to our prior work [18] for a thorough discussion of the
differences between these semantics, and how PRF is a unifying
framework for reasoning about them.

However, the aforementioned work has focused mainly on tuple
uncertainty and discrete attribute uncertainty. Soliman and Ilyas [24]
were the first to consider the problem of handling continuous dis-
tributions in ranking probabilistic datasets. In particular, they con-
sider uniformly distributed scores and their main algorithm is based
on Monte Carlo integration to compute the positional probabilities.
Therefore, their algorithm is randomized and only able to get an
approximate answer. There is also much work on nearest neighbor-
style queries over uncertain datasets [17, 4, 2, 5]. We discuss this
work in more detail in Appendix A.

8. CONCLUSION AND FUTURE WORK
We studied the problem of ranking in presence of continuous

attribute uncertainty, and developed several exact and approximate
polynomial-time algorithms for efficiently ranking large probabilis-
tic datasets. Our techniques significantly generalize and extend the
prior work on ranking in presence of uncertainty, and enable us to
efficiently handle continuous probability distributions, common in
many applications that generate uncertain data. Our work has also
opened up many new avenues for future work. In particular, we
would like to explore the possibility of progressive approximation

– in most cases, we don’t need a large number of samples, or fine-
granularity spline approximations, to rank the tuples, and it would
be more efficient to spend the extra computational effort only where
needed. Finally, incorporating correlations into our ranking frame-
work is an important problem that we plan to study in future work.
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APPENDIX
A. NEAREST NEIGHBOR QUERIES OVER

UNCERTAIN OBJECTS
In this section, we briefly sketch how to apply our algorithms

to nearest neighbor (NN) and k-nearest neighbor (k-NN) queries
over uncertain objects. For generality, we only consider k-NN
since NN is just special case of k-NN with k = 1. Suppose we
are given a set of uncertain objects {ti}ni=1 in d-dimensional Eu-
clidean space Rd. The position of each object ti is captured by a
pdf pi : Rd → R+ and is independent of other objects. For a set of
deterministic points, define kNN(q) to be the set of k points that
have the smallest Euclidean distances from q.

DEFINITION 3. Given a query point q ∈ Rd, a k-NN query re-
trieves k objects that have highestPknn values wherePknn(ti, q) =
Pr(ti ∈ kNN(q)).

In other words, we are looking for the objects that have the highest
probability of being one of the k nearest neighbors of the query
point. Kriegel et al. [17] and Cheng et al. [4] considered the
threshold version of the query with k = 1, i.e., all objects with
P1nn values above a given threshold are returned. Beskales et al.
[2] studied exactly the above query with k = 1. Cheng et al. [5]
also considered kNN queries in a probabilistic setting. However,
their semantics focus on the probability that a set of vertices is (as a
whole) the set of k nearest neighbors (a semantics similar to U-Top-
k [23]). This is not captured by the above definition (and cannot be
captured using a PRF function either [18]).

In fact, it is not hard to see that the k-NN query can be directly
translated into a PRFω query with the weight function:

ω(i) = 1 ∀i ≤ k; ω(i) = 0 ∀i > k
and the pdf of ti’s score being µi(x) = Pr(dis(ti, q) = x). If p
is a deterministic point, all µis are independent and we can apply
our exact or approximate algorithms developed in Section 3 and 5
directly, depending on the type of the probability distributions µis.

EXAMPLE 2. If the dimension d = 1 and each pi is a uniform
distribution over interval [ui, li], then µi is a piecewise constant
function with at most 2 pieces. In fact, if q ≥ li or q ≤ ui, µi is a
uniform distribution over [min(ui−q, li−q),max(ui−q, li−q)];
if ui < q < li, µi(x) = 2

li−ui
for x ∈ [0,min(li − q, q − ui)]

and = 1
li−ui

for x ∈ [min(li − q, q − ui),max(li − q, q − ui)].
Therefore, we can apply the polynomial-time exact algorithm for
piecewise polynomials developed in Section 3.

Beskales et al. [2] also considered the case where the query
point q itself can be uncertain. Although we can still translate it
into a PRF query, our algorithms can not be directly applied since
the probabilities Pr(dis(ti,q) = x) are correlated for different ob-
jects ti. Theoretically, we can generalize the generating function
technique we developed in Section 3 to handle this special corre-
lation. However, this may introduce integration in higher dimen-
sional space which can be tricky to implement. The practical im-
plication of this approach is yet to be explored. Due to space con-
straints, we omit the details here. Finally, we would like to remark
that it is possible to explore the spatial properties and design effec-
tive pruning rules to speed up the running time as the prior work
has done. We leave it as an interesting future direction.

B. EXPECTED RANKS AND PRF`

Recall that PRF ` is a special case of the PRF function where
the weight function is linear, i.e., wi = ω(i) = n− i. Aside from
being a natural weight function, another key reason to study PRF `

is its close relationship to expected ranks.

Expected rank of a tuple t is defined to be:
E[rpw(t)] =

R
pw∈PW p(pw)rpw(t)

where rpw(t) = |pw| if ti /∈ pw. Let C denote the expected size
of a possible world. It is easy to see that: C =

Pn
i=1 pi due to

linearity of expectation. Then the expected rank of t can be seen to
consist of two parts:
(1)
P
i>0 i × Pr(r(t) = i), which counts the contribution of the

possible worlds where t exists, and
(2)
R
pw:t/∈pw Pr(pw)|pw| = (C − p(t))(1 − p(t)) which counts

the contribution of the worlds where t does not exist2. Thus:
E[rpw(t)] =

P
i>0 i× Pr(r(t) = i) + (1− p(t))(C − p(t))

= −PRF `(t) + C + (n− C − 1)p(t) + (p(t))2.

Next, we present algorithms for computing
P
i>0 i×Pr(r(t) = i),

and hence for ranking according to PRF ` or expected ranks.
Since tuple uncertainty is also considered, we let ρ̄i(`) = Pr(si ≥

`) = pi
R∞
`
µi(x)dx. We can then see:X

i>0

i Pr(r(t) = i) = pi

Z +∞

−∞
E
hX
j 6=i

δ(sj > `) | si = l
i
µi(`)d`

= pi
X
j 6=i

Z +∞

−∞
E
ˆ
δ(sj > `)

˜
µi(`)d`

= pi
X
j 6=i

Z +∞

−∞
ρ̄j(`)µi(`)d`

= pi
X
j 6=i

pj

Z +∞

−∞

Z +∞

l

µj(x)µi(`)dxd`

Let A be a class of functions. Suppose each µi(`) is a piecewise
function such that each piece can be expressed by a function in
A. Similar to Section 3.2, we partition the real line into a set I of
small intervals such that in each small interval, every µi(`) can be
expressed by a single formula.

In general, given i, j and small interval I , if we can obtain the
numerical value of: R uI

lI

R∞
`
µj(x)µi(`)dxd`

in O(γ) time, then we can compute
P
j>0 i Pr(r(ti) = j) in

O(γn|Ii|) time. The expected ranks and the PRF ` values for all
tuples can then be computed in O(γn

P
i |Ii|) = O(γn

P
jmj)

time. Next we look at different classes of functions A in turn.

Gaussian: Suppose si is a normally distributed with mean λi and
variance σ2, denoted si ∼ N (λi, σ

2
i ). Since Gaussians are de-

fined on the entire real line, we have a single partition [−∞,+∞].
By the above discussion, the problem reduces to computingR +∞
−∞

R∞
`
µj(x)µi(`)dxd` for any i, j. The key observation

here is that the above formula is exactly Pr(sj ≥ si). Also, it is
well known that sj − si ∼ N (λj − λi, σ2

j + σ2
i ). Therefore,

Pr(sj ≥ si) = 1− Φ
“

λi−λjq
σ2
j+σ

2
i

”
= Φ

“
λj−λiq
σ2
j+σ

2
i

”
where Φ(x) is the cdf of the standard normal distributionN (0, 1),

i.e., Φ(x) = 1√
2π

R x
−∞ e

− x
2
2 dx. Indeed, the first equality is due

to the fact that the cdf of N (λ, σ2) is Φ(x−λ
σ

) and the second
holds since Φ(x) = 1− Φ(−x).
Φ(x) has been widely used in scientific and statistical comput-
ing and its numerical value with high precision can be computed
extremely efficiently [1]. Therefore, it is very reasonable to as-
sume that it can be computed in O(1) time even though it does

2This relationship does not hold in presence of correlations.



not have a closed form expression. The overall running time for
computing PRF ` values of all tuples is then O(n2).
A similar relationship between expected ranks and Pr(sj ≥ si)
was also observed by Cormode et al. [6], who use it to to obtain
algorithms for discrete distributions.

Convex combination of Gaussians: Convex combinations of Gaus-
sians have been widely used in curve fitting, kernel density esti-
mation and other application domains [21].
Let µi(x) =

Pli
j=1 γijfij(x) where

Pli
j=1 γij = 1, γi,j >

0∀i, j and fij(x) is the pdf for N (λij , σ
2
ij). Let sij be a real

random value that follows the distribution fij . Again, we need
to compute Pr(sj ≥ si). It is convenient to think that si is
generated by the following two-stage process: we first randomly
choose a integer j between 1 and li according to distribution γ,
i.e., t is chosen with probability γit ∀1 ≤ t ≤ li. Then, si is
generated according to distribution fij . Now, we can easily see

Pr(sj ≥ si) =

ljX
j′=1

liX
j=1

γjj′γijPr(sjj′ ≥ sij)

=

ljX
j′=1

liX
j=1

γjj′γijΦ

„
λjj′ − λijq
σ2
jj′ + σ2

ij

«

For each tuple pair (j, i), we need O(lj li) time, thus, the total
running time is O(

P
1≤i<j≤n lilj).

Exponential: Suppose si follows the exponential distribution with

rate parameter λi, i.e., µi(x) =


λie
−λix, x ≥ 0,
0, x < 0.

We only need to consider the positive axis. It is easy to see that:Z ∞
0

Z ∞
`

µj(x)µi(`)dxd` = λiλj

Z +∞

0

Z ∞
`

e−λjxe−λi`dxd`

= λi

Z +∞

0

e−(λi+λj)`d` =
λi

λi + λj
.

Hence, the PRF ` values can be computed in O(n2) time.

Piecewise polynomial of order γ: Directly applying the above frame-
work gives anO(γ2n

P
jmj) time algorithm. We can improve

the running time to O(γ2P
jmj) as follows. For each small

interval Ij , we first compute the expansion of the polynomialP
j ρ̄j(`) which can be done in O(γmj) time (mj additions of

polynomials of degree γ). Subsequently, for each i such that
Ij ∈ Ii, the expansion of

P
j 6=i ρ̄j(`)µi(`) can be obtained in

O(γ2) time (subtract ρ̄j(`) from
P
j ρ̄j(`) and then multiply

with µi(`)) 3 and computing the numerical value of:
AIj ,i =

R
Ij

P
j 6=i ρ̄j(`)µi(`)d`

takes an additionalO(γ) time (integrating each term of the poly-
nomial takes O(1) time). Therefore, the overall running time is
O(γ

P
jmj +

P
jmj(γ

2 + γ)) = O(γ2P
jmj).

Uniform: This is a special case of the previous one with γ = 1.
Thus, the running time is O(

P
jmj).

To summarize, the expected ranks and the PRF ` values for all
tuples can be computed very efficiently (in O(n2) time) for many
continuous probability distributions. This significantly generalizes
the results on these two functions in the prior work.
3Actually, this can be done inO(γ log γ) time by using FFT. How-
ever, since γ is usually very small, we can just do the polynomial
multiplication in the straightforward manner in O(γ2) time.

C. APPROXIMATE PRFE COMPUTATION
In this section, we present an approximation technique for ap-

proximating the PRF e function using Legendre-Gauss Quadra-
ture method, and demonstrate its effectiveness through an empir-
ical evaluation. For completeness, we begin with a brief overview
of Legendre-Gauss Quadrature.

C.1 Legendre-Gauss Quadrature
Suppose we want to approximate

R b
a
f(x)dx by a linear sumPk

i=1 cif(xi) for a fixed integer k where ci and xi are to be de-
termined but independent of the function f . Actually, if we let
c1 = . . . = ck = c = 1/(k − 1), xi = a + ci and k approach to
infinity, the linear sum is exactly the Riemann sum which should be
equal to the value of the integral. However, in practice, we are only
allowed to evaluate the function at a finite number of points which
results in an approximation of the integral. Assume that a = −1
and b = 1. The Legendre-Gauss quadrature (LGQ) of degree k
evaluates the function at xi for 1 ≤ i ≤ k where xis are the k roots
of Legendre polynomial of degree k and ci can be computed by
ci =

R 1

−1

Q
j 6=i

“
x−xj
xi−xj

”
dx. For example, the roots of Legendre

polynomial of degree 3 are x1 = −
p

3/5, x2 = 0, x3 =
p

3/5.
Then we can get c1 = 5/9, c2 = 8/9 and c3 = 5/9. Therefore,
our approximation is simply:R 1

−1
f(x)dx = 5

9
· f(−

q
3
5
) + 8

9
· f(0) + 5

9
· f(
q

3
5
) + error

Computing the roots {xi}i=1,...,k for general k is computationally
nontrivial. However, due to the practical importance of the method,
the values of xi and ci have already been tabulated for every k up
to a few hundreds [25] and we can use these values directly.

If the integral is not [−1,+1], we can use the following simple
transform:R b

a
f(x)dx = b−a

2

R 1

−1
f
`
a+ b−a

2
(y + 1)

´
dy

and then approximating
R 1

−1
g(y)dy where g(y) = f(a+ b−a

2
(y+

1)). Sometimes, if the length of [a, b] is very large, it is better to
partition [a, b] into small intervals, approximate the integral over
each small interval such that we do not need to evaluate the function
at many points in each small interval, thus can still use the existing
xi and ci values from the tablet. It is called composite rule.

Theoretically, assuming continuity of the 2kth derivative of f(x),
if we partition [a, b] intoN small intervals and apply LGQ of degree
k on each small interval, the approximation error is

Error =
(b− a)2k+1

N2k

(k!)4

(2k + 1)[(2k)!]3
f (2k)(ξ)

where ξ is some points in (a, b) [22, pp.116]. Let ∆ = b−a
N

. If
we treat k, f(x) as fixed, the behavior of the error (in terms of ∆)
is Error(∆) = O(∆2k). Although it seems that the error decays
exponentially with k (assuming N fixed) and polynomially with
N (assuming k fixed), in practice, people usually use Legendre-
Gauss quadrature with a bounded degree (typically k < 20). This
is because (1) it is good enough for most applications, (2) the roots
for high order Legendre polynomial are nontrivial to compute and
(3) it is hard to analyze and control the behavior of the higher order
derivative of f(x), thus the error.

C.2 Approximating PRF e(α) by Legendre-Gauss
Quadrature for Real α

As we discussed in Section 4, the PRF e(α) value of tuple ti has
a closed form expression, which is the value of the generating func-
tion (3) evaluated at α, i.e., zi(α). For arbitrary distributions, we
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Figure 7: The comparison of various methods for computing PRF e(α = 0.99). Solid lines indicate the running times (with axes
drawn on the right hand side), whereas dashed lines indicate the Kendall distance (an error measure).

can of course use the approximation technique developed for gen-
eral PRF functions. However, we observe that zi(α) is simply
the integral of the function f(`) =

Q
j 6=i(ρj(`) + ρ̄j(`)α)µ(`);

we can evaluate the function f(`) itself at any point ` in polyno-
mial time4. Given this, we can use the Legendre-Gauss quadrature
(LGQ) method directly to achieve a much more efficient approxima-
tion of PRF e(α) for real α. We also plot the asymptotic Error-N
(precision-complexity) trade-offs for LGQ of degree 2 and 10 (See
Figure 4). In our experimental study, we use LGQ of degree 10.

C.3 Empirical Comparison
We compared the four techniques for PRF e computation: (1)

Spline (SPLINE), (2) Legendre-Gauss Quadrature (LGQ), (3) Monte
Carlo (MC), and (4) Discretization (DISC). We use the same datasets
as described in Section 6. The key parameter for LGQ is the gran-
ularity of intervals. For SPLINE and DISC, there are faster imple-
mentations, which we will call SPLINE-E and DISC-E respectively,
for computing PRF e.

Figure 7(a),(b),(c) and (d) show the execution times and conver-
gence rates for SPLINE-E, LGQ, DISC-E, and MC, respectively. The
“true” ranking is computed by using SPLINE-E with a granularity of
0.005. We can see that SPLINE-E converges very fast, just like the
general SPLINE algorithm, but the running time is faster. In Fig-
ure 7(b), we can see LGQ (with degree 10) also converges very fast:
Exact ranking can be obtained when the granularity is less then
0.05, which is a bit slower than SPLINE-E, but the execution time
is much lower. For example, LGQ takes less than 2 seconds to get
an exact answer on GAUSS-1000-4 while SPLINE needs more than
10 seconds. Actually, a significant portion of the execution time
is for the construction of small intervals, so using a higher degree
quadrature does not incur a significant increase in the running time.
In Figure 7(c), we observe that the convergence of MC is quite sim-
ilar to the previous case and the running time is almost the same
since MC does not utilize any special property of PRF e to speed
up the execution. For DISC-E the convergence rate is also similar to
the general DISC algorithm while the running time is much faster.
We also did the experiments on ORDER datasets. The convergence
rates for SPLINE-E, MC and DISC-E are quite similar to their coun-
terparts for the general PRF computation: SPLINE-E and DISC-E
continue to find exact ranking in all granularities we tested while
MC converges rather slowly on ORDER-4 and -5. For LGQ, a gran-
ularity of 1 is able to find the exact ranking for all ORDER-datasets
and execution time is always less then 1 second. Due to space con-
straints, we omit those curves. In both sets of the experiments, the
quadrature method typically converges faster than MC and DISC-E
and has a lower overhead than SPLINE-E.

4We assume ρi(x) and ρ̄i(x) can be computed easily.

D. THE PROOF OF THEOREM 1
First, we note that zi(x) defined in (3) is a polynomial of x.

This is because each term in the expansion of the product inside
the integral is of the form f(`)xk for some integer k and function
f(), and taking integral on ` eliminates the variable ` but has no
effect on x.

Let δ(p) =


1, if p = true
0, if p = false

be the indicator function for

the event p. It is straightforward to see that ti is ranked at position
j in a possible world iff there are exactly (j− 1) tuples with higher
score present in that world. Given this, we get:

Pr(r(ti) = j) = Pr
“X
j 6=i

δ(sj > si) = j − 1
”

=

Z ∞
−∞

Pr
“X
j 6=i

δ(sj > `) = j − 1
”
µi(`)d`.

Let us consider how to compute Pr
“P

j 6=i δ(sj > `) = j
”

for
any fixed `, i.e., the probability of the random event that there are
exactly j tuples other than ti that have score larger than `. The key
observation here is that computing the probability is equivalent to
the following problem: Given a set of tuples tj , j = 1, . . . , n, j 6=
i, with tuple tj having existence probability ρ̄j(`) = Pr(sj >
`), compute Pr(j tuples exist). Consider the following generating
function:

Fi(x, `) =
Q
j 6=i

“
ρj(`) + ρ̄j(`)x

”
.

If we treat ` as a fixed value and Fi(x, `) as a polynomial of x, the

coefficient of the term xj is Pr
“P

j 6=i δ(sj > `) = j
”

(see [19,
18]). Thus, we can write:

Fi(x, `) =
P
j≥0 Pr

“P
j 6=i δ(sj > `) = j

”
xj .

Multiplying by xµi(`) and taking integrals on both sides, we get:

zi(x) = x

Z ∞
−∞
Fi(x, `)µi(`)d`

= x

Z ∞
−∞

X
j≥0

Pr
“X
j 6=i

δ(sj > `) = j
”
µi(`)x

jd`

=
X
j≥1

Z ∞
−∞

Pr
“X
j 6=i

δ(sj > `) = j − 1
”
µi(`)d`x

j

=
X
j≥1

Pr(r(ti) = j)xj

Therefore, zi(x) is the generating fn. for {Pr(r(ti) = j)}j≥0.



E. THE PROOF OF THEOREM 2
We need a few lemmas before establishing the theorem.

LEMMA 1. c1, . . . , cn and e1, . . . , en are complex numbers such
that |ci| ≤ 1 and |ei| ≤ n−β for all i and some β > 1.˛̨̨ nY

i=1

(ci + ei)−
nY
i=1

ci

˛̨̨
≤ O(n1−β)

PROOF.˛̨̨ nY
i=1

(ci + ei)−
nY
i=1

ci

˛̨̨
=
˛̨̨ X
S⊆[n],S 6=∅

Y
i∈S

ci
Y

i∈[n]\S

ei

˛̨̨

≤
˛̨̨ nX
k=1

X
S⊆[n],|S|=k

Y
i∈S

ci
Y

i∈[n]\S

ei

˛̨̨

≤
nX
k=1

 
n

k

!
n−kβ ≤

nX
k=1

nk(1−β)

k!

≤ en
1−β
− 1 = O(n1−β)

The third inequality holds because
`
n
k

´
≤ nk

k!
. The last inequal-

ity holds since ez =
P
i>0

zi

i!
and the last equality is due to the

fact that eO(f(n)) = 1 + O(f(n)) if f(n) = O(1) (e.g. [11,
p.452]).

LEMMA 2. Let µ be a probability density function with |supp(µ)| =
O(1). bµ is another function such that supp(bµ) = supp(µ) and
|bµ(x)− µ(x)| ≤ ε1 < 1. Let f, bf : R→ C be two functions such
that |f(x)| ≤ 1 and |f(x)− bf(x)| ≤ ε2 < 1 for all x. Then,˛̨̨Z ∞

−∞
µ(x)f(x)dx−

Z ∞
−∞

bµ(x) bf(x)dx
˛̨̨
≤ O(ε1 + ε2)

PROOF.

LHS =
˛̨̨Z

supp(µ)

`
µ(x)f(x)− bµ(x) bf(x)

´
dx
˛̨̨

≤
˛̨̨Z

supp(µ)

`
µ(x)f(x)− µ(x) bf(x)

´
dx
˛̨̨
+
˛̨̨Z

supp(µ)

ε1 bf(x)dx
˛̨̨

≤
Z

supp(µ)

µ(x)
˛̨
f(x)− bf(x)

˛̨
dx+

˛̨̨Z
supp(µ)

ε1 bf(x)dx
˛̨̨

≤
Z

supp(µ)

µ(x)ε2dx+ ε1|supp(µ)| = O(ε1 + ε2)

The first inequality holds since |a+ b| ≤ |a|+ |b| for any complex
numbers a, b.

LEMMA 3. Suppose ω(i) ≤ 1 for all 0 ≤ i ≤ n − 1. Let
ψ(0), s, ψ(n−1) denote the discrete Fourier transform of ω(0), s,
ω(n− 1). Then

Pn−1
i=0 |ψ(i)| ≤ n3/2.

PROOF.“n−1X
i=0

|ψ(i)|
”2

≤
n−1X
i=0

1
X
i=0

|ψ(i)|2 = n2
n−1X
i=1

ω(i)2 ≤ n3

The first inequality is the the Cauchy-Schwarz inequality which
states |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for any vectors x and y where 〈, 〉
is the inner product. The second equality follows from Parseval’s
equality

Pn
i=0 |ω(i)|2 = 1

n

Pn
i=0 |ψ(i)|2.

Now we can prove our main theorem.

PROOF OF THEOREM 2: Let bµi be the approximated distribution
of si for each i. Let ρ̄i(`) = Pr(si > `) =

R∞
`
µi(x)dx, ρi(`) =

1− ρ̄i(`), bρi(`) =
R∞
`
bµi(x)dx and b%i(`) = 1−bρi(`). It is known

that (e.g. [8, p.40]), for each small interval I ,

|µi(x)− bµi(x)| ≤
„
|I|
2

«4
maxy∈I |µ(4)(y)|

4!
.

Since |supp(µ)| = O(1) and maxy∈supp(µ) µ
(4)(y) = O(1), we

can see |µi(x) − bµi(x)| = O(n−4β). From Lemma 2, it follows
that |ρ̄i(`)− bρi(`)| ≤ O(|I|4) = O(n−4β) for all `.

For ease of description, we assume that the rank start from 0.
Let us focus on the estimation of Υω(t) for a particular tuple t. Let
ψ(0), s, ψ(n−1) denote the discrete Fourier transform ofω(t, 0), s,
ω(t, n− 1). Hence, we have

ω(t, i) =
1

n

n−1X
k=0

ψ(k)e
2π
n
ki i = 0, . . . , n− 1.

where  is the imaginary unit. Denote the PRF e value of t with
parameter e

2π
n
k by Υk(t). Therefore, we have

Υω(t) =
1

n

n−1X
k=0

ψ(k)Υk(t). (7)

Now, we analyze the approximation error for the approximated
PRF e value with any parameter α such that |α| = 1. Since the
PRF e value with parameter α equals the value of the generating
function evaluated at α, it suffices to bound |z(α)− bz(α)| where
z is the generating function for t (see Eq. 3) and bz is its approxi-
mation (replace ρ̄is and ρis with bρis and b%is respectively).

We observe that, for any α ∈ C with α = 1 and any ` ∈ R,

|ρj(`) + ρ̄j(`)α| ≤ |ρj |+ |ρ̄j(`)α| = 1.

Hence, we have that

|b%i(`) + bρi(`)α− (ρi(`) + ρ̄i(`)α)|

≤|b%i(`)− (ρi(`)|+ α|bρi(`)− ρ̄i(`)| ≤ O(n−4β)

Therefore, by Lemma 1, we have˛̨̨Y
j 6=i

“b%j(`) + bρj(`)α”−Y
j 6=i

“
ρj(`) + ρ̄j(`)α

”˛̨̨
≤ O(n1−4β)

Recall that zi(x) = x
R∞
−∞ µi(`)

Q
j 6=i

“
ρj(`) + ρ̄j(`)x

”
d`. Ap-

plying Lemma 2, we can get

|bzi(α)−zi(α)| ≤ O(n1−4β + n−4β) = O(n1−4β)

Hence, from (7) and Lemma 3, we obtain that

|bΥω(t)−Υω(t)| =
˛̨̨
1

n

n−1X
k=0

ψ(k)
`bΥk(t)−Υk(t)

´
]
˛̨̨

=
˛̨̨
1

n

n−1X
k=0

ψ(k)
`bzk(e

2π
n
k)−zk(e

2π
n
k)
´˛̨̨

≤ 1

n
O(n1−4β)

˛̨̨n−1X
k=0

ψ(k)
˛̨̨

= O(n3/2−4β)

2


