Sharing-Aware Horizontal Partitioning for Exploiting
Correlations During Query Processing

Kostas Tzoumas
Aalborg University
Denmark

kostas@cs.aau.dk

University of
College Park,

ABSTRACT

Optimization of join queries based on average select/igesub-
optimal in highly correlated databases. In such databasksions

are naturally divided into partitions, each partition heysubstan-
tially different statistical characteristics. It is vergropelling to
discover such data partitions during query optimizatiod are-

ate multiple plans for a given query, one plan being optirnalsf
particular combination of data partitions. This scenawdiscfor

the sharing of state among plans, so that common interneeiat
sults are not recomputed. We study this problem in a settitly w
a routing-based query execution engine based on eddie€ft].
dies naturally encapsulate horizontal partitioning andimal state
sharing across multiple plans. We define the notionaraditional

join plan, a novel representation of the search space that enable
us to address the problem in a principled way. We present a low
overhead greedy algorithm that uses statistical summbaissd on
graphical models Experimental results suggest an order of mag-
nitude faster execution time over traditional optimizatfor high
correlations, while maintaining the same performancedardor-
relations.

1. INTRODUCTION

Traditional query optimizers pick one execution plan pegrgu
based on first-order statistics about the underlying datapar-
ticular, a join order is determined based on join seledigithat
are computed over a relation as a whole. However, real-world
databases often contain skewed data with complex cooatatand
first-order statistics are not sufficiently powerful to aaptthe un-
derlying statistical properties of the data. Indeed, ormreget bet-
ter join selectivity estimates by modeling data correladi6, 13].
However, the presence of data correlations does not onle reek
lectivity estimation harder—it also offers opportunitfes more ef-
fective query optimization.

When data correlations are present, the input relationgatre
rally divided into partitions, each partition having coreigly dif-
ferent statistical characteristics. It is then very ativacto create
multiple plansper query, each plan being optimized for a different
combination of data partitions. Consider for example thejpiery

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee. Articles from this volume were @nésd at The
36th International Conference on Very Large Data Basege8dyer 13-17,
2010, Singapore.

Proceedings of the VLDB Endowmevio). 3, No. 1

Copyright 2010 VLDB Endowment 2150-8097/10/095.10.00.

Amol Deshpande

amol@cs.umd.edu

Christian S. Jensen
Aarhus University
Denmark

csj@cs.au.dk

Maryland
MD, USA

R X S XT XU. Assume thatS is naturally partitioned into two
partitions,S = S U S2, whereS; (similarly, S2) has a low selec-
tivity when it joins with R (T), and a high selectivity when it joins
with T' (R). A possible optimization process may decide to parti-
tion S into S; and .Sz, and pick the plangR X S1) X (T' X U)
and((T' X U) M S2) M R. The combined cost of the two resulting
plans can be smaller than the cost of any possible mono}ithit.

With the introduction of partitioning, query optimizatiaron-
sists of two tasks: Determining the partitions of the inmlations,
and creating a plan for each combination of partitions. dofo
nately, the two problems are inter-dependent. A partitigrof the
relations is optimal only with respect to already chosen jdans.
A partitioning is query-plan specific, because it is evaddaagainst

Sthe selectivities of the joins in the join plans; it is not mlgra set of
clusters based on the statistical properties of the dataveZsely, a
collection of join plans is optimal only with respect to atedémn par-
titioning. This inter-dependence yields a much largerrojatation
space than the one considered by traditional query optimsiize

Further, an optimization process that results in multideng
per query naturally raises the issue of sharing state antengan-
stituent plans at execution time. Identical intermediapges should
not be constructed multiple times from different plans dgruery
execution. In the example above, the intermediate rel&ftion U
is required in both plans. This relation should not be camséd
twice; rather, it should be shared between the two plans.

This paper presents the first study of horizontal partitigrdur-
ing query processing witmaximalsharing of intermediate results.
In particular, the contributions of this paper are the foiltg: First,
we offer a more formal study of the general problem than hithe
We introduce the notion afonditional join plang(CJPs), a repre-
sentation of the search space resulting from horizontaitioening
that captures both the partitioning and join order aspadts.de-
fine recursive cost formulas for CIPs, and are thus able toelefi
query optimization as a search problem in a suitable spacad-
dition, we show how to estimate correlated join selectgtising
low-overhead summaries based on graphical models. Thefg-we
cus on the case of query execution with eddies [1] and synmnetr
hash joins. This case is particularly interesting, becabseing is
maximal; an intermediate tuple that is used by differem joans
is computed only once. We show how query execution with ed-
dies restricts the search space, and we provide a low-cae -
edy algorithm for this space. Our algorithm can achieve aeror
of magnitude better execution time than the best monoljtfaas
in databases with high correlations, while being on par weli-
tional query optimization for uniform data.

The rest of this paper is organized as follows. Section Zvevi
related work and eddies. Section 3 defines conditional j@ng
and how to estimate their cost, including the estimationarfes:

1 2 i
(i) Plans created by SBP 1!
Dashed lines indicate ‘
selectivity s,, solid lines; > o >« >

> > > > > 108
NN 8 N NN
i <y < R > U < R < R 102
R > Lok > >
AT AV AT AV A 1ol
‘RS s, T 'R S S, T,

=
(=]
=)

\'
c
Intermediate tuples generated (normalized)

indicate selectivity S,. | PN ‘ AN AN AN ' . Best monolithic plan —&—
! [10" | SBP E
o o oot U ** R ** R PN QM (wc, lower bound) —4—
s,>>s, ; ' M (bc) —v—
: A /\ >‘/\T >‘/\U ></\ N > 2 1 X FSPE)
=S |=|S.|=n | ! 10
REIS =S =0 RS T Ui AT A A /NN 1 10 100 1000
ITI=ITI=|UI=n ! (i) Best monolithic plan : | RS, S, T, T, U RS, T, U Sy/sy

(a) Running example query and the join plans chosen by a (gditional query optimizeib) Intermediate tuples generated (nor-

(ii) selectivity-based partitioning [18], (iii) query mie$17], and (iv) our approach.

malized).

Figure 1: A 3-join query R X S X T' X U used as a running example throughout the paper.

lated selectivities. Section 4 describes how maximal sigaof in-
termediate results restricts the search space, and psoaigeeedy
search algorithm. Section 5 presents experimental regtitally,
Section 6 concludes and offers research directions.

2. BACKGROUND
2.1 Related work

Horizontal partitioning of relations has been considerechany
settings, especially in parallel and distributed datab@b@]. Prior
work has addressed horizontal partitioning for selectioerigs [7],
and explored heuristic solutions in the adaptive settirjg [Bhe
works most relevant to ours are selectivity-based paniitigp [18]
and query mesh [16, 17]. We discuss the points that diffexent
our work from these.

In selectivity-based partitioning [18], an iterative alijiom can
partitiononerelation of a join query int& partitions and construct
k left-deepjoin plans, one for each partition. Our work does not
have these limitations. In particular, we allow for bushgns and
the partitioning of multiple, both base and intermediagations.
In addition, state sharing among the resulting plans is oosid-
ered in [18]. The plans are executed independently, soitdiate
results that are common are computed multiple times, assggpo
to exactly once which is the case in our work.

Query mesh [16, 17] allows the partitioning of multiple rela
tions. However, intermediate results are always reconcpatel
never stored, in a similar manner to SteMs [19]. This has two i
plications: First, bushy plans are not allowed, resultimgnissed
opportunities for certain queries. Second and more impgrthe
join plan followed depends on the arrival order of the inuglés
(see [9], Section 6.2). In some cases, although query mdbtrywi
to partition the input relations, the chosen partitionimgat obeyed
by the execution engine, due to the tuple arrival order. Cankw
does not suffer from these limitations, as intermediateltesire
stored and shared. A discussion of the benefits of storimgrire-
diate results as opposed to recomputing them can be fourgkin t
literature [8].

We illustrate the advantages of our more general probletinget
with an example. Assume the following schema and join query:

R(A,X),S(A,Y, B), T(B,Z,C),UW,C)

select » fromR,S,T,U
where RA=S.A and S B=T.B and T.C =U.C

Figure 1(a) shows this query, which is used as a running eleamp
throughout the paper. Relatio§sandT" are naturally divided into
two partitions eachS; has low selectivitys:, when joining withR
and high selectivitys2, when joining withT". T; has low selectivity
when joining withU, and high selectivity when joining witl. It

is then attractive to first joiy; with R, and first joinT; with U.

The plans generated by the methods discussed above are shown
in Figure 1(a).(i) The best monolithic plan is the bushy plan that
first joins R with .S, andT with U. (ii) Selectivity-based parti-
tioning (SBP) can only partition one relation and is forcedise
left-deep plans. Since the query is symmetric, the choitedsn
S andT does not matter. So, assuming tlas partitioned, the re-
sulting plans ar¢(R X S1) X T') X U and((S2 X T) X U) X R.

(iif) Query mesh (QM) can partition both relations, but can oné/ us
left-deep plans. This results in three pldig& X< S1) X T') X U,
((S2 X T3) X U) X R,and((Th X U) X S3) X R. This parti-
tioning is only possible if the order of arrival of the inpedations
can be fully controlled. Unfortunately, this assumptiorinigprac-
tical, both in a streaming setting, and in a more traditicedting.

If we assume that the relations arrive at equal rates, thenae
lated state at the joins forces query mesh to follow the sutbval
plan (R X S) X T) X U for a large subset of subsequent in-
put tuples, regardless the partition in which they beloreg (9],
Section 6.2).(iv) Finally, our approach (called HPE—Horizontal
Partitioning with Eddies) allows bushy trees and can partimul-
tiple relations. It results in the four plans shown in the éowight
part of Figure 1(a).

Figure 1(b) shows the number of intermediate tuples gee@rat
by the various methods when the selectivity ratie/s1, varies
from 1 to 1000. The large selectivity, is fixed at 0.01. All num-
bers are normalized by the number of intermediate tuplesrgésd
by our approach (HPE). Selectivity-based partitioning aahieve
only a modest benefit compared to the best monolithic plan, be
cause it can only partition one relation and is forced to ese |
deep trees. For query mesh, we present numbers for the legst (b
and the worst case (wc). In the best case, it is assumed that th
order of arrival of the input tuples can be controlled so thatcho-
sen partitioning can be enforced. This yields the same nuwibe
intermediate tuples as our approach. In the worst casey quesh
is forced by the arrival order to follow one sub-optimal pfan a
large subset of input tuples. Note that Figure 1(b) showsa@do
bound of the intermediate tuples generated by query medhisn t
case. Our approach yields the lowest number of intermetliptes
because it does not suffer from the limitations describex/@b

2.2 Partitioning with eddies

Eddies with symmetric hash joins [1, 8] provide a framework
that naturally encapsulates horizontal partitioning atadesshar-
ing, making it an ideal framework for exploiting data coat@ns
through horizontal partitioning. With eddies, fixed quelsus are
no longer constructed. Instead, the operators that ardvewon
the query are connected with a central router (the eddy)qaedy
execution proceeds by routing the tuples through the opexathe
eddy makes a routing decision for each individual tuple.sTemn-
ables multiple plans to be executed simultaneously for #mes
query, each plan operating on a different subset of (baseter-i
mediate) tuples. These multiple plans are not created aithp]i
rather, they are implied by theddy routing policy Note that al-
though eddies were introduced as a way to achieve adapiivity

R Ra Sa ‘ Eddy routing policy
S, || ‘
R ,
™S ST 0(S)
T,=0,(7)
S.b b 7
S, 5 - T,=0.,,(T)
. RS, || TU S .
1 1 TU
/ S , = gy
Ti=rayy
T, 7_"._c UUC T, reg
! S,T,—»<,
U (RS)T, v
output S 0

streaming environment, we do not use them as such. We assume

a more traditional setting, where the data is static. Thininhtes
the adaptivity overhead of eddies.

Consider the join queryk X S X T X U and the execution
of the query using an eddy, as shown in Figure 2. Tuples from
relationsR andU each have only one possible destinatiéh S
andT X U, respectively. Howevel tuples can be routed to either
R X SorS X T, andT tuples can be routed to eith&r X U
or S X T. The eddy can use a predicate on one of the relation
attributes to distinguish the routing destinations. Inufé&g2, the
eddy uses the predicates (e.9., ¢s (S.Y > 5)) to route S
tuples. Tuples fron$ that satisfyps are routed tar X S, yielding
partition S;. Tuples fromS that do not satisfyps are routed to
S X T, yielding partitionS,.

In Figure 2 the intermediate results, as stored in the hdsdbga
of the symmetric hash joins, are shown. While BI(U) tuples
are stored in the joirR X S (T' X U), the relationsS andT are
partitioned. TheS; (71) partition is stored inR X S (T' X U),
and theS> and T3 are stored inS X 7. Thus, the intermediate
results created arRS1, S2T5, andT1U. The RS andT1U tuples
are stored inS X T (their only routing destination). The state of
S X T is then as shown in Figure 2. The subsequent routing of
intermediate results in the combined execution of the fdang
shown in Figure 1(a). The state captured in the joins at tlte en
of query execution is shown in Figure 2. Note that the refatio
RS: and T, U that are common in multiple plans are computed
only once. Eddies provide maximal sharing of intermediasults
at execution time, with no extra optimization time overhead

3. CONDITIONAL JOIN PLANS

Traditional query optimization is realized as search ferthest”
join plan in a suitable search space. The search space cambe c
strained (e.g., to exclude bushy trees), and the searchithlgo
can be either exhaustive or greedy, among other posshilitio
achieve a similar search framework for our optimizationbpem,
we need a new representation of the search space that ideapab
capturing both the partitioning and the join orders for eathiition
combination. Conditional join plans offer such a represton.

We begin with defining CJPs, and then discuss how to estimate

their cost.

3.1 Definition of CJPs

Before defining CJPs formally, we provide an example CJRyusin
the running example. Thguery graphof a query has the relations
as its nodes and the eligible joins as its edges. We anncate e
edge with the predicate of the corresponding join. For oangXe,
the query graph iQ({R, S,T,U}, J), where the set of edges is
J = {Xrs,Xsr, X7y }. The Cartesian produét = R x S x

Figure 2: Query execution using an eddy with symmetric hash
joins. The routing policy directs tuples from partition S; to
R X S, tuples from S to S X T, tuples from 77 to T' X U, and
tuples from T> to S X T'. The result is four different plans that
execute simultaneously sharing all common state.

T x U in our example has the following schema:
UR.A,RX,S.A,SY,S5.B, T.B,T.Z2, T.C,U.C,UW).

Let usconceptuallyiew the queryQ as a selection query over the
Cartesian produd. Then a join between two relations is a pred-
icate defined ovet{. For example, the join predicatérs is the
predicateXrs= (R.A = S.A) defined over the relatiotd. Be-
sides join predicates, we also define decision predicategxam-
ple decision predicate iss = (S.Y > 5), where we subscript the
name of the predicate with the name of the relation that cositae
attribute. A CJP is a directed, rooted tree that contaimsgoid de-
cision predicates as its nodes. Decision nodes modelaslstilits,
and the orders of the join nodes at each path from the rootdafa |
model the join plans for each combination of partitions. @ns-
sible CJP for the running example is depicted in Figure 3. Tie
can be interpreted as a conditional selection plan [7] orCiduee-
sian product/. Tuples from{ flow from the root to the leaves of
the CJP. A tuplestu first visits the nodeps. If ¢s(rstu) =T, it
follows the upper outgoing edge of the node, otherwise lbfed
the lower edge. Lef1 = 045=7(S) andSz = o45=r(S). Then
tuples fromR x S; x T x U follow the upper edge obs, and
tuples fromR x Sz x T' x U follow the lower edge obs. After all
the decision nodes have been visited, the four resultinttipas
of i arelhhy = Rx S1 x Ty xU,Us = R x S1 x Ty x U,
Us = Rx Sa x Ty xU,andly = R x Sa x T> x U. Tuples from
different partitions follow different orders of the join des. For
example, tuples fron; follow the orderXgg, Xy, Mg (Sub-
plan P11). When a tuple ot/ visits a join node, it either satisfies
the predicate and continues to the next node, or it does tisfysa

ra — A, — PA,
Py —> P — b,
ra, —> PA, —> PA
>« —» P — P d

ST U RS

Figure 3: A CJP for the query R X S X T X U with two
decision predicatesps, ¢r. The two ¢r predicates in the sub-
plans P, and P» can have different valuespr, and ¢r,.

the predicate and is discarded. Consider a tuple of thetipart;,
rs; t; u that visits the join nod&lzs in the sub-planP;;. The tu-
ple is evaluated against the predicates= (R.A = S.A), and it
will continue to the next nodedry only if Xrs (rsit;u) = T.
Observe that the tuples that pass the preditate are the tu-
ples of the relationR X S; x Ty x U, so the joinR X S is
executed first. The join predicate order followed dgy tuples is
(R ™ S1) M (Ty X U). In fact, the CIP models the partition-
ing and the forest of join trees corresponding to HPE as shown
Figure 1(a).

More formally, given a query grap@({R1, ..., Rn},J) and a
setF of decision predicate values, a conditional join pR(Q) is
a directed, rooted tree that contains two kinds of nodededision

/

node— ¢x — contains am-ary predicatepx € F, defined

over the Cartesian produbt = R; x --- X R,. A decision predi-
cate splits the relatiotf into n disjoint partitions that cover the re-
lation. Ajoin node— X xy — contains a predicate frogf, defined
overl, with only one outgoing edge. A join predicate discards the
tuples of the Cartesian product that do not satisfy it. A @)

is valid for the queng if every path from the root to a leaf contains
every join predicate i exactly once. This means that the correct
query result is produced. To simplify our discussion, we abs
quire that a join node does not precede a decision node inathy p
from the root to a leaf.

A CJP P(Q) can easily be converted to a forest of join plans,
each join plan operating on a certain combination of dattitjoans.
Consider the tree formed by the decision predicate® ¢¢.g., the
full binary tree formed bys and ¢ in Figure 3). Each leaf of
this tree defines a particular combination of relation gians that
can be discovered with a tree traversal, and leads to a plartic
sub-plan P11—P>2 in the figure) that contains only join nodes. For
example, the sub-pla®i; uses the relation partition®, S1, 11,
andU. After discovering the partitions, each order of join predi
cates in a sub-plan can be de-linearized to form the cornetpg
join plan. This transformation defines the “semantics” of lPC
i.e., the way it is executed by a query processor.

Finally, we define &£JP structureP(Q, F) as a CJP whose deci-
sion predicates are not assigned values, but are viewediables

into account the cost of partitioning is an easy extensiautacost
model.

Third, we need to decide whether the cost of a CJP includes the
size of an intermediate result common to multiple plans arrce
multiple times. This in turn depends on the query procedsat t
will execute the CJP. As discussed previously, a JB) can be
transformed into a forest of join plans. Let us denote||B}|ns
the total number of intermediate tuples generated by thksesp
and by|| P||s the number of intermediate tuples when duplicate tu-
ples are counted only onéeThen || P||ns is the cost of the CIP
when intermediate results are not shared during query &recu
and|| P||s is the cost ofP when maximal sharing of intermediate
results occurs.

It is easy to computd P||ns in a naive way. The CJP is trans-
formed to a forest of join plans, and the cardinalities ofititer-
mediate results they produce are computed as usual. In tder
compute||P||s in a similar way, we need to note the intermedi-
ate results that are added to the total cost, and only coemt th
once. For example, consider the cost estimation of the CHRyin
ure 3. A traversal of the binary tree of decision predicatedsfi
the predicate assignmefitthat hold in each leaf of the tree (the
sub-plansP;1—P»2). These assignments define the relation parti-
tions. For example, i1, the assignment of the decision pred-
icates is® = (¢s = T,¢r = T), which defines the partitions
S1 = 044(S) andT1 = o4, (T). The corresponding join plan
is (R ™ Sq1) X (Ty X U), whose cost i$RS:1| + |T1U|. Using
our notation for join and decision predicates, the ¢&5; | can be
written asPr(Xrs, ¢s)|R||S|, where

|UNRS/\¢S(R xS xT x U)l _ |R81|
|R[[S[ITI|U] |RS|

Apart from being costly, this cost estimation proceduresdef
the purpose of constructing CJPs in the first place. Sinc€tie
needs to be translated to a forest of join plans when its et
to be computed, search could as well proceed in the spacénof jo
plan forests. Instead, we propose a cost function that issae in
the structure of CJPs. Before covering recursive cost esitmin
Section 3.4, we show how the required probabilities as tteeion
Equation 1 can be estimated.

Pr(Xgrs, ¢s) =

@

of the CJP. A CJP can be derived from a CJP structure when we 3.3 Estimation of joint selectivities

assign values to all the predicates/n These values can be nor-
mal predicate values or one of the following two special gal(for
chain query graphs): the always-true predicate and the always-
false predicateéraise. If the predicate of a decision node= ¢uye,

all i/ tuples follow the upper sub-plan of the node, and # ¢raise,

all ¢ tuples follow the lower sub-plan. For general query graphs,
we can similarly define special predicates that direct ticerimng
tuples to exactly one particular outgoing edge. We denoté @)

the assigned values of the decision predicates of the denCd

P.

3.2 Cost estimation basics

In order to define the cost of a conditional join plan, we need
to make several decisions. First, to be able to formallyyzeathe
query optimization problem, and to keep the cost formukastable,
we use the number of intermediate tuples as the cost mettic. A
though simple, this metric is known to be quite effectived dn
mirrors disk or CPU-based cost functions in many scena#ips [

Second, we need to incorporate the cost of partitioning tinéo
cost metric. To simplify our cost formulas, we ignore thetiian-
ing cost for now. Instead, we impose a constraint on the nuwibe
predicates that can be used, termedgpheitioning budget Taking

To estimate joint selectivities, we need a statistical rhoflehe
database that captures correlations. Existing techni§,é8] en-
able trade-offs between the storage requirements and thelao
tions that are captured, typically using the notion of giephmod-
els [14]. Unfortunately, these techniques cannot be usetbdir
fied in our setting, as they do not support arbitrary joinse @ro-
posal [6] is designed with only selection queries in mindj an-
other [13] supports only key-foreign key joins. Howeverisihot
hard to extend the notion of statistical relational modesadibed
in [12] to work correctly with arbitrary joins. The downsidethat
all possible joins must be known prior to building the stated
model.

We use an undirected graphical model (also called a Markbv ne
work) to estimate joint selectivities. A Markov network isfthed
by its structure and the probability distributions thatesheebe kept.

The subscriptNS stands for “no sharing,” and the subscript
stands for “sharing.”

2\We distinguish between a predicate value and a predicaignass
ment. The former is a functioll — {T, F}, while the latter is a
value from{T, F}. Further, when there is no confusion, we abbre-
viate the assignment = T as¢, and the assignmenrt = F as

ﬁ(f)_

The structure is an undirected graph with random varialkdeissa
nodes. The edge set of the graph encodes the conditionglenée
dencies that the model implies. Although these can be désedv
automatically using a training set, we have chosen a fixedtstre
that captures the necessary correlations in minimal spfter. the
structure is defined, a probability distribution for eaciqué of the
graph has to be computed and stored.

The model construction algorithm takes as argumentittieer-
sal query graphthe query graph that captures all possible joins in
the database. The random variables that serve as the notles of
Markov network are (1) thelescriptive attribute®f the database
and (2) thejoin indicators The descriptive attributes are the at-
tributes that are used to partition the relations duringrgyeo-
cessing. The join indicators are binary random variablas ¢ap-
ture the events that two relations join. A join indicatorsgifor

the set of the intermediate results that have already bestuped.
The setM contains elements of the form = (R, E), whereR

is a set of relations, anfl is a set of join predicates. The cost of a
plan P is defined as the cost of its root node:

CosTus(P) = CosTns(root(P), ®, #)

To define the cost of a nodedSTns(n, ®, M), we need to distin-
guish between decision and join nodes. The cost of a deaisida

CosTs(n, ®, M) = CosTns(n, ® U {¢}, M)+
CosTns(n”, ® U {-¢}, M). (2

Observe that a decision node does not add to the cost since we

each edge in the universal query graph. We choose to place anignore the cost of partitioning. A decision node is used dnly

edge in the graph only between a join indicator and the descri
tive attributes of the relations whose join it representise odel

is represented internally as a junction tree [14], whiclbvad for
efficient computation of joint probabilities.

Assume that our example query defines the universal quephgra
and that the descriptive attributes &eX, S.Y,T.Z, UW. The join
indicators are7rs, Jst, Jru, defined agirs = (R.A = S.A),
Jst = (S.-B = T.B), andJrv = (T.C = U.C). Figure 4
shows the Markov network.

Al D——W)

Figure 4: Markov network for the example database.

The probability distributions that need to be stored arenths-
imal cliques of the Markov network. In our example, we need
the distributionsP(X, Jrs), P(Y,Jrs), P(Y,JsT), etc. All of
these distributions can be stored as one-dimensionaltdlistns,
and they can be computed without first constructing the Giante
product. For example, the probability distributiét(Y, Jrs) can
be maintained as two one-dimensional distributiaR§Y, Jrs =
T) and P(Y,Jrs = F). We can computé”(Y, Jrs = T) as

%ITSS‘:T), whereC(Y, Jrs = T) is the result of the query

select Y, count(*) fromR, S
where R.A=S.A group by Y.

Then, we can computB(Y, Jrs = F) as

R|IC(Y)—-C(Y =T
P(Y. Tns = F) = O dre = 1)

whereC(Y) is the result of the query

select Y, count(*) fromsS group by Y.

Given the constructed Markov network in a form of a juncticret
we can efficiently compute arbitrary joint probabilitiesd&cision
and join predicates. For example, the probability of Equratl
is the probability that both predicatészs, and¢s are true. To
compute it, we need to form the marginal distributioffs andX

which can be done with standard inference algorithms likesage
passing [6, 14].

3.4 Recursive cost estimation

We define a recursive cost function0€Tys, for || P||ns. For
||P|ls, we have a recursive cost function that is correct for a re-
stricted space of CJPs, discussed in Section ds¥s takes two
sets as arguments, both initially empt®, a set of predicate as-
signments that hold in the current node under evaluatioth,/\ah

update the se. When the cost function recurses to the upper
(lower) noden’ (n”’), the assignmenp = T (¢ = F) has been
added to the seb.
To compute the cost of a join node=—X;;— n’, we need to
consider four cases:
1. The join node represents a join between the two base rela-
tions R; andR;.
2. The join node represents a join between an intermediate re
lation that containg?; and the base relatiaR;.
3. The join node represents a join between an intermediate re
lation that containg?; and the base relatioR;.
4. The join node represents a join between two intermedaate r
lation, one containind?; and the other containing; .
The argument set is used to make the distinction. Assume two
elements ofM, m1 = (R1,=Z1) andmz = (R2,Z2), such that
R; € R1 andR; € Ro. If both these elements exist, we are in
case 4 above; if onlyn; exists, we are in case 2; if oniy» exists,
we are in case 3; if none ofi; andm. exist, we are in case 1. In
case 1, we calculate the cost of a join node that represaenfsith
between two base relatioi, R;:

CosTs(n, ®, M) = Pr(Xy;, /\ ¢)|Ril|R;|+
(bE(I)l{Ri’Rj}
CosTs(n', @, MU {({Rs, R;}, {Mi;})}) ®)

The node adds to the total cost the cardinality of the Cangsiod-
uct|R; x R;| weighted by the probability of the conjunctiontef;,
the join predicate under evaluation, and the decision patelias-
signments in the sab = ®!{%: %} The set¥ contains the deci-
sion predicate assignments that have been seen sb, fiastricted
to those that involve attributes @t; and R;. In general, ifX is
a set of relations®'* denotes the restriction @ to X, i.e., the
predicate assignments dnthat contain only attributes of relations
in X. The cost contribution of the node is exactly the number
of intermediate tuples of the joiR; X R;, whenR; and R; are
partitioned by the decision predicate assignments'iffti i}

For example, consider the cost of the nodgs in Py of Fig-
ure 3. Since we have seen the decision naflgs)r and followed
the edges that lead B2, the assignment of decision predicates
currently valid, as set by the cost calculation of the decisiodes,
is® = {¢s = T, ¢ = F}. Decision nodes do not add elements
to the setM, soM = () and we are in case 1. The sBt™* is
OIS = {5, =g} % = {¢s}. The contribution to the total
cost is therPr(Xrgs, ¢s)|R||S|. In addition to adding the size of
an intermediate result to the total cost, the nadm Equation 3
adds to the set\ the elementn = ({R;, R;}, {Xi;}). which
represents the intermediate relatiBn™X R;.

In case 2, we joirR; with an intermediate resuR ; that contains
R; and the join predicates i :

Cosms(n, @, M) =
PI‘(NU7 /\ &,

£EEy

4)

A

(beq)lRlU{Rj}

CosTs(n', @, M — {m1} U{(R1 U{R;},E1 U {Xi;})})

PRl T BRI+

RER,

The cost contribution of the node is now the size of the inter-
mediate resuliR; X R;, when the relations are partitioned by the
predicates inp! *1V {1}

Consider the calculation of the cost Bfsr in P1». The ar-
guments of the cost function a® = {¢s,-¢r} and M =
{({R, S},{Xrs})}. Since there is an element i that con-
tains relationS, but there is no element that contains relation
we are in case 2. The cost contributionbdfr is Pr(Xsr, Xrs
,0s,¢7)|T||R||S| = |RS1Tz|. In addition, an element for the
intermediate relatio® ST will be added toM. Case 3 is symmet-
ric to case 2 and can be dealt with similarly. Finally, in cdsee
join the intermediate relation®; andR:

CosTns(n, ®, M) =

N &

£€E1USy

PI'(INZ']'7 /\

pedIR1UR2

COSTNs(n,7 q),/\/l — {777,17 mg} U {(R1 UR2,Z1 UE2 U {[Xl”})})

)

[]

RER,UR,

|R|+ ®)

For example, consider the cost computation for the nade
in P11. This is the sub-plan that represents the bushy join tree.
The cost function has already evaluated the nodes andX 7.
When it reaches(sy it is called with argument® = {¢s, ¢r}
and M = {({R, S}, {Xrs}), {T,U},{Xrv})}. The cost con-
tribution OfNST is PI"(NST, Nrs, Xy, ¢S, ¢T)|R||S||T||U| =
|RS1T1U|. The recursion of the cost function ends at the leaves of
the CJP, or at the second-last join node if we do not want ladiec
the size of the query result in the cost estimate. By the difinof
the cost function ©STys, the following lemma holds.

Lemma 1. For any valid P(Q), CosTus(P) = ||P||ns.

4. THE EDDY CJP SPACE
4.1 Eddy restrictions

The routing nature of query execution with eddies imposes co
straints on the possible partitions as well as on the joinpthat
can be executed. This in turn imposes restrictions on the @®
can be considered during query optimization. Considenfangple
the valid CJP for our example query in Figure 6.

>
RxSxTxU
>«

U

— P, —> A,

— P, > A

Figure 6: A CJP that is not eddy-compliant.

This CJP is equivalent to the join plafigR X S1) X T') X U,
(T XM U) M S2) X R. If we were to execute this query with
an eddy, we need to make a routing decisionfatuples using a
predicategs, on relationS. If ¢s = T, T needs to be joined with
R X Si, while if s = F, T needs to be joined with/. There
is no possible routing that can achieve this. The routingsitats
for T tuples can only be made using a predicateélgnyr. The
restrictions on the possible CJPs is the price paid for staeing
provided by eddies.

The constraints imposed by eddies affect the CJP search apac
follows. Given a queng®, we can construct aniqueCJP structure
P.(Q,F.), called theeddy CJP structure Any CJP valid forQ
that can be executed using an eddy (calleeddly-complianCJP)
can be derived from the eddy CJP structure by assigning vatue
the predicates itF.. Hence, the eddy CJP structure determines the
eddy CJP spacé#or this query. Appendix A details an algorithm
that, given a query, constructs the unique eddy CJP steickig-
ure 7 shows the eddy CJP structure for our example.
><TU

— P

L - ey,

>, —> P

>a, — P,

—

>4y > s

Figure 7: The eddy CJP structure for our running example.
Note that the predicate¢r must have a unique value.

For example, assume that we are given a partitioning budget o
¢ = 1 and we decide to use the predicate = (S.Y > 5).
Then, all the eddy-compliant CJPs can be derived from thg edd
CJP structure of Figure 7 by assigning valuegtoand¢ st from
the set{ puue, Praise}, as defined in Section 3.1. These values must
be honored across sub-plans. For example, assume that wsecho
¢ = Puue. Then we must use the join ord@R X S1) X (T' X U)
for partition S1 and the join ordef(7" X U) X S3) X R for parti-
tion S2. Note thatpsr is not defined in thebr = ¢uue SUb-plans
because the intermediate resfif’ is never formed in these sub-
plans.

Since eddies provide maximal sharing, the recursive cost-fu
tion CosTnsfrom Section 3.4 does not estimate the cost of an eddy-
compliant CJP correctly. Fortunately, we can define a régicost
function CosTeqqy that estimates the cost of an eddy-compliant CIP
with sharing accounted for. Only one change is neededts1(s:
Instead of including the decision predicates of thedset, where
X is the set of relations relevant to the join node under canmsid
ation, in Equations 3- 5, we simply include all the decisioadi-
cates in®. The following holds.

Lemma 2. If P is eddy-compliantCOSTeday(P) = || P||s.
PROOF See Appendix B.

Denote the eddy CJP structure for a quérpy P.(Q, F.). We
can now formally state the problem we are solving.

Horizontal paritioning with eddies. Given a queryQ and a par-
titioning budgete, find the plan

P*(Q) =

arg min
|F(P)|<e,F(P)CFe

[COSTeday(P(Q))]

that is valid forQ and is eddy-compliant.

Put differently, query optimization has to partition thegicate
variablesF. of the eddy CJP structure into two disjoint sets: The
first set of size at most contains predicates that are assigned nor-
mal predicate values (e.gS.Y > 5), and the second set, of size
at least| F.| — c contains predicates that are assigned values from
the set{ pwue, Praise}. The choice of the two sets and the choice of
values should yield the minimum cost. Once the predicate&.in
have been assigned values, it is trivial to construct an eolayng
policy that executes the resulting concrete CJP.

0.10.20.30.40.50.60.70.80.9
Correlation parameter

0.10.20.30.40.50.60.70.80.9
Correlation parameter

(a) Total execution time. (b) Intermediate tuples gendic) Execution time for interme-
diate tuples.

ated.

—~
_10° mo7 o
%) pu] kel
] < 6 9]
0,4 < =
ENW ¥ 95 S
! : 3
£10° | S‘ll ®
z Lt Q =
Sk E g3 s
= ek §

5
glol FGHP —=— 7 = 3
[| BMP —o— 9 g<.>
100 1 1 1 1 1 1 1 EO i

5 5

QIS F T T T T T T T Sl T T T T T
.] £10* F E
$10 3 }.; £]
2403 L 3 FH/-\I—I/.\I/—.
S10° | E E10°8 3
° [c L]
=002 1 9102 F E
Z10 Elo F o o ® o o o o3
@ 3 N F

£10' FGHP —=— b E10' FoHp —=— b
I3} | BMP —e— a | BMP —e— i
c 100 1 1 1 1 1 1 O 100 1 1 1 1 1 1 1

0.10.20.30.40.50.60.70.80.9
Correlation parameter

0.10.20.30.40.50.60.70.80.9
Correlation parameter

(d) Optimization time.

Figure 5: The effect of varying the correlation parameterr in a 3-join query when all the joins have the same selectivity

4.2 Greedy search

While possible, it is computationally infeasible to exhaedy
search the eddy space. We propose an algorithm that stams fr
the best monolithic plan for a query and gradually builds ddye
compliant CJP. At each step, the algorithm cycles over albci-
sion predicates on attributes that have not been used ykpieks
the one that yields the best cost when used to split the ptariviro
sub-plans. This is done greedily: when the algorithm intices a
split, it assumes that no future splits will occur, but rattiet the
best monolithic plans (under the eddy constraints) will bedufor
the sub-plans. The algorithm stops if it has introduced tlagim
mum numbetk of decision predicates allowed, or if no further cost
improvement can be achieved.

The gradual construction of the CJP has three advantages, Fi
the complete eddy CJP structure does not need to be stored. Se
ond, the sizes of the CJPs whose costs will be evaluated are co
trollable; a CJP with more thandecision predicates is never gen-
erated. Finally, the cost of the final CJP is guaranteed te&e |
or equal to the cost of the best monolithic plan. Howevercesin
there is no backtracking, the algorithm can obviously getlsin
local minima; an initial choice for a locally optimal deasi predi-
cate can lead the algorithm to assume that no cost improveraen
be made by further splitting. Appendix C provides the dstaiid
pseudocode for the greedy search algorithm, as well a disous
of its cost as compared to the cost of exhaustive search.

5. EXPERIMENTAL RESULTS

We have implemented eddies, symmetric hash joins and the gre
edy horizontal partitioning scheme in PostgreSQL, reustieged-
dies code from the TelegraphCQ project [3] (see Appendix D fo
additional details). We compare our greedy horizontalifiamt
ing algorithm (termed GHP) with the best monolithic plan (BM
found by an exhaustive enumeration of all possible plansth Bo
methods use the same junction tree-based selectivity atsbim
code. To ensure fairness of comparison, the resulting ibbeth
methods are translated into an eddy routing policy and égdcu
with eddies and SHJs. Note that executing a monolithic p&n u
ing eddies takes at most double the time than executingrigubie
vanilla PostgreSQL executor in our experiments.

The quality of the best monolithic plan depends only on the se
lectivities of the participating joins, while the quality a CJP de-
pends on both the average selectivities and the correfatidie
study the effect of these parameters in Section 5.1. Thenoyztt
tion time is affected by the size of the statistical modeljchhs
studied in Section 5.2. Finally, we study how our greedy athm
scales in Section 5.3. We use synthetic data in order to k& abl
to control three parameters: the number of tuples, the thétgc
of the joins, and the data correlation. Appendix E coversdtita

generation in detail.

5.1 The effect of data correlation

We start with varying the data correlation parameten a 4-
relation join query. Each relation hd$* tuples, and all the de-
scriptive attributes (one per relation) take values fromdbmain
{0,1,...,9}. The data is generated using a correlation coefficient
r which takes values if0.1, 0.9]. The selectivities of all joins are
fixed at 0.001. This means that there are no substantial zatiton
opportunities for this query in the traditional sense. Hegvewhen
the data is naturally partitioned into subsets due to higtetation,
the execution time of the query can be reduced using hoazpat-
titioning. This means that horizontal partitioning can leméficial
in situations where traditional optimization falls short.

Figure 5(a) shows the total execution time in msecs (in loga-
rithmic scale) of the best monolithic plan of and the CJP &bun
by the greedy horizontal partitioning algorithm. In nonvetated
data ¢ € [0.1, 0.4]), the two plans yield the same execution time.
As the data becomes more correlated 0.5), the CJP becomes
faster than the monolithic plan. At = 0.9, we observe a 90%
reduction of the total execution time.

To understand the performance difference better, Figurped(-
amines the number of intermediate tuples generated. While h
correlations cause the best monolithic plan to produce rnimbee-
mediate tuples, the opposite is true for horizontal partitig. The
number of intermediate tuples is zero when= 0.9. Figure 5(c)
shows the portion of the execution time devoted to interatedi-
ples only. The benefits of horizontal partitioning are appérthe
execution time quickly drops to zero aftereaches 0.4, whereas
the execution time of the best monolithic plan stays faidgstant.

The execution time savings of the query come at the cost of an
increased optimization time. The greedy horizontal garting al-
gorithm finished after 2 iterations in all cases. Even sorethe
an order of magnitude increase compared to the optimizétioa
of exhaustive monolithic optimization. However, the betsefif
partitioning during query processing outweigh the incesasopti-
mization time. The optimization time can be reduced if weured
the buckets of the descriptive attribute histograms (auily€l0),
but with an expected degradation in accuracy, and thus abp®ss
increase of query execution time.

We also experimented with a query with different join sdiect
ties, set tal0~2,1072, and10~*. As expected, the total execution
cost is lower than in the previous case for both methods. iTrad
tional query optimization can produce less intermedigiéesithan
before, but the effect of the data correlation remains tineesae
omit the graphs due to lack of space.

5.2 The effect of the number of buckets
We vary the domain size of the descriptive attributes fostrae

9/8\105 ’3105 F T T T
- @ 2 [GHP —=— 1
QE [BMP —e— 1
5 <10 E10F E
38 o []
] L
T o108 3 4
qéglo : %10 E A
Eg of i 1
S 510% F S10° F E
5% i -
S0 L N L]
Segw | . Ew' L ‘// .
9 g9] s —
L|>j-§100 1 1 1 0100 1 1 1 1
2 4 8 16 32 2 4 8 16 32

Number of buckets
(b) Optimization time.

Number of buckets

(a) Execution time for interme-
diate tuples.

Figure 8: The effect of the number of histogram buckets.

query, fixing the correlation parameter at 0.6. Since we luaes
bucket per domain value, this is equivalent to varying thaiper of
buckets in the constructed histograms. A large domain sians
more detailed statistics and thus more opportunities feizbn-

tal partitioning, but it makes the search in the junctiore tneore
expensive. Figure 8(a) shows the execution time for inteliate

tuples for GHP and BMP when the number of buckets varies from

2 to 32 (both axes in logarithmic scale). The execution tiore f
intermediate tuples of GHP is equal to that of the best mthmioli

Execution time devoted to
intermediate tuples (msec)

Relations in query

(a) Execution time for interme-
diate tuples.

Relations in query
(b) Optimization time.

Figure 9: Varying the number of relations and GHP iterations.

greedy search with controlled iterations in this space @ppsed
that can achieve an one order of magnitude better execution t
for highly correlated databases, while performing on pahthie
best monolithic plan at low correlations.

This work opens several lines of research that we plan tapurs
First, a problem that remains open is whether shared coniquia
always beneficial. Second, it would be interesting to expioulti-
query optimization in this environment, where multiple ges are
optimized together to produce many join plans that sharepotm

plan when there is only 2 buckets, and it improves over thé bes tion. Finally, we would like to explore the parallel querppessing

monolithic plan by two orders of magnitude when there 32 buck
ets. Figure 8(b) shows the optimization time. Both methads a
affected equally by the increase in the number of buckets. ofh
timization time of GHP is one order of magnitude worse that th
of traditional query optimization.

Note that with more than 16 buckets, the optimization time ex
ceeds the execution time for intermediate tuples in ouinggtHow-
ever, if the size of the database was larger (e.g., eaclioreledn-
tains10® tuples), the execution time would vary frar* to 10% in
Figure 8(a), while the optimization time would not be affstt In
most settings, achieving up to two orders of magnitude faste
ecution is more significant than an one order of magnitudeesio
optimization. However, a wrong choice of parameters cad tea
high optimization times for horizontal partitioning.

5.3 Scaling the number of relations

Finally, we study the performance of GHP when the number of

relations in the query varies from 4 to 7. The correlatiorapzeter
is fixed at 0.5, the selectivity of all the joins is fixed at Ql0@nd the
domain size of the descriptive attributes is fixed at 4. Atgame
time, we vary the number of iterations of the GHP algorithondr
1to 4. The execution time devoted to intermediate tuplebasva

in Figure 9(a), and the optimization time is shown in Figue)9
As the number of joins in the query grows, it is very benefitial
increase the number of iterations of the greedy algorithmpar-

ticular, for seven relations, four iterations of the greedtyorithm

can reduce the execution time of intermediate tuples by tders

of magnitude when compared to one iteration.

6. CONCLUSIONS AND FUTURE WORK

Data correlations provide opportunities for more effeztijuery
optimization by partitioning relations. We first presentrenpipled
way to approach the problem of horizontal partitioning aarcle
in the space of conditional join plans. CJPs provide an fintui
way to think about the problem, and recursive cost formutas f
CJPs can be defined. Further, we show how to efficiently esima
correlated selectivities using a statistical model witl lstorage
overhead. Then, we show how the sharing of intermediatdtsesu
that is inherent in eddies restricts the space of possibRsCA

case where the optimization metric is throughput..

7. REFERENCES

[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously giilee query
processing. 'SIGMOD, pp. 261-272, 2000.

[2] P.Bizarro, S. Babu, D. J. DeWitt, and J. Widom. Conteasdx
routing: Different plans for different data. MLDB, 2005.

[3] S. Chandrasekaran, et al. TelegraphCQ: Continuoudlolata
processing for an uncertain world. GiDR, 2003.

[4] S. Cluet, and G. Moerkotte. On the complexity of genegidptimal
left-deep processing trees with cross product«CIDT, 1995.

[5] A.Deshpande. An initial study of overheads of eddBESMOD
Record 33(1):44-49, 2004.

[6] A. Deshpande, M. N. Garofalakis, and R. Rastogi. Indelpawe is
good: Dependency-based histogram synopses for high-dioreai
data. INSIGMOD, pp. 199-210, 2001.

[7] A.Deshpande, C. Guestrin, W. Hong, and S. Madden. Etiptpi
correlated attributes in acquisitional query processingCDE,
pp. 143-154, 2005.

[8] A. Deshpande and J. M. Hellerstein. Lifting the burderhistory
from adaptive query processing. \fLDB, pp. 948-959, 2004.

[9] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive querggssing.

Foundations and Trends in Databasé$1):1-140, 2007.

D. J. DeWitt and J. Gray. Parallel database systemsfathee of
high performance database syste@ACM, 35(6):85-98, 1992.

P. L. Fackler. Generating correlated multidimensloraaiates.
Available at http://www4.ncsu.edu/ pfackler/randqasr.

[12] L. Getoor.Learning Statistical Models from Relational Daf@hD
thesis, Stanford University, 2001.

L. Getoor, B. Taskar, and D. Koller. Selectivity estitioa using
probabilistic models. IBIGMOD, pp. 461-472, 2001.

D. Koller, and N. Friedman. Probabilistic graphical dets. MIT
Press, 2009.

R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimizatiof
nonrecursive queries. MLDB, pp. 128-137, 1986.

R. V. Nehme, E. A. Rundensteiner, and E. Bertino. Satfiiig query
mesh for adaptive multi-route query processingE BT, 2009.

R. V. Nehme, K. Works, E. A. Rundensteiner, and E. BertiQuery
mesh: Multi-route query processing technoloBy/.LDB, 2(2), 2009.
N. Polyzotis. Selectivity-based partitioning: a digiand-union
paradigm for effective query optimization. @IKM, 2005.

V. Raman, A. Deshpande, and J. M. Hellerstein. Usintestzodules
for adaptive query processing. IGDE, pp. 353—, 2003.

[10]

[11]

[13]
[14]
[15]
[16]
[17]
(18]

[19]

APPENDIX
A. THE EDDY CJP STRUCTURE

We show how, given a querg, we can construct a unique eddy
CJP structurd’. (Q, F.). We assume the chain query graph:

Q({Ry,..., R, {Miipr i=1,...,n —1})

The generalization to tree query graphs is straightforwrde
considem-ary instead of binary decision predicates. The construc-
tion proceeds in two steps. First, thddy skeleton routing policy
me(Q, Fe) of a query is constructed. Then, using, the eddy CJP
structureP. (Q, F.) is constructed.

An eddy routing policyr is a map from relation schemas to join
operators. The eddy skeleton routing policy is the most ggne
routing policy possible, and it is unique for a given quéyFor its
construction, we start with.(Q, F.) = (. For each base relation
R;,i=2,...,n—1inthe query, we add te.(Q, F.) the element

S M1
N M1

For each intermediate relatid®y Ri41 - - - Riyx, We add tar. (Q, Fe)
the element

R; — ¢;

S M1

RiRit1- - Rivk — @i, itk N Mo sphr
i+k,i

until no intermediate relation is left. Note that the asstiompwe

follow in this section is that if a tuple satisfies a decisioadicate,
it will be routed to the leftmost possible join in the chainegu

graph. The eddy skeleton routing policy for our running egham
is

me(QF) = {S—os [Tor ST
ST0—>¢ST< ngj).

Given the eddy skeleton routing poliey (Q, F.), we construct
the eddy CJP structurg.(Q, F.). The algorithm first produces
the full binary tree of base predicateés. This will result in a bi-
nary tree with2" =2 leaves. Each leaf of this tree corresponds to
a full {T, F}-assignment of all the base predicates. .., ¢n_1,
and leads to a sub-plan containing join nodes and possiligida
nodes that contain predicates on intermediate relationsnof@
each of these sub-plans B¢, . . ., ¢n—1). The CJIP structure for
our example query is shown again in Figure 10. It is rotateth(r
tions do not affect correctness or the results of cost caficud), in
order to conform to the assumption we made above. The suls-pla
are denoted byP(¢s, ¢7), and P, = P(T,T), P = P(T,F),
etc.

>, —> Pa,

P{m [><sr

— P, —> P,

— P, — P

ra, —>

[PN

Figure 10: The eddy CJP structure for our running example.

The first step of the algorithm is to decide which decisionesod
over intermediate relations will be placed in which subaglaFor

example, in Figure 10, the decision nogler is placed only in the
sub-planPs;. Essentially, a decision nodg; ;41 should only be
placed in the sub-plans in which the intermediate refylR; 1
is formed. These are the sub-plans in which b&thand R;+1
are routed toX; ;1 and produceR; R;+1. Under our formaliza-
tion, routing R, to X, ;41 means thaty, = F, and routingR,+1
to X; ;41 means thaty;11 = T. So, the decision node; ;11 is
placed in the sub-planB(¢2,...,¢i = F,¢ix1 =T,..., pn—1).
Having placed the level-2 decision nodes, the same proeedur

can place the level-3 nodes, and continue until all the d®tis
nodes present in the eddy skeleton routing policy have bieeeg.

.....

cluded in a sub-plar® iff

1. ¢; = Fand@iy1,...i+k isincluded inP and ;41
T, or

,,,,, itk

2. ¢i,....i+k—1isincluded inP andg;.... ;+x—1 = Fando;yx
T.

The final step is to place all the join nodes at every leaf of the
formed tree of the decision nodes. A partial order of the jades
is defined by the predicate assignments that hold at each leaf

1. If d)l =T, thenNi,17i<l>4i,i+1, eIseNi,iH {Nifl’i.
2. If ¢i,.4.,i+k =T, thenl><1i,1,i-<l><1k’k+1, E|SEI><1k’k+1 <Xi—1.

The partial order produced is transformedatoy equivalent total
order, and the join nodes are placed using the resultind ¢ota
der. For example, consider the sub-pl&n of Figure 10. Since
os ¢r = T, the partial order iXrs<Xgr <Xz which is

a total order. For the sub-plafs:, ¢s = Fand¢r = T. This
will produce the partial ordeKsr<Xgrs, Xsr <M. Hence,
the assignments aps and ¢ alone cannot produce a total or-
der. In the this sub-plan$ andT tuples are routed t&sr pro-
ducing the intermediate resutI". This intermediate result can be
routed to eithetXrs or X7, One more predicate, the interme-
diate predicatesr, is needed to make the routing deterministic.
Since inPs1, ¢s = T, using the second rule, we get the con-
straint X rs <X7gr, which makes the partial order total. Finally,
consider the sub-plaf,. Here, the constraints imposed by and
¢ areXpgs<MXgr andXy <Xsr, which do not form a total or-
der. However, this does not matteP; represents the bushy plan
(R X S) X (T M U), and the cost estimation function will pro-
duce the same result regardless of the relative ordetof and
Xy,

B. PROOF OF LEMMA 2

We need to prove that iP is an eddy-compliant CJP, then the
cost function @STeqay(P) computes| P||s correctly. || P||s is the
sum of sizes of intermediate relations, where each inteiatede-
lation is added to the cost only once. Consider the [(&4fs of the
CJP of Figure 3

[Plls = [RS1[+|ThU |+ |S2 12|+ RS T2 | +[S Th U |+ [S2 T2 U,
and the cost calculated by the cost functionGs(P):

CosTns(P) = 2|RS1| + 2|7 U| + |S2T2|+
|[RS1T5| + |S2ThU| + |S2 12U .

While the terms added by @sTns(P) are correct, some terms are
added multiple times. The cost functioro€Teqqy is derived from
the cost function ©sTys with a simple modification: In every joint
probability, instead of including only the decision preateassign-
ments that are relevant to the join predicates, we includeéabde-
cision predicate assignments from the root to the curreté n®he

cost formula for decision nodes in Equation 2 remains theesam Induction step If all intermediate result& with card X') < k are
For completeness, the cost function for a join nede —X;;— n' included in the cost one or zero times, then all intermediate
is presented below for cases 1, 2, and 4: results) with card))) = k + 1 are included in the cost one

or zero times.

COSTeany(n, , M) = Pr(xy /\ O Rill Ry l+ We begin with the basis of the induction. Consider an interme

, e diate relation’ of cardinality 2, that involves the relatio®; and
CosTeduy(n', &, MU {({R:, R;}, {Mi; })}). Ri.1, possibly in some partitioned form. We distinguish between
three cases: (@)= 1,(b),i =n—1,and (c)i Z1 A7 #n — 1.
COSTeday(n, &, M) = Pr(X;;, /\ €, /\ ®)|R;] H |R|+ Consider first case (a). Thea; involves the relationg?; and R»
c€Z, ped RER, and is formed only when the joik, » is at the first level of the

join tree. For the eddy CJP, this means thats only formed in
the sub-plans withpy, = T (see Appendix A). As already dis-
cussed, a leaf of the tree of decision predicates is equivalih
COSTeday(n, ®, M) = Pr(X;;, /\ g, /\ ?) H |R|+ an assignment ofT, F}-values to all the decision predicaté$P)
EEE1UE, ¢€® RERUR» in the CJP. The joim, 1 is at the first level only at the sub-plans
¢ _ = U= g with ¢ = T, regardless of the values of the rest of the decision
CosTeas(n', , M = fmi,ma} U{(Ra UR2, Z1 U Z2 U s))). predicates. However, note that the CBPQ) is derived from the

CosTeddy(n’, ®, M — {m1} U{(R1 U{R;},E1 U {Xy;})}).

This modification does not alter the relation partitionsnc®i all eddy CJP structur@., and may contain only a subset of the free
the decision predicates that are relevant to the join pateicare predicates inF. (F(P) C F.). Hence some predicates fraf.
included in the probabilities in both cost functions, thetitian (including ¢2) may not appear in the decision node tree. So, we

sizes that are added as terms to the cost are the same. What igistinguish between three sub-casesyti)c 7 (P) (meaning that
pllfferent is the weight of the_se terms. Th(_e extr_a decisiatiwmates ¢o is a part of P), (i) ¢2 = ¢pme (Meaning that only the upper
included in @S Teqay(P) weight the partition sizes. For example, sub-plan ofg- in the eddy CJP structure is included), and (iii)

_con_sider the cost contribution of the nade s of the sub-planP;; ¢2 = ¢rase (Meaning that only the lower sub-plangf in the eddy
in Figure 3: CJP structure is part aP). In case (iii), X will never be formed
T | (R2 is routed taX 3), so|X'| will not be included in the final cost.

Pr(Mrs=T,¢s =T,¢r = T)|R||S| = |RS1] In case (ii)X is formed at every sub-plan. Hence, the total cost

contribution will be

ST P}, N 9)Ri||Re| = [Ry X Ral.

7|

While the cost function GsTns(P) adds to the total cost the whole
size of the intermediate resliR.S: |, the cost function ©STeday(P)

weights it by 7. When the cost function @sTeus,(P) evaluates _ d)_E{T’F} o oEFE) _ _
the cost of the nod&l s in P12, it adds to the cost the term Finally, in case (i) is formed only in the sub-plans with, = T.
73| Then, the cost contribution will be
Pr(Mps—=T.bs = T.br = F = L2l
r(Mprs=T,¢s =T, ¢r = F)|R||S| = |[RS:| 7 ST Pr(ki 2, s, A OIRil|Re| = [Ry X o, (Rz)].

Added together, these terms result to the 26, | being included oETF PEF(PI=102)

only once to the total cost. So, in any case|X| is included with weight 1 in the cost, ether
The total cost of a CJP consists of sizes of intermediate rela in the form|R; Re| or in the form|R; R3|. This concludes case
tions|X|. An intermediate relatiork encompasses both a certain (a) of the induction basis. Case (b) is handled similarlyr ¢ase
schema, and certain partitions of relations. The schemaois p (c) (i # 1,n — 1), an intermediate relatio®’ that containsR;
duced by the join predicates, and the partitions are pratibye and R; 1 will be created only in the sub-plans withy = F and
the decision predicates. It is obvious that the terms preduxy ¢i+1 = T. Again, we distinguish between three cases:
COSTeagy(P) are the same as the ones produced DEGis(P), 1. ¢i, ¢i+1 & F(P) which has the following subcases
since the extra decision predicates added are exactly e tbat
do not change the partitions. The difference is that @5@Gdqy(P)
some terms are weighted. We only need to show that these tseigh
in multiple appearances of the same term will add to one:

(@) ¢i = draseande; 1 = ¢rase. Then, there are not sub-
plans in whichX’ is formed, solX’| does not appear in
the total cost.

(b) ¢z = ¢false and¢i+1 = (,blrue-

Lemmq 3. 1fP i; an eddy—compliant CJP, therl if the cost of an in- (©) é: = duue aNdpis1 = drase Then,|X| does not appear
termc_edlate relation¥ appears inCoSTedqy(P), it appears exactly in the total cost.
one time. (d) ¢i = ¢wue andit1 = Puue. Then,|X'| does not appear
PROOF. We assume the chain query graph in the total cost.
O({R1,..., R}, {Miis1 li=1,...,n—1}). 2. ¢i € F(P),diy1 & F(P). The casepi & F(P),i+1 €

F(P) is dual. We have the following subcases:

A generalization to tree query graphs is straightforwardvef as- (@) 11 = drase Then,|X| does not appear in the total

sumen-ary instead of binary decision predicates. Consider an in-

termediate relatiodt’ that involves the relation®;, ..., R4+« in cost.

some partitioned form. Our proof is constructed as an indoct (0) i1 = drrue.

over the cardinality of the intermediate relation dagtd = k + 1. 3. ¢i, ¢i+1 € F(P). Then,X is formed only in the sub-plans
Specifically, we will show the following: with ¢; = Fandeg;11 =T.

Basis An intermediate resul®” with card X’) = 2 is included in We need to prove thatin cases 1(b), 2(b), and3,appears exactly

the cost one or zero times. once in the total cost. In case 1(&,is formed in every sub-plan.

The contribution to the total cost is

> Pr(Mis, N @)IRillRia| = |Ri X Riga
SE(TF} seF(P)

In case 2(b)X is only formed in the sub-plans with; = F. The
contribution to the total cost is

z Pr(Xi it1, i,
¢e{T,F} F(P)—{¢i}

|o—p; (Ri) M Riyal.

In case and 3Y is only formed in the sub-plans wih; = F and
¢i+1 = T. The contribution to the total cost is

Z Pr(Xi it1, 2¢i, dit1, /\ &) | Ril|Rit1| =

oe{T,F} F(P)—{bi,pit1}
|o—g; () Moy, (Riv1)]

So, |X| is always weighted by a factor of 0 or 1 in the total cost.
This concludes the basis step.

For the induction step, consider the intermediate relafionf
cardinalityk + 1, that contains the relatiorf3;, . . . , R;+x. Thisin-
termediate relation will be formed from a join nokte ;1 that will
join the intermediate relation¥;, X2, which contain the relations
R;,...,R; andRj41,..., Riyy respectively. Since cafd;) <
k and cardX>) < k, we know that|/X;| and|X:| either do not
appear in the total cost, or they appear with a factor of 1eNtaat
multiple intermediate results that contain the relati®ns. . . , Ry«
can appear in the total cost, produced by all the jofhg41 with
j=1,...,i+k—1. However, these intermediate relations contain
different partitions of the relations, and are thus différtor the
purposes of this proof. We can therefore focus on a partisalae
of j. Similarly to the base step, we have the following cases:

1. Either|X1| or | X2| do not appear in the total cost. The#;|
does not appear in the total cost.
2. Both|X4| and|X-2| appear in the total cost. Thefr,is formed
atthe sub-plans with; = ¢;,...; = F,and¢2 = ¢j11,....i16 =
T. This has again the following sub-cases:
(@) ¢1,¢2 & F(P), p1 = draises aNdp2 = rrue.
(0) ¢1,¢2 € F(P).
(©) ¢1 € F(P), g2 & F(P), andgs = Pue-
(d) ¢2 € .7:(P), ¢1 g .7:(P), and¢1 = ¢false-
We need to prove thak’| appears with a factor of 1 in the total cost
in cases 2(a)—2(c) (case 2(d) is dual to case 2(c)). TheHat#y

&) Ri||Riv1| =

and X, are formed implies an assignment of all the base decision

predicatesy;, . . ., ¢+, as well as an assignment of all the deci-
sion predicates on the intermediate relations that fatnand .
Let us callF; the set of these assigned decision predicates4nd
the particular assignment. This assignment creates thi¢iqras of
the relationsR;, . . ., R, particular toX; and X», but does not
introduce factors in their cost (from the induction hypailsg Let
us denote byE; (Z2) the conjunction of join predicates i (X2),
and by|R| the size of the Cartesian produgt x - - - X R;;x. For
the case 2(a) above, the cost contribution is

Z Pr(™;,j41,E1, E2, /\ &, A;)|R| = | X1 X As|.
pe{T,F} PEF(P)—F;

In case 2(b),X appears only in the subplans with = F and
¢2 = T. The cost contribution is

Z Pr(Xj, 41, 51, B,
$€{T,F} GEF(P)=Fj— {142}

= |o-py (X1) M g, (A2)].

¢, Aj,—¢1, $2)|R|

Finally, for case 2(c), the cost contribution is

> Pr(My,41,51, 5, A ¢, Aj,~¢1)|R| =

$e{T.F} $EF(P)—F;—{é1}
|-y (A1) X Xa.

So,|X| will appear in the total cost with a factorof Oor 1. O

C. GREEDY ALGORITHM DETAILS

Pseudocode for our greedy algorithm is given in Algorithm 1.
Initially (in function GREEDY-HPE), a traditional query optimizer
is invoked to find the best monolithic plan for the query. We us
the KBZ polynomial-time algorithm in our implementation5[1
This plan corresponds to ®braise, dwrue }-value for each predicate
in the set of predicates of the eddy skeleton routing poli€y,
Then, the recursive functionf&EDY-HPE-RECIs called. It takes
the following argumentsZF is the set of predicates frotf. that
have not been given values;is the set of bound predicates by the
algorithm (i.e., predicates that are already part of the &liPare
assigned a value not froftpuue, ¢rase}); A is an set of predicate
values from{ ¢uue, ¢raise} for all the predicates itF; C is a{T, F}
assignment for the predicates f valid in thecurrent sub-plan
Cmin is the cost of the best CJP found so fais the partitioning
budget. The initial values for these arguments can be sdareib
of Algorithm 1.

The function GREEDY-HPE-REC examines all the free predi-
cates inF. For each possible value of every free predicatet
evaluates the cost of the CJP that uses @hbs a decision pred-
icate, and the upper and lower join orders honor the eddyicest
tions. If it finds that such a predicate improves the total cost,
it introduces it to the CJP, and recurses to the two sub-plahe
recursion finishes if such a predicate was not found, edécision
predicates have already been used.

Algorithm 1 Greedy Horizontal Partitioning with Eddies, initial-
ization and main algorithm

1: function GREEDY-HPE(Q)
2: ConvertQ to the eddy skeleton routing poliey. (Q, F)

3: Find the optimal plarP* for the query, and its cogt™
4: Find the assignmentl* (F.) that corresponds to the pldan*
5: return GREEDY-HPE-REC(F, 0, A*, 0, C*,c)
6: function GREEDY-HPE-REC(F,B,A,C,Crmin,C)
7. ¢* =null; C* = Cpyin; P* =null
8: for ¢ € Fdo
9: for all possible valuest < v for ¢ do
10: A= A[F — {6}]
11 A(b - A/ U {(z) - (z)true} @] C
12: Ay =A"U{¢ = drase} UC
13: if LEGAL(Ag4) A LEGAL(A-4) then
14: Py = PLAN(Ay)
15: P_4 = PLAN(A-y)
. BN
16: P=—¢ N P,
17: C = CosT(P)
18: if C < C* then
19: C*=C;P*=P,¢* =¢
20: if * = null vV ¢ = 0 then return PLAN(A U C)
21: P = GREEDY-HPE-REQF — {¢*},B U {¢*}, A[F —
{¢*},CU{¢* =T},C*c—1)
22: P, = GREEDY-HPERECQF — {¢*},B U {¢*}, A[F —

{¢*},CU{¢* =F},C%c—1)

23: retun — ¢* < %

We can measure the cost of the greedy and exhaustive algarith
as the number gbin plansthat will be evaluated. For simplicity,

180 14
10 T T T T T 10 T T T
160 Greedy,c=n —#— | Greedy,c=n —&—
107" fExhaustive,c=n —0—,‘- 1013 [Greedy,c=10 —v—
o 140 fEXhaustive,c=1 /3 - [Greedy,c=20
@ 10 E @ 10%?
8 4120 /]
> 10 E E = 11
S 100 i 3 g 10
o 10 [T
" 20 »n 10
c 10 4 c
© 8 49
Q460 E o 10
£ £ s [
S 10" E 8 Wr
10%° E 107
10° ' 108 L 1 1 1

3 45 6 7 8 910 10 15 20 25 30
Joins in query Joins in query
(a) Cost of exhaustive search. (b) Cost of greedy search.

Figure 11: Number of join plans considered by the exhaustive
and greedy search in the eddy CJP space.

we assume that the decision predicates in a CJP form a cantyplet
nary tree. This is true for chain queries when no decisiodipates
on intermediate results are used, but not true in the gecasa.
Under this assumption, if a CJP containdecision predicates, we
need to payC(k) = 2" in order to evaluate its cost. Assume
that the eddy CJP structure contai/s.| = m binary decision
predicates. This number can be easily calculated usingubeyq
graph and the number of joins in the quety For chain queries,
m="0=D _ ©(n?), while for star queriesn = O(n?).

The exhaustive algorithm needs to partition theBebf m de-
cision predicates into two sets: a SEt of predicates that will be
a part of the CJP, and a s&t of predicates that will be assigned
values frompyue, draise. The sizes of the sets, given the partitioning
budgetc are|F1| = ¢ and|Fz| = m — c¢. For each combination
of these sets, and for each combination of values of the idecis
predicates, the algorithm needs to evaluate the cost of afXlRe
c. Assuming that the domain size of all descriptive attelsusd,
the cost of the exhaustive algorithm is

EXHAUSTIVE(m, c) = (TZ)dCT”*“C(c)

For the greedy algorithm, consider the case whereé iterations
have already been executed, and theré degations left. Then, the
size of the argumenf is | F| = m — ¢ + i. The greedy algorithm
will for every predicate and every predicate value in that eeal-
uate the cost of a CJP with one decision predicate. Then,llit wi
recurse with — 1 iterations left:

GREEDY(m, 1) = d(m — ¢ +4)C(1) + 2GREEDY(m, i — 1)

Since initially there are: iterations left, we are interested in the
cost GREEDY(m, ¢). When there is no restriction in the number
of partitions ¢ = m), the cost of both algorithms grows super-
exponentially with respect ta. However, consider the case where
we restrict the partitions to the number of joins in the quer¢ n,
allowing essentially one decision predicate for each baksion.
The number of join plans evaluated by the exhaustive anddgree
algorithms are shown in Figure 11(a) fer= 3ton = 10 joins in

the query. While the cost of exhaustive grows&(é&”z), the cost
of the greedy search grows &52"). Even restricting to a fixed
number of partitionsd{ = 1) cannot alleviate the super-exponential
growth of the exhaustive algorithm. The cost of the greedyp-al
rithm for fixed iterations and iterations equal to the nunfgoins

is shown in Figure 11(b) fon = 10 ton = 30 joins. While the
growth is exponential, it can be kept reasonable with fixedhit
tions at the cost of CJPs of reduced quality.

D. IMPLEMENTATION DETAILS

Our prototype is based on the PostgreSQL codebase, and uses

the eddy implementation described in [5]. Specifically, vemeh
created two new PostgreSQL operators: the eddy and the SieM o
erator. The SteM is a main memory hash table that stores lbase o
intermediate tuples and has an insert/probe interfaceinAgexe-
cuted using two SteMs. The eddy operator performs the rguiia

an internal routing policy structure. The routing policyusture is

a mapping from a tuple signature to zero or more operatorsaré/e
using the routing policy as the search space representattinh

is equivalent to using CJPs. All our additions in the PoSQk
code are in the execution engine, and in fact we have conhplete
bypassed the PostgreSQL optimizer. The construction giithe
tion tree is done outside the PostgreSQL code, with a sinipBC)
program. The junction tree is read into memory when PostQteS
starts. A more careful implementation would reuse the PeSIQL
catalog and optimizer, and subsequently have better aptioh
performance.

E. DATA GENERATION

We generate synthetic data for a join quéty X - - - X R,,, Si-
multaneously controlling three parameters: the numbeugés in
each relation)V, the selectivities of the join operatoss, . . ., sn,
and the Pearson correlation coefficient, The latter controls the
degree of correlation in the database and takes valueslinl]: if
r = 0, the database should be fairly uniformi#f = 1, an almost
perfect partitioning scheme of the relations should exi$te data
generation algorithm takes as input the desired parametaey
N,{s1,...,sn}, 1, as well as the Markov network of the database.

Consider the example query and its Markov network shown in
Figure 4. The variables that are connected in the Markov ortw
(e.g.,.X andJrs) have a correlation coefficent with absolute value
equal tor. In order to simulate a perfect paritioning for high corre-
lations, we flip the sign of the correlation coefficient atrgvedge
of the graph. For example, the correlation coefficient betw®
and Jrs is equal tor, the correlation coefficient betweefirs
andY is equal to—r, etc. Variables that are not adjacent in the
graph are correlated only indirectly. Under certain asgiong,
the correlation coefficient between two variablésnd B is equal
to (—r)*, wherek is the number of edges in the path between
and B. For example, the correlation coefficient & and Jsr is
—r3. This procedure gives the correlation matix= [r;;] whose
entries are the correlation coefficients between every gfaian-
dom variables. Then, the method described by Fackler [11deasl
to create avV x 7, [0, 1]-valued matrixD = [d;;] that conforms
to the correlation matrib®. Each column of the matri® is used
to generate a random variable. For descriptive attribtited, 1]
valued;; is scaled accordingly to the attribute’s domain. For join
indicators, the valud is chosen ifd;; > 0.5, and the valud- is
chosen otherwise. Finally, each value of a join indicgigis used
to create two values of the join attributes for the relatiofife
values should be equal jt; = T, and not equal otherwise. In
addition, the domain of the join attributes is chosen so tihatse-
lectivity of the join is equal to the input given to the datangeation
algorithm.

Acknowledgements

This research was conducted when C. S. Jensen was a fulRtiore
fessor at Aalborg University. C. S. Jensen is an Adjunctéxsdr
at University of Agder, Norway.

