PrDB: Increasing the Representational Power and Scaling Reasoning in Probabilistic Databases

Amol Deshpande, University of Maryland

(joint work w/ Prof. Lise Getoor, Bhargav Kanagal, Jian Li, and Prithviraj Sen)
Motivation

- Increasing amounts of real-world uncertain data
 - Sensor networks, Scientific databases, Social networks...
 - Noisy, error-prone observations
 - Imprecise data, data with confidence or accuracy bounds
 - Widespread use of statistical and probabilistic models
 - ... for entity resolution, link prediction, function prediction etc.

- Automatically constructed knowledge-bases
 - Noisy data sources, automatically derived schema mappings
 - Reputation/trust/staleness issues
 - Automatically extracted knowledge from text

- Need to develop database systems for efficiently representing and managing uncertainty
Several approaches proposed in recent years in DB literature

Typically based on probability theory
- Annotate tuples with probabilities of existence (tuple-existence uncertainty)
- Specify a pdf over possible values of an attribute (attribute-value uncertainty)

Focus on SQL query evaluation, but inference also considered

Strong independence assumptions; limited attribute uncertainty support

PrDB Goals:
- Increase representation power to support:
 - Correlations among the data items
 - Uncertainties at different abstraction levels and granularities
- Scale reasoning and querying to large-scale uncertain data while supporting the above
An Example Probabilistic Database

- Example from Dalvi and Suciu [2004]
- Assume independent tuples

Possible worlds

<table>
<thead>
<tr>
<th>instance</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>{s1, s2, t1}</td>
<td>0.12</td>
</tr>
<tr>
<td>{s1, s2}</td>
<td>0.18</td>
</tr>
<tr>
<td>{s1, t1}</td>
<td>0.12</td>
</tr>
<tr>
<td>{s1}</td>
<td>0.18</td>
</tr>
<tr>
<td>{s2, t1}</td>
<td>0.08</td>
</tr>
<tr>
<td>{s2}</td>
<td>0.12</td>
</tr>
<tr>
<td>{t1}</td>
<td>0.08</td>
</tr>
<tr>
<td>{}</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Interpret as a distribution over a set of deterministic possible worlds

\[
p(s1) \times p(t1) \times (1-p(s2)) = 0.6 \times 0.4 \times 0.5 = 0.12
\]
Query Processing Semantics

- Evaluate on each possible world and combine results
- Example Query: $\pi_C(S \bowtie_B T)$

Example Query:

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>'m'</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>s2</td>
<td>'n'</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>B</th>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>'p'</td>
<td>0.4</td>
</tr>
</tbody>
</table>

$s1$'m' 0.6
$s2$'n' 0.5
$t1$'p' 0.4

π_C from S, T where $S.B = T.B$
Query Processing Semantics

- Evaluate on each possible world and combine results
- Example Query: $\pi_C(S \bowtie_B T)$

Possible worlds

<table>
<thead>
<tr>
<th>Instance</th>
<th>prob</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>${s1, s2, t1}$</td>
<td>0.12</td>
<td>${\text{p}}$</td>
</tr>
<tr>
<td>${s1, s2}$</td>
<td>0.18</td>
<td>{}</td>
</tr>
<tr>
<td>${s1, t1}$</td>
<td>0.12</td>
<td>${\text{p}}$</td>
</tr>
<tr>
<td>${s1}$</td>
<td>0.18</td>
<td>{}</td>
</tr>
<tr>
<td>${s2, t1}$</td>
<td>0.08</td>
<td>${\text{p}}$</td>
</tr>
<tr>
<td>${s2}$</td>
<td>0.12</td>
<td>{}</td>
</tr>
<tr>
<td>${t1}$</td>
<td>0.08</td>
<td>{}</td>
</tr>
<tr>
<td>{}</td>
<td>0.12</td>
<td>{}</td>
</tr>
</tbody>
</table>

Query Result

<table>
<thead>
<tr>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Not clear how to do this in general, e.g. ranking??

Consensus Answers [PODS’09]
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Overview
- PrDB: Some Details
 - Instance-optimal query execution
 - Inference with Shared Factors
 - Indexing Structures for Correlated Databases
- Ongoing and Future Work
1. Correlations in Uncertain Data

Most application domains generate correlated data

- Data Integration
 - Conflicting information best captured using "mutual exclusivity"
 - Data from the same source may all be valid or may all be invalid

- Information extraction
 - Annotations on consecutive text segments strongly correlated

- Social networks; Sensor networks
 - Attributes of neighboring nodes often highly correlated
 - Predicted links, class labels, extracted events likely to be correlated

Even if base data exhibits independence...

- Correlations get introduced during query processing
2. Shared Uncertainties and Correlations

- Uncertainties and correlations often specified for groups of tuples rather than for individual tuples.
- Necessary when trying to model and reason about uncertainty in large populations.

<table>
<thead>
<tr>
<th>AdID</th>
<th>Model</th>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Honda</td>
<td>?</td>
<td>$9,000</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
<td>Beige</td>
<td>$8,000</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>?</td>
<td>$6,000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000000</td>
<td>?</td>
<td>?</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Pr(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda</td>
<td>0.2</td>
</tr>
<tr>
<td>Mazda</td>
<td>0.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| Model | Color | Pr(C|M) |
|-------|-------|--------|
| Honda | Beige | 0.1 |
| Honda | Red | 0.2 |
| ... | ... | ... |
| Mazda | Beige | 0.02 |

A Used Car Ads Database
3. Schema-level Uncertainties

- Often we have probabilistic knowledge at the schema level (learned from a deterministic database) that we are trying to transfer.
 - Using Probabilistic Relational Models (PRMs), Relational Markov networks (RMNs), Markov Logic Networks (MLNs) etc.

![Diagram of student IQ, course difficulty, and course grade dependencies.]

An Instantiation

<table>
<thead>
<tr>
<th>Name</th>
<th>IQ</th>
<th>Course</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td></td>
<td>CS101</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td></td>
<td>CS101</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td></td>
<td>CS201</td>
<td></td>
</tr>
<tr>
<td>Alice</td>
<td></td>
<td>CS201</td>
<td></td>
</tr>
</tbody>
</table>

- **Student’s IQ** → **Course Difficulty** → **Course Grade**
- A “Schema-level” Dependence
PrDB Framework

- Flexible uncertainty model (based on probabilistic graphical models)
 - Support for representing rich correlation structures [ICDE’07]
 - Support for specifying uncertainty at multiple abstraction levels [DUNE’07]

- Declarative constructs for interacting with the database
 - Manipulating and updating uncertainty as a first class citizen

- Rich querying semantics
 - SQL queries; Inference, reasoning, and what-if queries

- New techniques for scaling reasoning and query processing
 - Inference techniques to exploit the structure in the data [VLDB’08, UAI’09]
 - Index structures for handling large volumes of data [SIGMOD’09,’10]
 - Efficient algorithms for ranking queries, consensus answers [VLDB’09,PODS’09]
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Overview
- PrDB: Some Details
 - Instance-optimal query execution
 - Inference with Shared Factors
 - Indexing Structures for Correlated Databases
- Ongoing and Future Work
A Simple Example

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
 - Concepts borrowed from the *graphical models* literature

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>‘m’</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>s2</td>
<td>‘n’</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>B</th>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>‘p’</td>
<td>0.4</td>
</tr>
</tbody>
</table>
A Simple Example

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
- Concepts borrowed from the *graphical models* literature

Table 1: Probabilities

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>‘m’</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>s2</td>
<td>‘n’</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>B</th>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>‘p’</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 2: Factor Functions

<table>
<thead>
<tr>
<th></th>
<th>s1</th>
<th>f₁(s1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>s2</th>
<th>t1</th>
<th>f₂(s2, t1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Often not probability distributions
- Values can be > 1
- s2 and t1 mutually exclusive

0 = Tuple does not exist
1 = Tuple exists
A Simple Example

- Represent the uncertainties and correlations graphically using small functions called *factors*

- Concepts borrowed from the *graphical models* literature

Markov network representation

<table>
<thead>
<tr>
<th>(S)</th>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>‘m’</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>s2</td>
<td>‘n’</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(T)</th>
<th>B</th>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>‘p’</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(s1)</th>
<th>(f_1(s1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(s2)</th>
<th>(t1)</th>
<th>(f_2(s2, t1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Factor graphs
A PGM can compactly represent a joint probability distribution over a large number of random variables with complex correlations.

Specified completely by:
- A set of random variables
- A set of factors over the random variables

Joint pdf obtained by multiplying all the factors and normalizing.

An Inference task: Finding a marginal probability distribution over a subset of variables.
- e.g. $Pr(t_1)$

Joint pdf: $Pr(s_1, s_2, t_1) \propto f_1(s_1) f_2(s_2, t_1)$

For example:
$Pr(s_1 = 0, s_2 = 0, t_1 = 0) = \frac{1}{Z} f_1(s_1 = 0) f_2(s_2 = 0, t_1 = 0)$
Underlying representation essentially a factor graph
 - Tuples and factors stored separately in different tables

Factors can be inserted on any set of random variables
 - Corresponding to tuple existences or attribute values

Semantics: the joint pdf over the random variables is obtained by multiplying all the factors and normalizing
 - No special care taken right now to ensure this is correct

Allows specifying *shared factors that apply to groups of tuples, or to all tuples of a relation (schema-level)*
insert into S values (‘s1’, ‘m’, 1) uncertain(‘f 0.2; t 0.8’);

insert into T values (‘t1’, uncertain, ‘p’);
insert factor ‘f 2 0.2; f 3 0.8; t 2 0.9; t 3 0.1’ in S, T on ‘s1.e’, ‘t1.B’;
PrDB: Representation and Storage

\[
\text{insert into } S \text{ values ('s1', 'm', 1) uncertain('f 0.2; t 0.8');}
\]

\[
\text{insert into } T \text{ values ('t1', uncertain, 'p');}
\]

\[
\text{insert factor 'f 2 0.2; f 3 0.8; t 2 0.9; t 3 0.1' in } S, T \text{ on 's1.e', 't1.B';}
\]
Inference queries
- Find marginal or conditional probability distributions over subsets of attributes

Declarative SQL queries
- PrDB supports a fairly large subset of SQL queries, including:
 - Select-project-join queries
 - Aggregates
 - Set operations (union, difference)
PrDB: Query Processing Overview

No Index on the Data

- Load the base PGM into memory
- Construct an augmented PGM [ICDE’07]
- Use exact or approximate lifted inference [VLDB’08, UAI’09]

INDSEP Indexes Present

- Aggregation or inference queries: Use index directly [SIGMOD’09]
- SQL SPJ Queries [SIGMOD’10]
 - Gather a minimal set of correlations & uncertainties using the index
 - Use exact or approximate inference
 - In some cases, solve using the index

User

Query Processor

Inference Engine

INDSEP Manager

Data tables

Uncertainty Parameters

A Relational DBMS

INDSEP Indexes

PrDB Overview
During query processing, add new deterministic factors (hard constraints) corresponding to intermediate tuples
- Encode the dependencies between base tuples and intermediate tuples

Example query: $\pi_C(S \bowtie_B T)$

IF: $s1$ and $t1$ are 1
THEN: $Pr(i1 = 1) = 1, Pr(i1 = 0) = 0$
ELSE: $Pr(i1 = 1) = 0, Pr(i1 = 0) = 1$
PrDB: Query Processing

- During query processing, add new deterministic factors (hard constraints) corresponding to intermediate tuples
 - Encode the dependencies between base tuples and intermediate tuples
- Example query: $\pi_C(S \bowtie_B T)$
PrDB: Query Processing

- **Query evaluation** \equiv Find the result tuple probabilities \equiv Inference !!
 - Can use standard techniques like *variable elimination, junction trees (exact), message passing, loopy Belief propagation, Gibbs Sampling (approx)*
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Overview
- PrDB: Some Details
 - Instance-optimal query execution
 - Inference with Shared Factors
 - Indexing Structures for Correlated Databases
- Ongoing and Future Work
1. Instance-optimal Query Execution

- AND and OR factors enable reorganization of the network
 - Complexity of the generated network depends on the query plan
 - “Safe plans” always generate tree networks – enabling extensional evaluation
 - But a reorganization may not necessarily correspond to a traditional query plan
 - Benefits in looking for optimal reorganization for a given query and dataset
 - We designed an efficient algorithm to find such reorganizations during query execution in some cases, but many problems still open [VLDB’10]
2. Inference with Shared Factors

<table>
<thead>
<tr>
<th>AdlID</th>
<th>Model</th>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Honda</td>
<td>?</td>
<td>$9,000</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
<td>Beige</td>
<td>$8,000</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>?</td>
<td>$6,000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000000</td>
<td>?</td>
<td>?</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Pr(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda</td>
<td>0.2</td>
</tr>
<tr>
<td>Mazda</td>
<td>0.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| Model | Color | Pr(C|M) |
|-------|-------|--------|
| Honda | Beige | 0.1 |
| Honda | Red | 0.2 |
| ... | ... | ... |
| Mazda | Beige | 0.02 |

Query: How many “red” cars are for sale?

- **Option 1**: “Ground out” (propositionalize) the random variables, and use standard techniques
- **Option 2**: Directly operate on the shared factors
2. Inference with Shared Factors

<table>
<thead>
<tr>
<th>s1</th>
<th>$f_1(s_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s2</th>
<th>$f_2(s_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s3</th>
<th>$f_3(s_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s4</th>
<th>$f_4(s_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.21</td>
</tr>
<tr>
<td>1</td>
<td>0.79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t1</th>
<th>$g(t_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
2. Inference with Shared Factors

(Near-)identical answers because of the symmetry

How to identify such opportunities in general?
2. Bisimulation-based Lifted Inference

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model

RV-Elim Graph

Elimination Order:
\[s1, s2, s3, s4, t1 \]
Step 2: Run *bisimulation* on the RV-Elim graph to identify symmetries

Intuitively, two nodes are bisimilar if
(1) they represent identical factors, and
(2) their parents are identically colored
2. Bisimulation-based Lifted Inference

Step 2: Run *bisimulation* on the RV-Elim graph to identify symmetries

Graphical Model

RV-Elim Graph

Intuitively, two nodes are bisimilar if

(1) they represent identical factors, and

(2) their parents are identically colored
2. Bisimulation-based Lifted Inference

Step 3: Compress the RV-Elim graph; run inference on compressed graph.
2. Example

[[3 relation join with 3 tuples each, attribute and tuple uncertainty]]

Original RV-Elim graph, 1170 vertices

Compressed RV-Elim graph, 78 vertices
2. Bisimulation-based Lifted Inference

- Orders of magnitude performance improvements with symmetry
- Bisimulation can be done in linear time on DAGs
 - Somewhat more involved here
 - Need to keep track of the order in which factors were multiplied
 - Must construct labels on-the-fly as opposed to standard bisimulation
 - $O(|E| \log(D) + |V|)$
- Choice of elimination order crucial
 - Dictates the amount of compression possible
 - We choose it by running bisimulation on the graphical model itself
- Our technique works on the ground (propositionalized) model
 - Enables approximations: e.g. allow approximate matches on factors [UAI’09]
- Many open challenges in effectively exploiting symmetry and first order representations
3. Querying Very Large CPDBs

- Base representation of PGMs can’t handle large datasets
 - Queries may only reference a small set of variables
 - Still may need to touch the entire dataset
 - Infeasible to load into memory and operate upon the full PGM

An example PGM

Queries of interest

Q1: How does the value of “s” affect the value “e”?

Q1: Need to do an inference operation involving nearly all variables
3. Querying Very Large CPDBs

- Base representation of PGMs can’t handle large datasets
 - Queries may only reference a small set of variables
 - Still may need to touch the entire dataset
 - Infeasible to load into memory and operate upon the full PGM

An example PGM

Queries of interest

Q1: How does the value of “s” affect the value “e”?
Q2: Compute probability distribution of “d + i + f + n + p”
3. Key Insight

Original PGM

What if we could “shortcut” the in-between nodes?

Many fewer computations
Can do inference much faster
3. INDSEP

- INDSEP is a hierarchical data structure based on this idea

\[
\{d, e, a, b, c, f, g, h, j, k\} \\
\{c, f, g, h\} \\
\{d, e, a, b\} \\
\{i, k\} \\
{\{i, k\}, \{j, n, m\}, \{o, q\}, \{p, r, s\}} \\
\{j, n, m, o, q, p, r, s\} \\
\{j, n, m\} \\
\{o, q\} \\
\{p, r, s\} \\
\{j, n, m\} \\
\{o, q\} \\
\{p, r, s\} \\
\{j, n, m\} \\
\{o, q\} \\
\{p, r, s\} \\
\{j, n, m\} \\
\{o, q\} \\
\{p, r, s\}
\]
3. INDSEP: Overview

- Unclear how to do this on the graphical model directly
- Instead we work with a junction tree of the model
 - **Caveat**: Inherit the limitations of the junction tree approach – only works for models with *bounded treewidth*
- Very large speedups for *inference queries*, and for *decomposable aggregate functions* (like SUM, MAX)
 - Evaluating boolean formulas trickier, but still significant benefits
- Supports a lazy approach for updates
 - Future queries inherit the burden of updating the index
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Overview
- PrDB: Some Details
 - Instance-optimal query execution
 - Inference with Shared Factors
 - Indexing Structures for Correlated Databases
- Ongoing and Future Work
Better connections with the work in the ML community

- Many ML problems and application domains ideal use cases for probabilistic databases
 - Need to scale to large (relational) databases
 - Need support for rich querying over uncertain data
- Significant overlap in the tools and techniques being developed
- But many important differences
 - Learning and knowledge transfer equally important there
 - Not much work in the probabilistic database community
Language constructs and semantics

- Flexibility in specifying uncertainties at different abstraction levels results in significant interpretation issues
- How to resolve conflicting uncertainties?
- How to keep the semantics simple enough that users can make sense of it?

Efficient algorithms for lifted inference

- Much work in recent years, but many interesting open problems remain
Ongoing Work and Open Problems

- Querying very large correlated probabilistic databases
 - Our indexing structures inherit the limitations of junction trees
 - Can only handle datasets or queries with low treewidths
 - *How to incorporate approximations into the framework?*
 - *Lineage formula probability computation especially hard*
 - Computing probabilities of *read-once* lineages easy with tuple independence, but \#P-Hard for simplest of correlations

- Uncertain graph data
 - Shared correlations prevalent in settings like social networks, biological networks
 - Compact models of correlations required
More details at:

http://www.cs.umd.edu/~amol/PrDB