PrDB: Increasing the Representational
Power and Scaling Reasoning
in Probabilistic Databases

Amol Deshpande, University of Maryland

(joint work w/ Prof. Lise Getoor, Bhargav Kanagal,
Jian Li, and Prithviraj Sen)



Motivation

® Increasing amounts of real-world uncertain data

Sensor networks, Scientific databases, Social networks...
e Noisy, error-prone observations
e Imprecise data, data with confidence or accuracy bounds
e Widespread use of statistical and probabilistic models
e ... for entity resolution, link prediction, function prediction etc.

Automatically constructed knowledge-bases
e Noisy data sources, automatically derived schema mappings
e Reputation/trust/staleness issues
e Automatically extracted knowledge from text

® Need to develop database systems for efficiently representing and
managing uncertainty



Probabilistic Databases

® Several approaches proposed in recent years in DB literature

Typically based on probability theory
e Annotate tuples with probabilities of existence (tuple-existence uncertainty)

e Specify a pdf over possible values of an attribute (attribute-value uncertainty)
Focus on SQL query evaluation, but inference also considered

Strong independence assumptions; limited attribute uncertainty support

e PrDB Goals:

Increase representationl power to support:

e Correlations among the data items
e Uncertainties at different abstraction levels and granularities

Scale reasoning and querying to large-scale uncertain data while
supporting the above



An Example Probabilistic Database

® Example from Dalvi and Suciu [2004]

® Assume independent tuples
Possible worlds

S A B prob . t e instance probability
(o nterpret as a distribution s1. s2, t1 0.12

sT EiNng 06 over a set of deterministic { }

s2 m 1 05  possible worlds {s1, s2} 0.18

> C {st, t1} 012

{s1) 0.18
T 'B C prob {s2, 1) 0.08
t1 1 p 04

P p(s1) * p(t1) * (1-p(s2)) {s2) 0.12
Z o0 000 1) 0.08

0 0.12



Query Processing Semantics

® Evaluate on each possible world and combine results
e Example Query: TT(S D T)

A B prob i1
sT ‘M 1 0.6 i2
s2 ‘n 1 0.5

select C
fromS, T
where S.B = T.B



Query Processing Semantics

® Evaluate on each possible world and combine results

® Example Query: TT(SP;T)

Possible worlds  Query Result

instance prob result
S A B prob {s1,s2,t1}  0.12 {p’)
ST Mgl 06 {s1,s2)  0.18 0
2 n 1 05
> j> (51,11} 0.12 (p’) C prob
‘ s} 018 a D 1 032
T B C prob {s2, t1} 0.08 {'p’}
t1 1 p 04 {s2} 0.12 {}
1 0 Not clear how to do this in general
{t1} 0.0
0 0.1 e.g. ranking ??
Consensus Answers [PODS’09]
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1. Correlations in Uncertain Data

® Most application domains generate correlated data

Data Integration
e Conflicting information best captured using “mutual exclusivity”

e Data from the same source may all be valid or may all be invalid

Information extraction

e Annotations on consecutive text segments strongly correlated

Social networks; Sensor networks

e Attributes of neighboring nodes often highly correlated

e Predicted links, class labels, extracted events likely to be correlated

® Even if base data exhibits independence..

Correlations get introduced during query processing



2. Shared Uncertainties and Correlations

® Uncertainties and correlations often specified for groups of tuples
rather than for individual tuples

® Necessary when trying to model and reason about uncertainty in
large populations

AdID Model Color Price m

Hond 0.2
1 Honda 2  $9,000 ondd

Mazda 0.1
2 ? Beige $8,000

3 [ S i | Color | Priciv)

Honda Beige 0.1
Honda Red 0.2

1000000 ? ? $10,000 Mazda Beige  0.02

A Used Car Ads Database




3. Schema-level Uncertainties

e Often we have probabilistic knowledge at the schema level (learned

from a deterministic database) that we are trying to transfer
Using Probabilistic Relational Models (PRMs), Relational Markov networks
(RMNSs), Markov Logic Networks (MLNs) etc.

Student’s 1Q Course Difficulty Bob

\/ John
Alice

Course Grade

A “Schema-level” Dependence Bob
John

An Instantiation [ > John
Alice




PrDB Framework

® Flexible uncertainty model (based on probabilistic graphical models)
Support for representing rich correlation structures [ICDE'07]

Support for specifying uncertainty at multiple abstraction levels [DUNE'07]

® Declarative constructs for interacting with the database

Manipulating and updating uncertainty as a first class citizen

® Rich querying semantics

SQL queries; Inference, reasoning, and what-if queries

® New techniques for scaling reasoning and query processing
Inference techniques to exploit the structure in the data [VLDB’08, UAI'09]
Index structures for handling large volumes of data [SIGMIOD’09, 10|

Efficient algorithms for ranking queries, consensus answers [VLDB’09,PODS’09]
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Indexing Structures for Correlated Databases

® Ongoing and Future Work



A Simple Example

® Represent the uncertainties and correlations graphically using
small functions called factors

Concepts borrowed from the graphical models literature

S A B prob
sT 'm 1 0.6
s2Z nn 1 0.5

T B c prob
t1 1 ‘p0 04



A Simple Example

® Represent the uncertainties and correlations graphically using
small functions called factors
Concepts borrowed from the graphical models literature

0 = Tuple does not exist
1 = Tuple exists

N Often not probability
S A B s1  fi(s1) distributions
s m 1 "0 04 _ Values can be > 1
s2 'n 1 1 0.6

s2 t1  f(s2,t1)

0 0 0.1
T B C s2 and t1

0 1 0.5
t1 1 p mutually

1 0 0.4 exclusive

1 1 0



A Simple Example

® Represent the uncertainties and correlations graphically using
small functions called factors

Concepts borrowed from the graphical models literature

f1(s1) f,(s2, t1)
S A B s1  fi(s1) st s2 —— 1
s1T ‘m 1 0 0.4
s2 ‘n 1 1 0.6 Markov network
representation
s2 t1 fy(s2,t1)
T B cC 0 0 0.1 s1 s2 t1
0 1 0.5
t1 1 p
1 0 0.4
1 1 0

Factor graphs




Probabilistic Graphical Models

® A PGM can compactly represent a
joint probability distribution over a
large number of random variables

s s2 t1

with complex correlations é E i/

® Specified completely by:
A set of random variables

Pr(s; sy t;) oc f,(s1) f5(S, 1)
For example:
Pr(s;=0s,=0t,=0) =

%f1(31 =0) fy(s,=0 t,;=0)
® An Inference task: Finding a marginal prob. \

A set of factors over the random variables

e Joint pdf obtained by multiplying all
the factors and normalizing

distribution over subset of variables
e.g. Pr(t,) Normalizing Constant



PrDB: Representation and Storage

® Underlying representation essentially a factor graph

Tuples and factors stored separately in different tables

® Factors can be inserted on any set of random variables

Corresponding to tuple existences or attribute values

® Semantics: the joint pdf over the random variables is
obtained by multiplying all the factors and normalizing

No special care taken right now to ensure this is correct

e Allows specifying shared factors that apply to groups of
tuples, or to all tuples of a relation (schema-level)



PrDB: Representation and Storage

insert into S values ('s1’, ‘m’, 1) uncertain(‘f0.2; t 0.8’);

insert into T values (‘t1’, uncertain, ‘p’);
insert factor f20.2, f30.8,t20.9,t30.1°in S, Ton ‘sl.e, t1.B’;

S _tid-—A"""B---e_ (\~ (I IR . T o1 )
o ™y B 7t - B =
(\ ST 'm 1 I'l’ ’ : o= ===01
f3 t1.B 2

Tta B C e

t1 N ‘p ot 4 (p1 {0]:0.2, [1] - 08}_,

02170217, 3] : 0.8,
[0,2]:0.9, [1,3]:0.1}

Data Tables Uncertainty Parameters (factors)




PrDB: Representation and Storage

insert into S values ('s1’, ‘m’, 1) uncertain(‘f0.2; t 0.8’);

insert into T values (‘t1’, uncertain, ‘p’);
insert factor f20.2, f30.8,t20.9,t30.1°in S, Ton ‘sl.e, t1.B’;

S td A B e s1.e
A L /—‘2"'32'3""3\ ,.fal----<p.1.~
(o 77 3 sle 1
s2 'n 1 n ( W 3 92
el B 2 e Teee —-
T AidnoBon€sna, | funcid | func |
¢ L I N B/ o1 _____ {101:0.2, [1]: 0.8}
I - " T92  {0.2]:02,[1,3]: 08,
See_ [0,2]:0.9, [1, 3L .0#

Data Tables Uncertainty Parameters (factors)




PrDB: Query Processing Overview

® Inference queries

Find marginal or conditional probability distributions over subsets
of attributes

® Declarative SQL queries
PrDB supports a fairly large subset of SQL queries, including:
e Select-project-join queries
o Aggregates

e Set operations (union, difference)



PrDB: Query Processing Overview

No Index on the Data

Load the base PGM into memory
Construct an augmented PGM

Use exact or approximate lifted inference

INDSEP Indexes Present

Aggregation or inference queries: Use
index directly

SQL SPJ Queries

Gather a minimal set of correlations
& uncertainties using the index

Use exact or approximate inference

In some cases, solve using the index

|
|
Data tables Uncertainty
Parameters

A Relational DBMS INDSEP Indexes

PrDB Overview



PrDB: Query Processing

® During query processing, add new deterministic factors (hard
constraints) corresponding to intermediate tuples

Encode the dependencies between base tuples and intermediate tuples

e Example query: (S T)

__ ﬁ1 2 t1
S S
S A B i1 m 1
s1 m 1 j2 ‘N1 ‘p’
s2 ‘n 1
i2

T S IF: s1 and t1 are 1
t1 1 p

THEN: Pr(i1=1)=1,Pr(i1=0)=0
ELSE: Pr(i1=1)=0, Pr(i1=0) =1



PrDB: Query Processing

® During query processing, add new deterministic factors (hard
constraints) corresponding to intermediate tuples

Encode the dependencies between base tuples and intermediate tuples

e Example query: (S T)

i I ? 2 t1
S S
S N 1M 1
s 'm 1 2 n 1P
s2 'n" 1 *
T, i1 i2
t1T 1 p

ri ‘p r1



PrDB: Query Processing

® Query evaluation = Find the result tuple probabilities = Inference !!

Can use standard techniques like variable elimination, junction trees (exact),

message passing, loopy Belief propagation, Gibbs Sampling (approx)

cse @ @
S A B i1 m 1 s1 52 t1
s1T ‘m 1 2 n 1P
s2 ‘n 1 *

ITe

{ i i2

rBc c o
t1 1 p PR

r1
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1. Instance-optimal Query Execution

® AND and OR factors enable reorganization of the network

Complexity of the generated network depends on the query plan

e “Safe plans” always generate tree networks — enabling extensional evaluation

But a reorganization may not necessarily correspond to a traditional query plan

e Benefits in looking for optimal reorganization for a given query and dataset

We designed an efficient algorithm to find such reorganizations during query
execution in some cases, but many problems still open

2 o & o™
b4 :

r1



2. Inference with Shared Factors

AdID Model Color Price m

1 Honda 2  $9,000 I
Mazd 0.1
2 2  Beige $8,000 i

3 [ N i | Color | PriCiM)

Honda Beige 0.1
Honda Red 0.2

1000000  ? ?  $10,000 Mazda Beige  0.02
Query: How many “red” cars are for sale ?

® Option 1: “Ground out” (propositionalize) the random variables,
and use standard techniques

® Option 2: Directly operate on the shared factors



2. Inference with Shared Factors

s1  f,(s1)
0 0.2
0.8
s2 f,(s2)
0 0.2
0.8
s3  f4(s3)
0 0.4
0.6
s4  f,(s4)
0 0.21
0.79
t1 g(t1)
0 0.5

0.5



2. Inference with Shared Factors

s1

s2

s3

s4

t1

f,(s1)
0.2
0.8

fy(s2)

0.2
0.8

f5(s3)

0.4
0.6

f,(s4)
0.21
0.79

g(t)
0.5

0.5

(Near-)identical answers because of the symmetry

How to identify such opportunities in general ?



2. Bisimulation-based Lifted Inference

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model RV-Elim Graph

080080 YPOEHREH
p \/V\/V

S

(i) Haliz) — Ms(is) 'U4(’4)

Elimination Order:
s1, s2, 83, s4, t1



2. Bisimulation-based Lifted Inference

Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

Graphical Model RV-Elim Graph

080080 YPOEHREH
p \/V\/V

S

(i) Haliz) — Ms(is) 'U4(’4)

Intuitively, two nodes are bisimilar if
(1) they represent identical factors, and
(2) their parents are identically colored



2. Bisimulation-based Lifted Inference

Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

Graphical Model RV-Elim Graph

@080 """ - O-®
S, t, S, S3 S, \Z

g Mg3
I I I Iy (i) Ha(is) - Hs(l3) Ha(ly)

Intuitively, two nodes are bisimilar if
(1) they represent identical factors, and
(2) their parents are identically colored



2. Bisimulation-based Lifted Inference

Step 3: Compress the RV-Elim graph; run inference on compressed graph

RV-Elim Graph Compressed RV-Elim Graph

Y XL XL XY

ms3

[f fof] [ A AR

[ms17m32’ms4]

uli) ) sl sl i) i b b us(is



2. Example

[[ 3 relation join with 3 tuples each, attribute and tuple uncertainty |]

UYoUYL U ou vy T RN T I IR TR TR
Wy by’ RIS
ENERN 2S5 AP ) 4 TR ATV T R R O L AR WL

‘ / \ |\ [\ . \
VOV VIO N VoV NV N NN N LJENEYL Y VNV,

S\ oL L/ \T\/XE NVOOUNVNNL NV N NNNY O NNNYY VOV VY YY

|
~ SN L PN NY YN NN N NV Vot ] N VN T 4
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~ N TT1 T 11
Y 0
|\ |

L ||
oL

Original RV-Elim graph, 1170 vertices

Compressed RV-Elim graph, 78 vertices =)




2. Bisimulation-based Lifted Inference

Orders of magnitude performance improvements with symmetry

Bisimulation can be done in linear time on DAGs
Somewhat more involved here

e Need to keep track of the order in which factors were multiplied

e Must construct labels on-the-fly as opposed to standard bisimulation
O(/E[ log(D) + [V])
Choice of elimination order crucial

Dictates the amount of compression possible

We choose it by running bisimulation on the graphical model itself

Our techniqgue works on the ground (propositionalized) model

Enables approximations: e.g. allow approximate matches on factors [UAI’09]

Many open challenges in effectively exploiting symmetry and first
order representations



3. Querying Very Large CPDBs

® Base representation of PGMs can’t handle large datasets
Queries may only reference a small set of variables
o Still may need to touch the entire dataset

Infeasible to load into memory and operate upon the full PGM

An example PGM

i

S8r 29

k
[ _ h ’

Q1: Need to do an inference

operation involving nearly
all variables

Queries of interest

Q1: How does the value of “s” affect the value “e” ?



3. Querying Very Large CPDBs

® Base representation of PGMs can’t handle large datasets
Queries may only reference a small set of variables
o Still may need to touch the entire dataset

Infeasible to load into memory and operate upon the full PGM

An example PGM

ok '+) .
! — g
S 4 ® g
» f - -
Q2: Must compute a potentially
: : large probability distribution:
Queries of interest el 17 10 )

Q1: How does the value of “s” affect the value “e” ?

Q2: Compute probability distribution of “d +i+f+n+p”



3. Key Insight

Original PGM

Ry 25 K= S
. p ¢ .

r

What if we could “shortcut” the in-between nodes ?

¢ | Go—"®

. Many fewer computations

Can do inference much faster
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® INDSEP is a hierarchical data structure based on this idea
{d, e, a, b}
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{c.f, g h}
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3. INDSEP: Overview

® Unclear how to do this on the graphical model directly
® Instead we work with a junction tree of the model

Caveat: Inherit the limitations of the junction tree approach —
only works for models with bounded treewidth

e \Very large speedups for inference queries, and for decomposable
aggregate functions (like SUM, MAX)

Evaluating boolean formulas trickier, but still significant benefits
® Supports a lazy approach for updates

Future queries inherit the burden of updating the index



® Probabilistic Databases:Overview, Limitations
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Ongoing Work and Open Problems

® Better connections with the work in the ML community

Many ML problems and application domains ideal use cases for
probabilistic databases

e Need to scale to large (relational) databases

e Need support for rich querying over uncertain data
Significant overlap in the tools and techniques being developed
But many important differences

e Learning and knowledge transfer equally important there

e Not much work in the probabilistic database community



Ongoing Work and Open Problems

® Language constructs and semantics

Flexibility in specifying uncertainties at different abstraction
levels results in significant interpretation issues

How to resolve conflicting uncertainties ?

How to keep the semantics simple enough that users can make
sense of it ?

e Efficient algorithms for lifted inference

Much work in recent years, but many interesting open

problems remain



Ongoing Work and Open Problems

® Querying very large correlated probabilistic databases
Our indexing structures inherit the limitations of junction trees
e Can only handle datasets or queries with low treewidths

How to incorporate approximations into the framework ?

Lineage formula probability computation especially hard

e Computing probabilities of read-once lineages easy with tuple
independence, but #P-Hard for simplest of correlations

® Uncertain graph data

Shared correlations prevalent in settings like social networks,
biological networks

Compact models of correlations required



Thank You !!

® More details at:

http://www.cs.umd.edu/~amol/PrDB



