PrDB: Increasing the Representational Power and Scaling Reasoning in Probabilistic Databases

Amol Deshpande, University of Maryland

(joint work w/ Prof. Lise Getoor, Bhargav Kanagal, Jian Li, and Prithviraj Sen)

Motivation

- Increasing amounts of real-world uncertain data
 - Sensor networks, Scientific databases, Social networks...
 - Noisy, error-prone observations
 - Imprecise data, data with confidence or accuracy bounds
 - Widespread use of statistical and probabilistic models
 - ... for entity resolution, link prediction, function prediction etc.
 - Automatically constructed knowledge-bases
 - Noisy data sources, automatically derived schema mappings
 - Reputation/trust/staleness issues
 - Automatically extracted knowledge from text
- Need to develop database systems for efficiently representing and managing uncertainty

Probabilistic Databases

- Several approaches proposed in recent years in DB literature
 - Typically based on *probability theory*
 - Annotate tuples with probabilities of existence (tuple-existence uncertainty)
 - Specify a *pdf* over possible values of an attribute (*attribute-value uncertainty*)
 - Focus on SQL query evaluation, but inference also considered
 - Strong independence assumptions; limited attribute uncertainty support

• PrDB Goals:

- Increase representation power to support:
 - Correlations among the data items
 - Uncertainties at different abstraction levels and granularities
- Scale reasoning and querying to large-scale uncertain data while supporting the above

An Example Probabilistic Database

- Example from Dalvi and Suciu [2004]
- Assume independent tuples

Possible worlds

S	Α	В	prob		instance	probability
s1	'm'	1	0.6	Interpret as a distribution	{s1, s2, t1}	0.12
s2	'n'	1	0.5	over a set of deterministic possible worlds	{s1, s2}	0.18
					{s1, t1}	0.12
_					{s1}	0.18
T	В	С	prob		{s2, t1}	0.08
<i>t1</i>	1	1 'p' 0.4		p(s1) * p(t1) * (1-p(s2))	{s2}	0.12
				= 0.6 * 0.4 * 0.5 = 0.12	{t1}	0.08
					{}	0.12

Query Processing Semantics

- Evaluate on each possible world and combine results
- Example Query: $\pi_c(S \Join_B T)$

Query Processing Semantics

- Evaluate on each possible world and combine results
- Example Query: $\pi_C(S \bowtie_B T)$

					Possible	worlds	<u>s (</u>	<u>Query Res</u>	<u>ult</u>		
					instance	pro	b	result			
S	Α	В	prob		{s1, s2, t1}	0.12	2	{'p'}			
s1	'm'	1	0.6		{s1, s2}	0.18	3	{}			
s2	ʻn'	1	1 0.5		{s1, t1}	0.12	2	{'p'}	N	С	prob
					{s1}	0.18	3	{}	└─ → r1	ʻp'	0.32
T	В	С	prob		{s2, t1}	0.08	3	{'p'}			
t1	1	ʻp'	0.4		{s2}	0.12	2	{}			
					{t1}	0.0	Not	clear how	to do this i	n gei	neral
					{}	0.1		.g. ranking			
							Con	sensus An	swers [PO	051	9

Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Overview
- PrDB: Some Details
 - Instance-optimal query execution
 - Inference with Shared Factors
 - Indexing Structures for Correlated Databases
- Ongoing and Future Work

1. Correlations in Uncertain Data

- Most application domains generate correlated data
 - Data Integration
 - Conflicting information best captured using "mutual exclusivity"
 - Data from the same source may all be valid or may all be invalid
 - Information extraction
 - Annotations on consecutive text segments strongly correlated
 - Social networks; Sensor networks
 - Attributes of neighboring nodes often highly correlated
 - Predicted links, class labels, extracted events likely to be correlated
- Even if base data exhibits independence..
 - Correlations get introduced during query processing

2. Shared Uncertainties and Correlations

- Uncertainties and correlations often specified for groups of tuples rather than for individual tuples
- Necessary when trying to model and reason about uncertainty in large populations

AdID	Model	Color	Price		Мос	lel	Pr	(M)	
					Honda		Honda 0		
1	Honda	?	\$9,000		Maz	da	0	.1	
2	?	Beige	\$8,000		IVIAZ	ua	0	. 1	
3	?	?	\$6,000					••	
-		-	+ - ,	Μ	odel	Color		Pr(C	: M)
				Ho	onda	Bei	ge	0.	1
				Но	onda	Re	•	0.	2
									_
1000000	?	?	\$10,000	Ma	azda	Bei	ge	0.0)2

A Used Car Ads Database

3. Schema-level Uncertainties

- Often we have probabilistic knowledge at the schema level (learned from a deterministic database) that we are trying to transfer
 - Using Probabilistic Relational Models (PRMs), Relational Markov networks (RMNs), Markov Logic Networks (MLNs) etc.

PrDB Framework

- Flexible uncertainty model (based on probabilistic graphical models)
 - Support for representing rich correlation structures [ICDE'07]
 - Support for specifying uncertainty at multiple abstraction levels [DUNE'07]
- Declarative constructs for interacting with the database
 - Manipulating and updating uncertainty as a first class citizen
- Rich querying semantics
 - SQL queries; Inference, reasoning, and what-if queries
- New techniques for scaling reasoning and query processing
 - Inference techniques to exploit the structure in the data [VLDB'08, UAI'09]
 - Index structures for handling large volumes of data [SIGMOD'09,'10]
 - Efficient algorithms for ranking queries, consensus answers [VLDB'09,PODS'09]

Outline

- Probabilistic Databases:Overview, Limitations
- PrDB: Overview
- PrDB: Some Details
 - Instance-optimal query execution
 - Inference with Shared Factors
 - Indexing Structures for Correlated Databases
- Ongoing and Future Work

A Simple Example

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
 - Concepts borrowed from the graphical models literature

A Simple Example

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
 - Concepts borrowed from the *graphical models* literature

A Simple Example

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
 - Concepts borrowed from the graphical models literature

Probabilistic Graphical Models

- A PGM can compactly represent a joint probability distribution over a large number of random variables with complex correlations
- Specified completely by:
 - A set of random variables
 - A set of factors over the random variables
- Joint pdf obtained by multiplying all the factors and normalizing
- An *Inference* task: Finding a marginal prob. distribution over subset of variables
 - e.g. *Pr(t₁)*

 $Pr(s_{1}, s_{2}, t_{1}) \propto f_{1}(s_{1}) f_{2}(s_{2}, t_{1})$ For example: $Pr(s_{1} = 0, s_{2} = 0, t_{1} = 0) = \frac{1}{Z} f_{1}(s_{1} = 0) f_{2}(s_{2} = 0, t_{1} = 0)$.

PrDB: Representation and Storage

- Underlying representation essentially a factor graph
 - Tuples and factors stored separately in different tables
- Factors can be inserted on any set of random variables
 - Corresponding to tuple existences or attribute values
- Semantics: the joint pdf over the random variables is obtained by multiplying all the factors and normalizing
 - No special care taken right now to ensure this is correct
- Allows specifying shared factors that apply to groups of tuples, or to all tuples of a relation (schema-level)

PrDB: Representation and Storage

insert into S values ('*s*1', '*m*', 1) *uncertain*('*f* 0.2; *t* 0.8');

insert into T *values* ('t1', uncertain, 'p'); *insert factor* 'f 2 0.2; f 3 0.8; t 2 0.9; t 3 0.1' *in* S, T *on* 's1.e', 't1.B';

Uncertainty Parameters (factors)

Data Tables

PrDB: Representation and Storage

insert into S values ('*s*1', '*m*', 1) *uncertain*('*f* 0.2; *t* 0.8');

insert into T *values* ('t1', uncertain, 'p'); *insert factor* 'f 2 0.2; f 3 0.8; t 2 0.9; t 3 0.1' *in* S, T *on* 's1.e', 't1.B';

PrDB: Query Processing Overview

Inference queries

- Find marginal or conditional probability distributions over subsets of attributes
- Declarative SQL queries
 - PrDB supports a fairly large subset of SQL queries, including:
 - Select-project-join queries
 - Aggregates
 - Set operations (union, difference)

PrDB: Query Processing Overview

No Index on the Data

Load the base PGM into memory Construct an augmented PGM [ICDE'07] Use exact or approximate *lifted* inference [VLDB'08, UAI'09]

INDSEP Indexes Present

Aggregation or inference queries: Use index directly [SIGMOD'09] SQL SPJ Queries [SIGMOD'10] Gather a minimal set of correlations & uncertainties using the index

Use exact or approximate inference

In some cases, solve using the index

PrDB Overview

PrDB: Query Processing

- During query processing, add new deterministic factors (hard constraints) corresponding to intermediate tuples
 - Encode the dependencies between base tuples and intermediate tuples
- Example query: $\pi_C(S \Join_B T)$

PrDB: Query Processing

- During query processing, add new deterministic factors (hard constraints) corresponding to intermediate tuples
 - Encode the dependencies between base tuples and intermediate tuples
- Example query: $\pi_C(S \Join_B T)$

PrDB: Query Processing

• Query evaluation ≡ Find the result tuple probabilities ≡ Inference !!

• Can use standard techniques like variable elimination, junction trees (exact), message passing, loopy Belief propagation, Gibbs Sampling (approx)

Outline

- Probabilistic Databases:Overview, Limitations
- PrDB: Overview
- PrDB: Some Details
 - Instance-optimal query execution
 - Inference with Shared Factors
 - Indexing Structures for Correlated Databases
- Ongoing and Future Work

1. Instance-optimal Query Execution

- AND and OR factors enable reorganization of the network
 - Complexity of the generated network depends on the query plan
 - "Safe plans" always generate tree networks enabling extensional evaluation
 - But a reorganization may not necessarily correspond to a traditional query plan
 - Benefits in looking for optimal reorganization for a given query and dataset
 - We designed an efficient algorithm to find such reorganizations during query execution in some cases, but many problems still open [VLDB'10]

2. Inference with Shared Factors

AdID	Model	Color	Price	Mod	del	Pr	(M)			
1	Honda	?	\$9,000	Honda		Honda 0		londa 0.2		
2	?	Beige	\$8,000	Maz	da	C).1			
3	?	?	\$6,000							
				bdel		lor	Pr(C			
				nda nda	Be Re	J	0.1			
							0.4			
1000000	?	?	\$10,000	izda	Beige		0.0			

Query: How many "red" cars are for sale ?

- Option 1: "Ground out" (propositionalize) the random variables, and use standard techniques
- Option 2: Directly operate on the shared factors

2. Inference with Shared Factors

s1	f ₁ (s1)				
0	0.2				
1	0.8				
s2	f ₂ (s2)				
0	0.2				
1	0.8				
s3	f ₃ (s3)				
0	0.4				
1	0.6				
s4	f ₄ (s4)				
0	0.21				
1	0.79				
t1	g(t1)				
0	0.5				

2. Inference with Shared Factors

s1	f ₁ (s1)
0	0.2
1	0.8
s2	f ₂ (s2)
0	0.2
1	0.8
s3	f ₃ (s3)
0	0.4
1	0.6
s4	f ₄ (s4)
0	0.21
1	0.79
t1	g(t1)
0	0.5
1	0.5

(Near-)identical answers because of the symmetry

How to identify such opportunities in general?

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model

RV-Elim Graph

Elimination Order:

s1, s2, s3, s4, t1

Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

Graphical Model

RV-Elim Graph

Intuitively, two nodes are bisimilar if (1) they represent identical factors, and (2) their parents are identically colored

Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

Graphical Model

RV-Elim Graph

Intuitively, two nodes are bisimilar if (1) they represent identical factors, and (2) their parents are identically colored

Step 3: Compress the RV-Elim graph; run inference on compressed graph

Compressed RV-Elim Graph

RV-Elim Graph [f₁,f₂,f₄] $[f_1^{\Lambda}, f_2^{\Lambda}, f_3^{\Lambda}, f_4^{\Lambda}]$ **f**₃ f_4 f_4^{Λ} **f**₁ **f**₂ *f*₃ f_3^{Λ} f_2^{Λ} $[m_{s1}, m_{s2}, m_{s4}]$ Ň m_{s3} m_{s1} m_{s2} m_{s4} g g m_{s3} $[\mu_{1,} \mu_{2,} \mu_{4}]$ $\mu_{3}(i_{3})$ $\mu_4(i_4)$ $\mu_1(i_1)$ $\mu_2(i_2)$ $\mu_{3}(i_{3})$

2. Example

[[3 relation join with 3 tuples each, attribute and tuple uncertainty]]

- Orders of magnitude performance improvements with symmetry
- Bisimulation can be done in linear time on DAGs
 - Somewhat more involved here
 - Need to keep track of the order in which factors were multiplied
 - Must construct labels on-the-fly as opposed to standard bisimulation
 - O(|E| log(D) + |V|)
- Choice of elimination order crucial
 - Dictates the amount of compression possible
 - We choose it by running bisimulation on the graphical model itself
- Our technique works on the ground (propositionalized) model
 - Enables approximations: e.g. allow approximate matches on factors [UAI'09]
- Many open challenges in effectively exploiting symmetry and first order representations

3. Querying Very Large CPDBs

Base representation of PGMs can't handle large datasets

- Queries may only reference a small set of variables
 - Still may need to touch the entire dataset
- Infeasible to load into memory and operate upon the full PGM

Q1: How does the value of "s" affect the value "e"?

3. Querying Very Large CPDBs

Base representation of PGMs can't handle large datasets

- Queries may only reference a small set of variables
 - Still may need to touch the entire dataset
- Infeasible to load into memory and operate upon the full PGM

- Q1: How does the value of "s" affect the value "e"?
- Q2: Compute probability distribution of "d + i + f + n + p"

3. Key Insight

Original PGM

What if we could "shortcut" the in-between nodes ?

Many fewer computations

Can do inference much faster

3. INDSEP

• INDSEP is a hierarchical data structure based on this idea

3. INDSEP: Overview

- Unclear how to do this on the graphical model directly
- Instead we work with a *junction tree* of the model
 - Caveat: Inherit the limitations of the junction tree approach only works for models with *bounded treewidth*
- Very large speedups for *inference queries*, and for *decomposable aggregate functions* (*like SUM*, *MAX*)
 - Evaluating boolean formulas trickier, but still significant benefits
- Supports a lazy approach for updates
 - Future queries inherit the burden of updating the index

Outline

- Probabilistic Databases:Overview, Limitations
- PrDB: Overview
- PrDB: Some Details
 - Instance-optimal query execution
 - Inference with Shared Factors
 - Indexing Structures for Correlated Databases
- Ongoing and Future Work

Ongoing Work and Open Problems

- Better connections with the work in the ML community
 - Many ML problems and application domains ideal use cases for probabilistic databases
 - Need to scale to large (relational) databases
 - Need support for rich querying over uncertain data
 - Significant overlap in the tools and techniques being developed
 - But many important differences
 - Learning and knowledge transfer equally important there
 - Not much work in the probabilistic database community

Ongoing Work and Open Problems

- Language constructs and semantics
 - Flexibility in specifying uncertainties at different abstraction levels results in significant interpretation issues
 - How to resolve conflicting uncertainties ?
 - How to keep the semantics simple enough that users can make sense of it ?
- Efficient algorithms for lifted inference
 - Much work in recent years, but many interesting open problems remain

Ongoing Work and Open Problems

- Querying very large correlated probabilistic databases
 - Our indexing structures inherit the limitations of junction trees
 - Can only handle datasets or queries with low treewidths
 - How to incorporate approximations into the framework ?
 - Lineage formula probability computation especially hard
 - Computing probabilities of *read-once* lineages easy with tuple independence, but #P-Hard for simplest of correlations
- Uncertain graph data
 - Shared correlations prevalent in settings like social networks, biological networks
 - Compact models of correlations required

Thank You !!

More details at:

http://www.cs.umd.edu/~amol/PrDB